Image Processing Toolbox

For Use with MATLAB ${ }^{\text {º }}$

Computation

Visualization

Programming

User's Guide
Version 4

How to Contact The MathWorks:

www.mathworks.com
comp.soft-sys.matlab

support@mathworks.com suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Web
Newsgroup
Technical support
Product enhancement suggestions
Bug reports
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000
Phone
508-647-7001
Fax
The MathWorks, Inc.
Mail
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Image Processing Toolbox User's Guide
© COPYRIGHT 1993-2003 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by or for the federal government of the United States. By accepting delivery of the Program, the government hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part 252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain to the government's use and disclosure of the Program and Documentation, and shall supersede any conflicting contractual terms or conditions. If this license fails to meet the government's minimum needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to MathWorks.
MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and TargetBox is a trademark of The MathWorks, Inc.
Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History:	August 1993	First printing	Version 1
May 1997	Second printing	Version 2	
April 2001	Third printing	Revised for Version 3.0	
June 2001	Online only	Revised for Version 3.1 (Release 12.1)	
July 2002	Online only	Revised for Version 3.2 (Release 13)	
May 2003	Fourth printing	Revised for Version 4.0 (Release 13.0.1)	
September 2003	Online only	Revised for Version 4.1 (Release 13SP1)	

Preface

What Is the Image Processing Toolbox? xiv
Related Products xv
Configuration Notes xvi
About the Documentation xvii
Structure of the Documentation xvii
Image Credits xviii
Terminology xix
MATLAB Newsgroup $\mathbf{x x}$
Typographical Conventions xxi
Image Processing Demos xxii
Getting Started
Example 1 - Some Basic Topics 1-2

1. Read and Display an Image 1-2
2. Check How the Image Appears in the Workspace 1-3
3. Perform Histogram Equalization on the Image 1-4
4. Write the Image to a Disk File 1-6
5. Check the Contents of the Newly Written File 1-6
Example 2 - Advanced Topics 1-8
6. Read and Display an Image $1-8$
7. Estimate the Value of Background Pixels 1-9
8. View the Background Approximation as a Surface 1-10
1
9. Create an Image with a Uniform Background 1-11
10. Adjust the Contrast in the Processed Image 1-12
11. Create a Binary Version of the Image 1-13
12. Determine the Number of Objects in the Image 1-15
13. Examine the Label Matrix 1-15
14. Display the Label Matrix as a Pseudocolor Indexed Image 1-16
15. Measure Object Properties in the Image 1-17
16. Compute Statistical Properties of Objects in the Image 1-18
Where to Go from Here 1-20
Online Help 1-20
Toolbox Demos 1-20
Introduction
2
Terminology 2-2
Images in MATLAB and the Image Processing Toolbox 2-4
Working with Images in MATLAB 2-4
Storage Classes in the Toolbox 2-5
Image Types in the Toolbox 2-6
Indexed Images 2-6
Intensity Images 2-8
Binary Images 2-9
RGB Images 2-9
Multiframe Image Arrays 2-12
Summary of Image Types and Numeric Classes 2-13
Converting Image Types 2-13
Reading and Writing Image Data 2-16
Reading a Graphics Image 2-16
Writing a Graphics Image 2-17
Querying a Graphics File 2-20
Converting Image Storage Classes 2-20
Converting Graphics File Formats 2-21
Reading and Writing DICOM Files 2-22
Image Arithmetic 2-29
Summary of Image Arithmetic Functions 2-30
Image Arithmetic Truncation Rules 2-30
Adding Images 2-31
Subtracting Images 2-33
Multiplying Images 2-34
Dividing Images 2-35
Nesting Calls to Image Arithmetic Functions 2-36
Coordinate Systems 2-37
Pixel Coordinates 2-37
Spatial Coordinates 2-38
Displaying and Printing Images
3
Terminology 3-2
Overview 3-3
Using the Image Viewer to Display Images 3-4
Opening and Closing the Image Viewer 3-4
Understanding Image Viewer Tools 3-6
Using Image Viewer Navigation Aids 3-9
Using the Pixel Region Tool 3-13
Using the Image Information Tool 3-16
Managing Image Viewer Memory Usage 3-16
Using imshow to Display Images 3-18
Opening Images 3-18
Specifying the Initial Image Size 3-19
Viewing Multiple Images 3-19
Understanding Handle Graphics Object Property Settings 3-22
Displaying Different Image Types 3-24
Displaying Indexed Images 3-24
Displaying Intensity Images 3-25
Displaying Binary Images 3-27
Displaying RGB Images 3-29
Special Display Techniques 3-31
Adding a Colorbar 3-31
Displaying All Frames of a Multiframe Image at Once 3-32
Converting a Multiframe Image to a Movie 3-34
Texture Mapping 3-35
Printing Images 3-36
Setting Toolbox Display Preferences 3-37
Toolbox Preferences 3-37
Retrieving the Value of Toolbox Preferences 3-38
Setting the Value of Toolbox Preferences 3-38
Spatial Transformations
4
Terminology 4-2
Interpolation 4-3
Image Types 4-4
Image Resizing 4-5
Specifying the Size of the Output Image 4-5
Specifying the Interpolation Method 4-6
Using Filters to Prevent Aliasing 4-7
Image Rotation 4-8
Specifying the Interpolation Method 4-8
Specifying the Size of the Output Image 4-9
Image Cropping 4-10
Performing General Spatial Transformations 4-11
Specifying the Transformation Type 4-11
Performing the Transformation 4-13
Advanced Spatial Transformation Techniques 4-13
Image Registration
5
Terminology 5-2
Registering an Image 5-4
Point Mapping 5-4
Example: Registering to a Digital Orthophoto 5-6
Types of Supported Transformations 5-13
Selecting Control Points 5-15
Using the Control Point Selection Tool 5-15
Starting the Control Point Selection Tool 5-16
Viewing the Images 5-18
Specifying Matching Control Point Pairs 5-23
Saving Control Points 5-30
Using Correlation to Improve Control Points 5-32
Neighborhood and Block Operations
6
Terminology 6-2
Block Processing Operations 6-3
Types of Block Processing Operations 6-3
Sliding Neighborhood Operations 6-4
Padding Borders 6-5
Linear and Nonlinear Filtering 6-5
Distinct Block Operations 6-8
Overlap 6-9
Column Processing 6-11
Sliding Neighborhoods 6-11
Distinct Blocks 6-12
Linear Filtering and Filter Design
7
Terminology 7-2
Linear Filtering 7-4
Convolution 7-4
Correlation 7-6
Filtering Using imfilter 7-7
Using Predefined Filter Types 7-15
Filter Design 7-17
FIR Filters 7-17
Frequency Transformation Method 7-18
Frequency Sampling Method 7-19
Windowing Method 7-20
Creating the Desired Frequency Response Matrix 7-21
Computing the Frequency Response of a Filter 7-22
Transforms
8
Terminology 8-2
Fourier Transform 8-3
Definition of Fourier Transform 8-3
Discrete Fourier Transform 8-8
Applications of the Fourier Transform 8-11
Discrete Cosine Transform 8-17
The DCT Transform Matrix 8-18
DCT and Image Compression 8-19
Radon Transform 8-21
Using the Radon Transform to Detect Lines 8-26
Inverse Radon Transform 8-28
Example: Reconstructing an Image from Parallel Projection Data 8-31
Fan-Beam Projection Data 8-35
Computing Fan-Beam Projection Data 8-36
Reconstructing an Image from Fan-Beam Projection Data 8-38
Working with Fan-Beam Projection Data 8-39
Morphological Operations
9
Terminology 9-2
Dilation and Erosion 9-4
Understanding Dilation and Erosion 9-4
Structuring Elements 9-7
Dilating an Image 9-11
Eroding an Image 9-12
Combining Dilation and Erosion 9-14
Dilation- and Erosion-Based Functions 9-16
Morphological Reconstruction 9-19
Marker and Mask 9-19
Pixel Connectivity 9-23
Flood-Fill Operations 9-26
Finding Peaks and Valleys 9-29
Distance Transform 9-37
Objects, Regions, and Feature Measurement 9-40
Connected-Component Labeling 9-40
Selecting Objects in a Binary Image 9-42
Finding the Area of the Foreground of a Binary Image 9-42
Finding the Euler Number of a Binary Image 9-43
Lookup Table Operations 9-44
Analyzing and Enhancing Images
10
Terminology 10-2
Pixel Values and Statistics 10-3
Pixel Selection 10-3
Intensity Profile 10-5
Image Contours 10-8
Image Histogram 10-9
Summary Statistics 10-11
Region Property Measurement 10-11
Image Analysis 10-12
Edge Detection 10-12
Boundary Tracing 10-13
Quadtree Decomposition 10-18
Intensity Adjustment 10-21
Adjusting Intensity Values to a Specified Range 10-22
Histogram Equalization 10-26
Contrast-Limited Adaptive Histogram Equalization 10-28
Decorrelation Stretching 10-29
Noise Removal 10-34
Using Linear Filtering 10-34
Using Median Filtering 10-34
Using Adaptive Filtering 10-37

Region-Based Processing

Terminology 11-2
Specifying a Region of Interest $11-3$
Selecting a Polygon 11-3
Other Selection Methods 11-4
Filtering a Region 11-6
Example: Filtering a Region in an Image 11-6
Specifying the Filtering Operation 11-7
Filling a Region $11-9$
Image Deblurring
12
Terminology 12-2
Understanding Deblurring 12-3
Causes of Blurring 12-3
Deblurring Model 12-3
Using the Deblurring Functions 12-6
Deblurring with the Wiener Filter 12-7
Deblurring with a Regularized Filter 12-9
Deblurring with the Lucy-Richardson Algorithm 12-11
Deblurring with the Blind Deconvolution Algorithm 12-16
Creating Your Own Deblurring Functions 12-22
Avoiding Ringing in Deblurred Images 12-23
Terminology 13-2
Working with Different Screen Bit Depths 13-3
Determining Screen Bit Depth 13-3
Choosing a Screen Bit Depth 13-4
Reducing the Number of Colors in an Image 13-6
Using rgb2ind 13-7
Reducing Colors in an Indexed Image 13-12
Dithering 13-13
Converting Color Data Between Color Spaces 13-15
Converting Between Device-Independent Color Spaces 13-15
Performing Profile-Based Conversions 13-19
Converting Between Device-Dependent Color Spaces 13-21
Function Reference
14
Functions - By Category 14-2
Image Input, Output, and Display 14-2
Spatial Transformation and Registration 14-4
Image Analysis and Statistics 14-5
Image Enhancement and Restoration 14-6
Linear Filtering and Transforms 14-7
Morphological Operations $14-9$
Region-Based, Neighborhood, and Block Processing 14-11
Colormap and Color Space Functions 14-12
Miscellaneous Functions 14-13
Functions - Alphabetical List 14-15

Preface

This chapter introduces you to the Image Processing Toolbox and describes conventions used by the

documentation. \begin{tabular}{ll}
What Is the Image Processing Toolbox?

(p. xiv) \& | Introduces the Image Processing Toolbox and its |
| :--- |
| capabilities |

Related Products (p. xv) \& | Highlights other MathWorks products that are related to |
| :--- |
| image processing |

Configuration Notes (p. xvi) \& | Provides some information about installing and |
| :--- |
| configuring the image processing toolbox |

About the Documentation (p. xvii) \& | Describes the structure of the Image Processing Toolbox |
| :--- |
| documentation and credits the sources of the images used |
| in the documentation |

Typographical Conventions (p. xxi) \& | Lists typographical conventions used in the |
| :--- |
| documentation |

Image Processing Demos (p. xxii) \& | Describes the demos included with the Image Processing |
| :--- |
| Toolbox |

\end{tabular}

What Is the Image Processing Toolbox?

The Image Processing Toolbox is a collection of functions that extend the capability of the MATLAB ${ }^{\circledR}$ numeric computing environment. The toolbox supports a wide range of image processing operations, including

- Spatial image transformations
- Morphological operations
- Neighborhood and block operations
- Linear filtering and filter design
- Transforms
- Image analysis and enhancement
- Image registration
- Deblurring
- Region of interest operations

Many of the toolbox functions are MATLAB M-files, a series of MATLAB statements that implement specialized image processing algorithms. You can view the MATLAB code for these functions using the statement

```
type function_name
```

You can extend the capabilities of the Image Processing Toolbox by writing your own M-files, or by using the toolbox in combination with other toolboxes, such as the Signal Processing Toolbox and the Wavelet Toolbox.

For a list of the new features in this version, see the Release Notes documentation.

Related Products

The MathWorks provides several products that are especially relevant to the kinds of tasks you can perform with Image Processing Toolbox.

For more information about any of these products, see either

- The online documentation for that product if it is installed or if you are reading the documentation from the CD
- The MathWorks Web site, at http: / /www.mathworks.com; see the "products" section

The toolboxes listed below all include functions that extend MATLAB. The blocksets all include blocks that extend Simulink..

Product	Description
DSP Blockset	Design and simulate DSP systems
Image Acquisition Toolbox	Connect to image acquisition hardware and bring frames of image data into the MATLAB workspace
Mapping Toolbox	Analyze and visualize geographically based information
MATLAB	The Language of Technical Computing
Signal Processing Toolbox	Perform signal processing, analysis, and algorithm development
Wavelet Toolbox	Analyze, compress, and denoise signals and images using wavelet techniques

Configuration Notes

To determine if the Image Processing Toolbox is installed on your system, type this command at the MATLAB prompt.
ver
When you enter this command, MATLAB displays information about the version of MATLAB you are running, including a list of all toolboxes installed on your system and their version numbers.
For information about installing the toolbox, see the MATLAB Installation Guide for your platform.

For the most up-to-date information about system requirements, see the system requirements page, available in the products area at The MathWorks Web site (www.mathworks.com).

About the Documentation

This section

- Describes the structure of the Image Processing Toolbox documentation
- Credits the sources of images used in the documentation
- Explains the use of glossaries at the beginning of each major section of the documentation
- Provides pointers to other sources of information

Structure of the Documentation

The documentation is organized into these major sections:

- Chapter 1, "Getting Started," contains two step-by-step examples that will help you get started with using the Image Processing Toolbox.
- Chapter 2, "Introduction," introduces the Image Processing Toolbox and its capabilities.
- Chapter 3, "Displaying and Printing Images," describes how to display and print images in MATLAB.
- Chapter 4, "Spatial Transformations," describes image cropping, resizing, rotating, and other geometric transformations you can perform with the Image Processing Toolbox.
- Chapter 5, "Image Registration," describes how to align two images of the same scene using the Control Point Selection Tool.
- Chapter 6, "Neighborhood and Block Operations," describes how to perform block operations on images.
- Chapter 7, "Linear Filtering and Filter Design," describes how to create filters.
- Chapter 8, "Transforms," discusses several important image transforms.
- Chapter 9, "Morphological Operations," describes the functions in the toolbox that you can use to implement morphological image processing operations.
- Chapter 10, "Analyzing and Enhancing Images," discusses working with image data and displaying images in MATLAB and the Image Processing Toolbox.
- Chapter 11, "Region-Based Processing," describes how to perform image processing on specific regions of an image.
- Chapter 12, "Image Deblurring," describes the toolbox deblurring functions.
- Chapter 13, "Color," describes how to handle color images.

For detailed reference descriptions of each toolbox function, go to the MATLAB Help browser. Many reference descriptions also include examples, a description of the function's algorithm, and references to additional reading material.

Image Credits

This table lists the copyright owners of the images used in the Image Processing Toolbox documentation.

Image	Source
cameraman	Copyright Massachusetts Institute of Technology. Used with permission.
cell	Cancer cell from a rat's prostate, courtesy of Alan W. Partin, M.D., Ph.D., Johns Hopkins University School of Medicine.
circuit	Micrograph of 16-bit A/D converter circuit, courtesy of Steve Decker and Shujaat Nadeem, MIT, 1993.
concordaerial and westconcordaerial	Visible color aerial photographs courtesy of mPower3/Emerge.
concordorthophoto and westconcordorthophoto	Orthoregistered photographs courtesy of Massachusetts Executive Office of Environmental Affairs, MassGIS.
forest	Photograph of Carmanah Ancient Forest, British Columbia, Canada, courtesy of Susan Cohen.

Image	Source
LAN files	Permission to use Landsat provided by Space Imaging, LLC, Denver, Colorado.
liftingbody	Picture of M2-F1 lifting body in tow, courtesy of NASA (Image number E-10962).
m83	M83 spiral galaxy astronomical image courtesy of Anglo-Australian Observatory, photography by David Malin.
moon	Copyright Michael Myers. Used with permission.
saturn	Voyager 2 image, 1981-08-24, NASA catalog \#PIA01364.
solarspectra	Courtesy of Ann Walker. Used with permission.
tissue	Courtesy of Alan W. Partin, M.D., PhD., Johns Hopkins University School of Medicine.
trees	Trees with a View, watercolor and ink on paper, copyright Susan Cohen. Used with permission.

Terminology

At the beginning of each chapter are glossaries of words you need to know to understand the information in the chapter. These tables clarify how we use terms that may be used in several different ways in image processing literature. For example:

- In the field of image processing, one word is sometimes used to describe more than one concept. For example the resolution of an image can describe the height and width of an image as a quantity of pixels in each direction, or it can describe the number of pixels per linear measure, such as 100 dots per inch.
- In the field of image processing, the same concepts are sometimes described by different terminology. For example, a grayscale image can also be called an intensity image.

MATLAB Newsgroup

If you read newsgroups on the Internet, you might be interested in the MATLAB newsgroup (comp.soft-sys.matlab). This newsgroup gives you access to an active MATLAB user community. It is an excellent way to seek advice and to share algorithms, sample code, and M-files with other MATLAB users.

Typographical Conventions

Item	Convention	Example
Example code	Monospace font	To assign the value 5 to A, enter A $=5$
Function names, syntax, filenames, directory/folder names, user input, items in drop-down lists	Monospace font	The cos function finds the cosine of each array element. Syntax line example is
Buttons and keys	Boldface with book title caps	MLGetVar ML_var_name

Image Processing Demos

The Image Processing Toolbox is supported by a full complement of demo applications. These are very useful as templates for your own end-user applications, or for seeing how to use and combine your toolbox functions for powerful image analysis and enhancement.

To view all the Image Processing Toolbox demos, call the iptdemos function. This displays an HTML page in the MATLAB Help browser that lists all the Image Processing Toolbox demos.

You can also view this page by starting the MATLAB Help browser and clicking the Demos tab in the Help Navigator pane. From the list of products with demos, select the Image Processing Toolbox.

The toolbox demos are located under the subdirectory

```
matlabroot\toolbox\images\imdemos
```

where matlabroot represents your MATLAB installation directory.

Getting Started

This chapter contains two examples to get you started doing image processing using MATLAB and the Image Processing Toolbox. The examples contain cross-references to other sections in the documentation manual that have in-depth discussions on the concepts presented in the examples.

Example 1 - Some Basic Topics (p. 1-2)

Example 2 - Advanced Topics (p. 1-8)

Where to Go from Here (p. 1-20)

Guides you through an example of some of the basic image processing capabilities of the toolbox, including reading, writing, and displaying images

Guides you through some advanced image processing topics, including components labeling, object property measurement, image arithmetic, morphological image processing, and contrast enhancement

Provides pointers to additional sources of information

Example 1 - Some Basic Topics

This example introduces some basic image processing concepts, including reading and writing images, performing histogram equalization on an image, and getting information about an image. The example breaks this process into the following steps:

Step 1: Read and display an image
Step 2: Check how the image appears in the workspace
Step 3: Perform histogram equalization on the image
Step 4: Write the image to a disk file
Step 5: Get information about a graphics file

Before beginning with this example, you should already have installed the Image Processing Toolbox and have started MATLAB. If you are new to MATLAB, read the MATLAB Getting Started documentation to learn about basic MATLAB concepts.

1. Read and Display an Image

Clear the MATLAB workspace of any variables and close open figure windows.

```
clear, close all
```

To read an image, use the imread command. The example reads an image from a file named pout.tif and stores it in an array named I. pout.tif is one of the sample images that is supplied with the Image Processing Toolbox.

```
I = imread('pout.tif');
```

imread infers from the file that the graphics file format is TIFF. For the list of supported graphics file formats, see the imread function reference documentation.

Now display the image. The toolbox includes two image display functions: imshow and imview. You can use either one to display an image.

```
imshow(I)
```


Intensity Image pout.tif

Your choice of which display function to use depends on what you want to do. For example, because it displays the image in a MATLAB figure window, imshow provides access to figure annotation and printing capabilities. The imview function displays an image in a separate Java-based window called the Image Viewer, which provides access to additional tools that aid in navigating around an image, especially large images, and enable the inspection of pixels in an image.
"Example 2 - Advanced Topics" on page 1-8 uses imview. For more detailed information about these display functions, see Chapter 3, "Displaying and Printing Images."

2. Check How the Image Appears in the Workspace

To see how the imread function stored the image data in the workspace, check the Workspace browser in the MATLAB desktop. The Workspace browser displays information about all the variables you create during a MATLAB session. In the call to imread, you created the variable I, which is a 291-by-240 element array of uint8 data. MATLAB can store images as uint8, uint16, or double arrays.

You can also get information about variables in the workspace by calling the whos command.
whos
Name Size Bytes Class

```
    I 291x240 69840 uint8 array
    Grand total is }69840\mathrm{ elements using }69840\mathrm{ bytes
```

For more information about image storage classes, see "Reading a Graphics Image" on page 2-16.

3. Perform Histogram Equalization on the Image

As you can see, pout.tif is a somewhat low contrast image. To see the distribution of intensities in pout.tif, you can create a histogram by calling the imhist function. (Precede the call to imhist with the figure command so that the histogram does not overwrite the display of the image I in the current figure window.)

Notice how the intensity range is rather narrow. It does not cover the potential range of [0,255], and is missing the high and low values that would result in good contrast.

The toolbox provides several ways to improve the contrast in an image. One way is to call the histeq function to spread the intensity values over the full range of the image, a process called histogram equalization. (For more information about this topic, see "Intensity Adjustment" on page 10-21, which describes how to use the histeq, imadjust, and adapthisteq functions.)

```
I2 = histeq(I);
```

Display the new equalized image, I2, in a new figure window.

```
figure, imshow(I2)
```


Equalized Version of pout.tif

Call imhist again to create a histogram of the equalized image I2. If you compare the two histograms, the histogram of I2 is more spread out than the histogram of I1.
figure, imhist(I2)

4. Write the Image to a Disk File

To write the newly adjusted image I2 to a disk file, use the imwrite function. If you include the filename extension '.png', the imwrite function writes the image to a file in Portable Network Graphics (PNG) format, but you can specify other formats.

```
imwrite (I2, 'pout2.png');
```

See the imwrite function reference page for a list of file formats it supports. See also "Writing a Graphics Image" on page 2-17 for a tutorial discussion on writing images using the Image Processing Toolbox.

5. Check the Contents of the Newly Written File

To see what imwrite wrote to the disk file, use the imfinfo function. This function returns information about the image in the file, such as its format, size, width, and height.

```
imfinfo('pout2.png')
```

MATLAB responds with

```
ans =
```

```
            Filename:'pout2.png'
```

 Filename:'pout2.png'
 FileModDate:'03-Jun-1999 15:50:25'
 FileModDate:'03-Jun-1999 15:50:25'
 FileSize:36938
 FileSize:36938
 Format:'png'
 Format:'png'
 FormatVersion:[]
FormatVersion:[]
Width:240
Width:240
Height:291
Height:291
BitDepth:8
BitDepth:8
ColorType:'grayscale'
ColorType:'grayscale'
. .

```

This example shows only a subset of all the fields returned by imfinfo. See "Querying a Graphics File" on page 2-20 for more information about using imfinfo.

\section*{Example 2 - Advanced Topics}

This example introduces some advanced image processing concepts. The example calculates statistics about objects in the image but, before it performs these calculations, it preprocesses the image to achieve better results. The preprocessing involves creating a uniform background in the image and converting the image into a binary image. The example breaks this process into the following steps:

Step 1: Read and display an image
Step 2: Estimate the approximate value of background pixels
Step 3: View the background approximation as a surface
Step 4: Create an image with a uniform background
Step 5: Adjust the contrast in the uniform image
Step 6: Create a binary version of the image
Step 7: Determine the number of objects in the image
Step 8: Examine the label matrix
Step 9: Display the label matrix as a pseudocolor indexed image
Step 10: Measure properties of objects in the image
Step 11: Compute statistics of objects in the image

\section*{1. Read and Display an Image}

Clear the MATLAB workspace of any variables, close open figure windows, and close all open Image Viewers.
```

clear, close all, imview close all

```

Read and display the intensity image rice.png.
```

I = imread('rice.png');
imview(I)

```


\section*{Intensity Image rice.png}

\section*{2. Estimate the Value of Background Pixels}

In the sample image, the background illumination is brighter in the center of the image than at the bottom. In this step, the example uses a morphological opening operation to estimate the background illumination. An opening is an erosion followed by a dilation, using the same structuring element for both operations. The morphological opening has the effect of removing objects that cannot completely contain the structuring element. For more information about morphological image processing, see Chapter 9, "Morphological Operations."

The example calls the imopen function to perform the morphological opening operation. Note the call to the strel function, which creates a disk-shaped structuring element with a radius of 15 . To remove the rice grains from the image, the structuring element must be large enough so that it cannot fit entirely inside a single grain of rice.
```

background = imopen(I,strel('disk',15));

```

To see the estimated background image, type
```

imview(background)

```

\section*{3. View the Background Approximation as a Surface}

Use the surf command to create a surface display of the background approximation background. The surf command creates colored parametric surfaces that enable you to view mathematical functions over a rectangular region. The surf function requires data of class double, however, so you first need to convert background using the double command.
```

figure, surf(double(background(1:8:end,1:8:end))),zlim([0 255]);
set(gca,'ydir','reverse');

```

The example uses MATLAB indexing syntax to view only 1 out of 8 pixels in each direction; otherwise the surface plot would be too dense. The example also sets the scale of the plot to better match the range of the uint8 data and reverses the \(y\)-axis of the display to provide a better view of the data (the pixels at the bottom of the image appear at the front of the surface plot).

In the surface display, \([0,0]\) represents the origin, or upper left corner of the image. The highest part of the curve indicates that the highest pixel values of background (and consequently rice.png) occur near the middle rows of the image. The lowest pixel values occur at the bottom of the image and are represented in the surface plot by the lowest part of the curve.
The surface plot is a Handle Graphics \({ }^{\circledR}\) object. You can use object properties to fine-tune its appearance. For information on working with MATLAB graphics, see the MATLAB graphics documentation.


\section*{4. Create an Image with a Uniform Background}

To create a more uniform background, subtract the background image, background, from the original image, I.

I2 = imsubtract(I, background);
Because subtraction, like many MATLAB mathematical operations, is only supported for data of class double, you must use the Image Processing Toolbox image arithmetic imsubtract function.

Display the image with its more uniform background.
```

imview(I2)

```


\section*{Image with Uniform Background}

\section*{5. Adjust the Contrast in the Processed Image}

After subtraction, the image has a uniform background but is now a bit too dark. Use imadjust to adjust the contrast of the image.
I3 = imadjust(I2);
imadjust increases the contrast of the image by saturating \(1 \%\) of the data at both low and high intensities of I2 and by stretching the intensity values to fill the uint8 dynamic range. See the reference page for imadjust for more information.

Display the adjusted image I3.
imview(I3);


\section*{Image After Intensity Adjustment}

\section*{6. Create a Binary Version of the Image}

Create a binary version of the image by using thresholding. The function graythresh automatically computes an appropriate threshold to use to convert the intensity image to binary. The im2bw function performs the conversion.
```

level = graythresh(I3);
bw = im2bw(I3,level);
imview(bw)

```


\section*{Binary Version of the Image}

The binary image bw returned by im2bw is of class logical, as can be seen in this call to whos. The Image Processing Toolbox uses logical arrays to represent binary images. For more information, see "Binary Images" on page 2-9.
whos
MATLAB responds with
\begin{tabular}{lcrl} 
Name & Size & Bytes & Class \\
I & \(256 \times 256\) & 65536 & uint8 array \\
I2 & \(256 \times 256\) & 65536 & uint8 array \\
I3 & \(256 \times 256\) & 65536 & uint8 array \\
background & \(256 \times 256\) & 65536 & uint8 array \\
bw & \(256 \times 256\) & 65536 & logical array \\
level & \(1 \times 1\) & 8 & double array
\end{tabular}

Grand total is 327681 elements using 327688 bytes

\section*{7. Determine the Number of Objects in the Image}

After converting the image to a binary image, you can use the bwlabel function to determine the number of grains of rice in the image. The bwlabel function labels all the components in the binary image bw and returns the number of components it finds in the image in the output value, numObjects.
```

[labeled,numObjects] = bwlabel(bw,4);
numObjects
ans =

```
    101

The accuracy of the results depends on a number of factors, including
- The size of the objects
- Whether or not any objects are touching (in which case they might be labeled as one object)
- The accuracy of the approximated background
- The connectivity selected. The parameter 4, passed to the bwlabel function, means that pixels must touch along an edge to be considered connected. For more information about the connectivity of objects, see "Pixel Connectivity" on page 9-23.

\section*{8. Examine the Label Matrix}

To better understand the label matrix returned by the bwlabel function, this step explores the pixel values in the image. There are several ways to get a closeup view of pixel values. For example, you can use imcrop to select a small portion of the image. Another way is to use imview to display the label matrix and use features of the Image Viewer to examine pixel values.
```

imview(labeled);

```

The Image Viewer displays the value of the pixel under the mouse pointer as you move it over the image. If you move the pointer over the label matrix in a columnwise direction, you can see the order in which bwlabel numbered the grains of rice.

You can also use the Pixel Region tool to get a close look at the values of pixels in the label matrix. When you click the Pixel Region button \(\sigma_{\mathrm{m}}^{\mathrm{m}}\) in the Image

Viewer toolbar, the Image Viewer opens the Pixel Region tool window and places a rectangular cursor, called the pixel region rectangle, in the center of the visible part of the image. This rectangle defines which pixels are displayed in the Pixel Region tool window. As you move the rectangle, the Pixel Region Tool updates the pixel values displayed in the window. For more information about all the capabilities of the Image Viewer, see "Using the Image Viewer to Display Images" on page 3-4.

The following figure shows the Image Viewer with the Pixel Region rectangle positioned over the edges of two rice grains. Note how all the pixels in the rice grains have the values assigned by the bwlabel function and the background pixels have the value 0 (zero).

Pixel Region rectangle Region displayed in Pixel Region Tool


\section*{Examining the Label Matrix with the Pixel Region Tool}

\section*{9. Display the Label Matrix as a Pseudocolor Indexed İmage}

A good way to view a label matrix is to display it as a pseudocolor indexed image. In the pseudocolor image, the number that identifies each object in the label matrix maps to a different color in the associated colormap matrix. The colors in the image make objects easier to distinguish.

To view a label matrix in this way, use the label2rgb function. Using this function, you can specify the colormap, the background color, and how objects in the label matrix map to colors in the colormap.
```

pseudo_color = label2rgb(labeled, @spring, 'c', 'shuffle');
imview(pseudo_color);

```


Label Matrix Displayed as Pseudocolor Image

\section*{10. Measure Object Properties in the Image}

The regionprops command measures object or region properties in an image and returns them in a structure array. When applied to an image with labeled components, it creates one structure element for each component.

This example uses regionprops to create a structure array containing some basic properties for labeled. When you set the properties parameter to 'basic ', the regionprops function returns three commonly used measurements: area, centroid (or center of mass), and bounding box. The bounding box represents the smallest rectangle that can contain a region, or in this case, a grain of rice.
```

graindata = regionprops(labeled,'basic')

```

MATLAB responds with
```

graindata =
101x1 struct array with fields:
Area
Centroid

```

\section*{BoundingBox}

To find the area of the 51st labeled component, access the Area field in the 51st element in the graindata structure array. Note that structure field names are case sensitive.
```

graindata(51).Area

```
returns the following results
ans \(=\)

140
To find the smallest possible bounding box and the centroid (center of mass) for the same component, use this code:
```

graindata(51).BoundingBox, graindata(51).Centroid
ans =
107.5000 4.5000 13.0000 20.0000
ans =
114.5000 15.4500

```

\section*{11. Compute Statistical Properties of Objects in the Image}

Now use MATLAB functions to calculate some statistical properties of the thresholded objects. First use max to find the size of the largest grain. (In this example, the largest grain is actually two grains of rice that are touching.)
```

 max([graindata.Area])
 returns
ans =
4 0 4

```

Use the find command to return the component label of the grain of rice with this area.
```

 biggrain = find([graindata.Area]==404)
    ```
returns
biggrain =

59
Find the mean of all the rice grain sizes.
mean([graindata.Area])
returns
ans =
175.0396

Make a histogram containing 20 bins that show the distribution of rice grain sizes. The histogram shows that the most common sizes for rice grains in this image are in the range of 150 to 250 pixels.
hist([graindata.Area], 20)


\section*{Where to Go from Here}

For more information about the topics covered in these exercises, read the tutorial chapters that make up the remainder of this documentation. For reference information about any of the Image Processing Toolbox functions, see the online "Function Reference", which complements the M-file help that is displayed in the MATLAB command window when you type
```

help functionname

```

For example,
```

help imview

```

\section*{Online Help}

The Image Processing Toolbox User's Guide documentation is available online in both HTML and PDF formats. To access the HTML help, select Help from the menu bar of the MATLAB desktop. In the Help Navigator pane, click the Contents tab and expand the Image Processing Toolbox topic in the list.

To access the PDF help, click Image Processing Toolbox in the Contents tab of the Help browser and go to the link under "Printable Documentation (PDF)." (Note that to view the PDF help, you must have Adobe's Acrobat Reader installed.)

\section*{Toolbox Demos}

The Image Processing Toolbox includes many demo applications. The demos are useful for seeing the toolbox features put into action and for borrowing code for your own applications. To view an HTML page that lists all the Image Processing Toolbox demos, call the iptdemos function. You can also access the demos by clicking the Demos tab in the Help Navigator pane of the MATLAB Help browser.

\section*{Introduction}

This chapter introduces you to the fundamentals of image processing using MATLAB and the Image Processing Toolbox.

Terminology (p. 2-2)

Images in MATLAB and the Image Processing Toolbox (p. 2-4)

Image Types in the Toolbox (p. 2-6)

\section*{Reading and Writing Image Data} (p. 2-16)

Image Arithmetic (p. 2-29)

Coordinate Systems (p. 2-37)

Provides definitions of image processing terms used in this section

Describes how images are represented in MATLAB and the Image Processing Toolbox

Describes the fundamental image types supported by the Image Processing Toolbox

Describes how to read and write images, and get information about image files

Describes how to add, subtract, multiply, and divide images

Explains image coordinate systems

\section*{Terminology}

An understanding of the following terms will help you to use this chapter.
\begin{tabular}{l|l}
\hline Term & Definition \\
\hline binary image & \begin{tabular}{l} 
Image containing only black and white pixels. In MATLAB, a binary \\
image is represented as a logical array of 0's and 1's (which usually \\
represent black and white, respectively). This documentation uses the \\
variable name BW to represent a binary image in the workspace.
\end{tabular} \\
\hline image type & \begin{tabular}{l} 
Defined relationship between array values and pixel colors. The toolbox \\
supports binary, indexed, intensity, and RGB image types.
\end{tabular} \\
\hline indexed image & \begin{tabular}{l} 
Image whose pixel values are direct indices into an RGB colormap. In \\
MATLAB, an indexed image is represented by an array of class uint8, \\
uint16, or double. The colormap is always an m-by-3 array of class \\
double. This documentation uses the variable name X to represent an \\
indexed image in the workspace, and map to represent the colormap.
\end{tabular} \\
\hline intensity image & \begin{tabular}{l} 
Image consisting of intensity (grayscale) values. In MATLAB, intensity \\
images are represented by an array of class uint8, uint16, or double. \\
While intensity images are not stored with colormaps, MATLAB uses a \\
system colormap to display them. This documentation uses the variable \\
name I to represent an intensity image in the workspace.
\end{tabular} \\
\hline multiframe image & \begin{tabular}{l} 
Image array that contains more than one image, related by time or view. \\
Each image in the array is referred to as a frame. Multiframe images \\
are represented in the workspace as a 4-D array where the fourth \\
dimension specifies the frame number.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Term & Definition \\
\hline RGB image & \begin{tabular}{l} 
Image in which each pixel is specified by three values - one each for \\
the red, green, and blue components of the pixel's color. In MATLAB, an \\
RGB image is represented by an m-by-n-by-3 array of class uint8, \\
uint16, or double. This documentation uses the variable name RGB to \\
represent an RGB image in the workspace. This type of image is also \\
known as a true-color image.
\end{tabular} \\
\hline storage class & \begin{tabular}{l} 
The numeric storage class used to store an image in MATLAB. The \\
storage classes used in MATLAB are uint8, uint16, and double. The \\
reference documentation for some functions includes a section called \\
"Class Support" that specifies which image classes the function can \\
operate on. When this section is absent, the function can operate on all \\
supported storage classes.
\end{tabular} \\
\hline
\end{tabular}

\section*{Images in MATLAB and the Image Processing Toolbox}

The basic data structure in MATLAB is the array, an ordered set of real or complex elements. This object is naturally suited to the representation of images, real-valued ordered sets of color or intensity data.
MATLAB stores most images as two-dimensional arrays (i.e., matrices), in which each element of the matrix corresponds to a single pixel in the displayed image. (Pixel is derived from picture element and usually denotes a single dot on a computer display.) For example, an image composed of 200 rows and 300 columns of different colored dots would be stored in MATLAB as a 200-by-300 matrix. Some images, such as RGB, require a three-dimensional array, where the first plane in the third dimension represents the red pixel intensities, the second plane represents the green pixel intensities, and the third plane represents the blue pixel intensities.

This convention makes working with images in MATLAB similar to working with any other type of matrix data, and makes the full power of MATLAB available for image processing applications. For example, you can select a single pixel from an image matrix using normal matrix subscripting.
\[
I(2,15)
\]

This command returns the value of the pixel at row 2, column 15 of the image I.

\section*{Working with Images in MATLAB}

Images are most commonly stored in MATLAB using the logical, uint8, uint16 and double data types. You can perform many standard MATLAB array manipulations on uint8 and uint16 image data, including
- Indexing, including logical indexing
- Reshaping, reordering, and concatenating
- Reading from and writing to MAT-files
- Using relational operators

Certain MATLAB functions, including the find, all, any, conv2, convn, fft2, fftn, and sum functions, accept uint8 or uint16 data but return data in double-precision format.

The basic MATLAB arithmetic operators, however, do not accept uint8 or uint 16 data. For example, if you attempt to add two uint8 images, A and B, you get an error, such as
```

$C=A+B$
??? Function '+' not defined for variables of class 'uint8'.

```

Because these arithmetic operations are an important part of many image-processing operations, the Image Processing Toolbox includes functions that support these operations on uint8 and uint16 data, as well as the other numeric data types. See "Image Arithmetic" on page 2-29 for more information.

\section*{Storage Classes in the Toolbox}

By default, MATLAB stores most data in arrays of class double. The data in these arrays is stored as double-precision (64-bit) floating-point numbers. All MATLAB functions work with these arrays.

For image processing, however, this data representation is not always ideal. The number of pixels in an image can be very large; for example, a 1000 -by- 1000 image has a million pixels. Since each pixel is represented by at least one array element, this image would require about 8 megabytes of memory.
To reduce memory requirements, MATLAB supports storing image data in arrays as 8 -bit or 16 -bit unsigned integers, class uint8 and uint16. These arrays require one eighth or one fourth as much memory as double arrays.

\section*{Image Types in the Toolbox}

The Image Processing Toolbox supports four basic types of images:
- Indexed images
- Intensity images
- Binary images
- RGB images

This section discusses how MATLAB and the Image Processing Toolbox represent each of these image types.

\section*{Indexed Images}

An indexed image consists of a data matrix, \(X\), and a colormap matrix, map. The data matrix can be of class uint8, uint16, or double. The colormap matrix is an m-by-3 array of class double containing floating-point values in the range [ 0,1\(]\). Each row of map specifies the red, green, and blue components of a single color. An indexed image uses direct mapping of pixel values to colormap values. The color of each image pixel is determined by using the corresponding value of \(X\) as an index into map. The value 1 points to the first row in map, the value 2 points to the second row, and so on.

A colormap is often stored with an indexed image and is automatically loaded with the image when you use the imread function. However, you are not limited to using the default colormap-you can use any colormap that you choose. The figure below illustrates the structure of an indexed image. The pixels in the image are represented by integers, which are pointers (indices) to color values stored in the colormap. The following figure depicts an indexed image.


\section*{Relationship of Pixel Values to Colormap in Indexed Images}

\section*{Class and Colormap Offsets}

The relationship between the values in the image matrix and the colormap depends on the class of the image matrix. If the image matrix is of class double, the value 1 points to the first row in the colormap, the value 2 points to the second row, and so on. If the image matrix is of class uint8 or uint16, there is an offset-the value 0 points to the first row in the colormap, the value 1 points to the second row, and so on.

The offset is also used in graphics file formats to maximize the number of colors that can be supported. In the preceding figure, the image matrix is of class double. Because there is no offset, the value 5 points to the fifth row of the colormap.

\section*{Limitations to uint 16 Support}

Note that the toolbox provides limited support for indexed images of class uint16. You can read these images into MATLAB and display them, but before you can process a uint16 indexed image you must first convert it to either a double or a uint8. To convert to a double, call im2double; to reduce the image
to 256 colors or fewer (uint8), call imapprox. For more information, see the reference pages for im2double and imapprox.

\section*{Intensity Images}

An intensity image is a data matrix, \(I\), whose values represent intensities within some range. MATLAB stores an intensity image as a single matrix, with each element of the matrix corresponding to one image pixel. The matrix can be of class double, uint8, or uint16. While intensity images are rarely saved with a colormap, MATLAB uses a colormap to display them.
The elements in the intensity matrix represent various intensities, or gray levels, where the intensity 0 usually represents black and the intensity 1,255 , or 65535 usually represents full intensity, or white.

The figure below depicts an intensity image of class double.


\footnotetext{
Pixel Values in an Intensity Image Define Gray Levels
}

\section*{Binary Images}

In a binary image, each pixel assumes one of only two discrete values. Essentially, these two values correspond to on and off. A binary image is stored as a logical array of 0's (off pixels) and 1's (on pixels).

The figure below depicts a binary image.


Pixels in a Binary Image Have Two Possible Values: \(\mathbf{0}\) or 1

\section*{RGB Images}

An RGB image, sometimes referred to as a true-color image, is stored in MATLAB as an m-by-n-by-3 data array that defines red, green, and blue color components for each individual pixel. RGB images do not use a palette. The color of each pixel is determined by the combination of the red, green, and blue intensities stored in each color plane at the pixel's location. Graphics file formats store RGB images as 24 -bit images, where the red, green, and blue components are 8 bits each. This yields a potential of 16 million colors. The precision with which a real-life image can be replicated has led to the commonly used term true-color image.
An RGB array can be of class double, uint8, or uint16. In an RGB array of class double, each color component is a value between 0 and 1 . A pixel whose color components are ( \(0,0,0\) ) is displayed as black, and a pixel whose color components are \((1,1,1)\) is displayed as white. The three color components for
each pixel are stored along the third dimension of the data array. For example, the red, green, and blue color components of the pixel \((10,5)\) are stored in \(\operatorname{RGB}(10,5,1), \operatorname{RGB}(10,5,2)\), and \(\operatorname{RGB}(10,5,3)\), respectively.

The following figure depicts an RGB image of class double.


\section*{The Color Planes of an RGB Image}

To determine the color of the pixel at (2,3), you would look at the RGB triplet stored in \((2,3,1: 3)\). Suppose \((2,3,1)\) contains the value \(0.5176,(2,3,2)\) contains 0.1608 , and \((2,3,3)\) contains 0.0627 . The color for the pixel at \((2,3)\) is
\[
0.51760 .16080 .0627
\]

To further illustrate the concept of the three separate color planes used in an RGB image, the code sample below creates a simple RGB image containing uninterrupted areas of red, green, and blue, and then creates one image for each of its separate color planes (red, green, and blue). It displays each color plane image separately, and also displays the original image.
```

RGB=reshape(ones(64,1)*reshape(jet(64),1, 192),[64,64,3]);
R=RGB(:,:,1);
G=RGB(:,:,2);
B=RGB(:,:,3);
imshow(R)
figure, imshow(G)
figure, imshow(B)
figure, imshow(RGB)

```


Blue Plane



Original Image


\section*{The Separated Color Planes of an RGB Image}

Notice that each separated color plane in the figure contains an area of white. The white corresponds to the highest values (purest shades) of each separate color. For example, in the Red Plane image, the white represents the highest concentration of pure red values. As red becomes mixed with green or blue, gray pixels appear. The black region in the image shows pixel values that contain no red values, i.e., \(R==0\).

\section*{Multiframe Image Arrays}

For some applications, you might need to work with collections of images related by time or view, such as magnetic resonance imaging (MRI) slices or movie frames.

The Image Processing Toolbox provides support for storing multiple images in the same array. Each separate image is called a frame. If an array holds multiple frames, they are concatenated along the fourth dimension. For example, an array with five 400-by- 300 RGB images would be \(400-\)-by- \(300-\)-by- 3 -by- 5 . A similar multiframe intensity or indexed image would be \(400-\) by- \(300-b y-1-b y-5\).

Use the cat command to store separate images in one multiframe array. For example, if you have a group of images A1, A2, A3, A4, and A5, you can store them in a single array using
\[
A=\operatorname{cat}(4, A 1, A 2, A 3, A 4, A 5)
\]

You can also extract frames from a multiframe image. For example, if you have a multiframe image MULTI, this command extracts the third frame.
```

FRM3 = MULTI(:,:,:,3)

```

Note that, in a multiframe image array, each image must be the same size and have the same number of planes. In a multiframe indexed image, each image must also use the same colormap.

\section*{Multiframe Support Limitations}

Many of the functions in the toolbox operate only on the first two or first three dimensions. You can still use four-dimensional arrays with these functions, but you must process each frame individually. For example, this call displays the seventh frame in the array MULTI.
```

imshow(MULTI(:, :, :,7))

```

If you pass an array to a function and the array has more dimensions than the function is designed to operate on, your results can be unpredictable. In some cases, the function simply processes the first frame of the array, but in other cases the operation does not produce meaningful results.

See the reference pages for information about how individual functions work with the dimensions of an image array.

\section*{Summary of Image Types and Numeric Classes}

This table summarizes the way MATLAB interprets data matrix elements as pixel colors, depending on the image type and storage class.
\begin{tabular}{l|l|l}
\hline \begin{tabular}{l} 
Image \\
Type
\end{tabular} & Storage Class & Interpretation \\
\hline Binary & logical & Array of zeros (0) and ones (1) \\
\hline Indexed \({ }^{1}\) & double & Array of integers in the range [1, p] \\
\hline & uint8 or uint16 & Array of integers in the range [0, p-1] \\
\hline Intensity \({ }^{1}\) & double & \begin{tabular}{l} 
Array of floating-point values. The \\
typical range of values is [0, 1].
\end{tabular} \\
\hline & uint8 or uint16 & \begin{tabular}{l} 
Array of integers. The typical range of \\
values is [0, 255] or [0, 65535].
\end{tabular} \\
\hline \begin{tabular}{l} 
RGB \\
(true-color)
\end{tabular} & double & \begin{tabular}{l} 
m-by-n-by-3 array of floating-point \\
values in the range [0, 1]
\end{tabular} \\
\hline & uint8 or uint16 & \begin{tabular}{l} 
m-by-n-by-3 array of integers in the \\
range [0, 255] or [0, 65535]
\end{tabular} \\
\hline
\end{tabular}
1. The associated colormap is a \(p\)-by- 3 array of floating-point values in the range \([0,1]\). For intensity images the colormap is typically grayscale.

\section*{Converting Image Types}

For certain operations, it is helpful to convert an image to a different image type. For example, if you want to filter a color image that is stored as an indexed image, you should first convert it to RGB format. When you apply the filter to the RGB image, MATLAB filters the intensity values in the image, as is appropriate. If you attempt to filter the indexed image, MATLAB simply
applies the filter to the indices in the indexed image matrix, and the results might not be meaningful.

Note When you convert an image from one format to another, the resulting image might look different from the original. For example, if you convert a color indexed image to an intensity image, the resulting image is grayscale, not color.

The following table lists all the image conversion functions in the Image Processing Toolbox.
\begin{tabular}{l|l}
\hline Function & Description \\
\hline dither & \begin{tabular}{l} 
Create a binary image from a grayscale intensity image \\
by dithering; create an indexed image from an RGB \\
image by dithering
\end{tabular} \\
\hline gray2ind & \begin{tabular}{l} 
Create an indexed image from a grayscale intensity \\
image
\end{tabular} \\
\hline grayslice & \begin{tabular}{l} 
Create an indexed image from a grayscale intensity \\
image by thresholding
\end{tabular} \\
\hline im2bw & \begin{tabular}{l} 
Create a binary image from an intensity image, \\
indexed image, or RGB image, based on a luminance \\
threshold
\end{tabular} \\
\hline ind2gray & \begin{tabular}{l} 
Create a grayscale intensity image from an indexed \\
image
\end{tabular} \\
\hline ind2rgb & \begin{tabular}{l} 
Create an RGB image from an indexed image
\end{tabular} \\
\hline mat2gray & \begin{tabular}{l} 
Create a grayscale intensity image from data in a \\
matrix, by scaling the data
\end{tabular} \\
\hline rgb2gray & \begin{tabular}{l} 
Create a grayscale intensity image from an RGB image
\end{tabular} \\
\hline rgb2ind & Create an indexed image from an RGB image \\
\hline
\end{tabular}

You can also perform certain conversions just using MATLAB syntax. For example, you can convert an intensity image to RGB format by concatenating three copies of the original matrix along the third dimension.
\[
\operatorname{RGB}=\operatorname{cat}(3, I, I, I) ;
\]

The resulting RGB image has identical matrices for the red, green, and blue planes, so the image displays as shades of gray.

In addition to these standard conversion tools, there are some functions that return a different image type as part of the operation they perform. For example, the region-of-interest routines each return a binary image that you can use to mask an indexed or intensity image for filtering or for other operations.

\section*{Color Space Conversions}

The Image Processing Toolbox represents colors as RGB values, either directly (in an RGB image) or indirectly (in an indexed image). However, there are other methods for representing colors. For example, a color can be represented by its hue, saturation, and value components (HSV). Different methods for representing colors are called color spaces.

The toolbox provides a set of routines for converting between color spaces. The image processing functions themselves assume all color data is RGB, but you can process an image that uses a different color space by first converting it to RGB, and then converting the processed image back to the original color space. For more information about color space conversion routines, see Chapter 13, "Color."

\section*{Reading and Writing Image Data}

This section describes how to read and write image data. Topics include
- Reading data stored in many standard graphics file formats
- Writing data to files in many standard graphics file formats
- Querying graphics image files for information stored in header fields
- Converting images between image storage classes
- Converting images between graphics file formats
- Reading and writing data in Digital Imaging and Communications in Medicine (DICOM) file format

\section*{Reading a Graphics Image}

The imread function reads an image from any supported graphics image file format, in any of the supported bit depths. Most image file formats use 8 bits to store pixel values. When these are read into memory, MATLAB stores them as class uint8. For file formats that support 16 -bit data, PNG and TIFF, MATLAB stores the images as class uint16.

Note For indexed images, imread always reads the colormap into an array of class double, even though the image array itself may be of class uint8 or uint16.

For example, this code reads an RGB image into the MATLAB workspace as the variable RGB.
```

RGB = imread('football.jpg');

```

In this example, imread infers the file format to use from the contents of the file. You can also specify the file format as an argument to imread. MATLAB supports many common graphics file formats, such as Microsoft Windows Bitmap (BMP), Graphics Interchange Format (GIF), Joint Photographic Experts Group (JPEG), Portable Network Graphics (PNG), and Tagged Image File Format (TIFF) formats. For the latest information concerning the bit depths and/or image formats supported, see the reference page for the imread function.

\section*{Reading Multiple Images from a Graphics File}

MATLAB supports several graphics file formats, such as HDF and TIFF, that can contain multiple images. By default, imread imports only the first image from a file. To import additional images from the file, use the syntax supported by the file format.

For example, when used with TIFF files, you can use an index value with imread that identifies the image in the file you want to import. This example reads a series of 27 images from a TIFF file and stores the images in a four-dimensional array. You can use imfinfo to determine how many images are stored in the file.
```

mri = uint8(zeros(128,128,1,27)); % preallocate 4-D array
for frame=1:27
[mri(:,:,:,frame),map] = imread('mri.tif',frame);
end

```

When a file contains multiple images that are related in some way, such as a time sequence, you can store the images in MATLAB as a 4-D array. All the images must be the same size. For more information, see "Multiframe Image Arrays" on page 2-12.

\section*{Writing a Graphics Image}

The function imwrite writes an image to a graphics file in one of the supported formats. The most basic syntax for imwrite takes the image variable name and a filename. If you include an extension in the filename, MATLAB infers the desired file format from it. (For more information, see the reference entry for the imwrite function.)

This example loads the indexed image \(X\) from a MAT-file, with its associated colormap map, and then writes the image to a file as a bitmap.
\begin{tabular}{lcrl}
\begin{tabular}{l} 
load clown \\
whos
\end{tabular} & & & \\
Name & Size & Bytes Class \\
& & & \\
X & \(200 \times 320\) & 512000 & double array \\
caption & \(2 \times 1\) & 4 & char array \\
map & \(81 \times 3\) & 1944 & double array
\end{tabular}
```

Grand total is 64245 elements using 513948 bytes
imwrite(X,map,'clown.bmp')

```

\section*{Specifying Additional Format-Specific Parameters}

When using imwrite with some graphics formats, you can specify additional parameters. For example, with PNG files, you can specify the bit depth as an additional parameter. This example writes an intensity image I to a 4 -bit PNG file.
```

imwrite(I,'clown.png','BitDepth',4);

```

This example writes an image A to a JPEG file, using an additional parameter to specify the compression quality parameter.
```

imwrite(A, 'myfile.jpg', 'Quality', 100);

```

For more information about the additional parameters associated with certain graphics formats, see the reference pages for imwrite.

\section*{Reading and Writing Binary Images in 1-Bit Format}

In certain file formats, a binary image can be stored in a 1-bit format. If the file format supports it, MATLAB writes binary images as 1-bit images by default. When you read in a binary image in 1-bit format, MATLAB represents it in the workspace as a logical array.

This example reads in a binary image and writes it as a TIFF file. Because the TIFF format supports 1-bit images, the file is written to disk in 1-bit format.
```

BW = imread('text.png');
imwrite(BW,'test.tif');

```

To verify the bit depth of test.tif, call imfinfo and check the BitDepth field.
```

info = imfinfo('test.tif');

```
```

info.BitDepth
ans =

```

Note When writing binary files, MATLAB sets the ColorType field to 'grayscale'.

\section*{Determining the Storage Class of the Output File}
imwrite uses the following rules to determine the storage class used in the output image.
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Storage Class \\
of Image
\end{tabular} & Storage Class of Output Image File \\
\hline logical & \begin{tabular}{l} 
If the output image file format specified supports \\
1-bit images, imwrite creates a 1-bit image file. \\
If the output image file format specified does not \\
support 1-bit images, such as JPEG, imwrite \\
converts the image to a class uint8 intensity image.
\end{tabular} \\
\hline uint8 & \begin{tabular}{l} 
If the output image file format specified supports \\
8-bit images, imwrite creates an 8-bit image file.
\end{tabular} \\
\hline uint16 & \begin{tabular}{l} 
If the output image file format specified supports \\
16-bit images (PNG or TIFF), imwrite creates a \\
16-bit image file.
\end{tabular} \\
\hline \begin{tabular}{l} 
If the output image file format specified does not \\
support 16-bit images, imwrite scales the image \\
data to class uint8 and creates an 8-bit image file.
\end{tabular} \\
\hline double & \begin{tabular}{l} 
MATLAB scales the image data to uint8 and creates \\
an 8-bit image file, because most image file formats \\
use 8 bits.
\end{tabular} \\
\hline
\end{tabular}

\section*{Querying a Graphics File}

The imfinfo function enables you to obtain information about graphics files that are in any of the formats supported by the toolbox. The information you obtain depends on the type of file, but it always includes at least the following:
- Name of the file
- File format
- Version number of the file format
- File modification date
- File size in bytes
- Image width in pixels
- Image height in pixels
- Number of bits per pixel
- Image type: RGB (true-color), intensity (grayscale), or indexed

See the reference entry for imfinfo for more information.

\section*{Converting Image Storage Classes}

You can convert uint8 and uint16 data to double precision using the MATLAB double function. However, converting between storage classes changes the way MATLAB and the toolbox interpret the image data. If you want the resulting array to be interpreted properly as image data, you need to rescale or offset the data when you convert it.

For easier conversion of storage classes, use one of these toolbox functions: im2double, im2uint8, or im2uint16. These functions automatically handle the rescaling and offsetting of the original data. For example, this command converts a double-precision RGB image with data in the range [ 0,1 ] to a uint8 RGB image with data in the range [0,255].
RGB2 = im2uint8(RGB1);

\section*{Losing Information in Conversions}

When you convert to a class that uses fewer bits to represent numbers, you generally lose some of the information in your image. For example, a uint16 intensity image is capable of storing up to 65,536 distinct shades of gray, but a uint8 intensity image can store only 256 distinct shades of gray. When you
convert a uint16 intensity image to a uint8 intensity image, im2uint8 quantizes the gray shades in the original image. In other words, all values from 0 to 127 in the original image become 0 in the uint 8 image, values from 128 to 385 all become 1, and so on. This loss of information is often not a problem, however, since 256 still exceeds the number of shades of gray that your eye is likely to discern.

\section*{Converting Indexed Images}

It is not always possible to convert an indexed image from one storage class to another. In an indexed image, the image matrix contains only indices into a colormap, rather than the color data itself, so no quantization of the color data is possible during the conversion.

For example, a uint16 or double indexed image with 300 colors cannot be converted to uint8, because uint8 arrays have only 256 distinct values. If you want to perform this conversion, you must first reduce the number of the colors in the image using the imapprox function. This function performs the quantization on the colors in the colormap, to reduce the number of distinct colors in the image. See "Reducing Colors in an Indexed Image" on page 13-12 for more information.

\section*{Converting Graphics File Formats}

To change the graphics format of an image, use imread to read in the image and then save the. image with imwrite, specifying the appropriate format.

To illustrate, this example uses the imread function to read an image in bitmap (BMP) format into the workspace. The example then writes the bitmap image to a file using Portable Network Graphics (PNG) format.
```

bitmap = imread('mybitmap.bmp','bmp');
imwrite(bitmap,'mybitmap.png','png');

```

For the specifics of which bit depths are supported for the different graphics formats, and for how to specify the format type when writing an image to file, see the reference entries for imread and imwrite.

\section*{Reading and Writing DICOM Files}

The Image Processing Toolbox includes support for working with image data in Digital Imaging and Communications in Medicine (DICOM) format. The following sections describe how to
- Read image data from a DICOM file
- Read metadata from a DICOM file
- Write image data to a DICOM file
- Write metadata to a DICOM file

To see an example that reads both the image data and metadata from a DICOM file, modifies the image data, and writes the modified data to a new DICOM file, see "Example: Creating a New Series" on page 2-25. The example shows how to use the dicomuid function to generate a DICOM unique identifier, which you need to create a new series.

\section*{Reading Image Data from a DICOM File}

To read image data from a DICOM file, use the dicomread function. The dicomread function reads files that comply with the DICOM specification but can also read certain common noncomplying files.

This example reads an image from a sample DICOM file included with the toolbox.
```

I = dicomread('CT-MONO2-16-ankle.dcm');

```

To view the image data, use one of the toolbox image display functions, imshow or imview. (Because the image data is signed 16 -bit data, you must use the autoscaling syntax with either display function.)
```

imview(I,[])

```


\section*{Reading Metadata from a DICOM File}

DICOM files include information, called metadata, that describes
characteristics of the image data it contains, such as size, dimensions, and bit depth. In addition, the DICOM specification defines numerous other metadata fields that describe many other characteristics of the data, such as the modality used to create the data, the equipment settings used to capture the image, and information about the study. The dicomread function can process almost all the metadata fields defined by the DICOM specification.

To read metadata from a DICOM file, use the dicominfo function. This function returns the metadata as a structure, where every field in the structure is a specific piece of DICOM metadata.
```

info = dicominfo('CT-MONO2-16-ankle.dcm');
info =

```
```

 Filename: [1x47 char]
 FileModDate: '24-Dec-2000 19:54:47'
 FileSize: 525436
 Format: 'DICOM'
 FormatVersion: 3
Width: 512
Height: 512

```
```

 BitDepth: 16
 ColorType: 'grayscale
 SelectedFrames: []
 FileStruct: [1x1 struct]
 StartOfPixelData: }114
 MetaElementGroupLength: 192
 FileMetaInformationVersion: [2x1 double]
MediaStorageSOPClassUID: '1.2.840.10008.5.1.4.1.1.7'
MediaStorageSOPInstanceUID: [1x50 char]
TransferSyntaxUID: '1.2.840.10008.1.2'
ImplementationClassUID: '1.2.840.113619.6.5'

```

You can use the metadata structure returned by dicominfo to specify the DICOM file you want to read using dicomread. For example, you can use this code to read metadata from the sample DICOM file and then pass the metadata to dicomread to read the image from the file.
```

info = dicominfo('CT-MONO2-16-ankle.dcm');
I = dicomread(info);

```

\section*{Writing Data to a DICOM File}

To write image data to a file in DICOM format, use the dicomwrite function.
This example writes the image I to the DICOM file ankle.dcm.
```

dicomwrite(I,'h:\matlab\tmp\ankle.dcm')

```

\section*{Writing Metadata to a DICOM File}

When you write image data to a DICOM file, dicomwrite includes the minimum set of metadata fields required by the type of DICOM information object (IOD) you are creating. dicomwrite supports three types of DICOM IODs:
- Secondary capture (default)
- Magnetic resonance
- Computed tomography

You can also specify the metadata you want to write to the file by passing to dicomwrite an existing DICOM metadata structure that you retrieved using dicominfo.
```

info = dicominfo('CT-MONO2-16-ankle.dcm');
I = dicomread(info);
dicomwrite(I,'h:\matlab\tmp\ankle.dcm',info)

```

In this case, the dicomwrite function writes the information in the metadata structure info to the new DICOM file. When writing metadata to a file, there are certain fields that dicomwrite must update. For example, dicomwrite must update the file modification date in the new file. To illustrate, compare the file modification date in the original metadata with the file modification date in the new file.
```

info.FileModDate
ans =
24-Dec-2000 19:54:47

```

Using dicominfo, read the metadata from the newly written file and check the file modification date.
```

info2 = dicominfo('h:\matlab\tmp\ankle.dcm');
info2.FileModDate
ans =
16-Mar-2003 15:32:43

```

\section*{Example: Creating a New Series}

When writing a modified image to a DICOM file, you might want to make the modified image the start of a new series. In the DICOM standard, images can be organized into series. When you write an image with metadata to a DICOM file, dicomwrite puts the image in the same series by default. To create a new series, you must assign a new DICOM unique identifier to the SeriesInstanceUID metadata field. This example illustrates this process:

1 Read an image from a DICOM file into the MATLAB workspace.
```

I = dicomread('CT-MONO2-16-ankle.dcm');

```

To view the image, use either of the toolbox display functions, imshow or imview. Because the DICOM image data is signed 16 -bit data, you must use the autoscaling syntax.
```

imview(I,[])

```


2 Read the metadata from the same DICOM file.
```

info = dicominfo('CT-MONO2-16-ankle.dcm');

```

To identify which series an image belongs to, view the value of the SeriesInstanceUID field.
info.SeriesInstanceUID
ans =
1.2.840.113619.2.1.2411.1031152382.365.736169244

3 Because you typically only start a new DICOM series when you modify the image in some way, this example removes all the text from the image.

The example finds the maximum and minimum values of all pixels in the image. The pixels that form the white text characters are set to the maximum pixel value.
```

max(I(:))
ans =
4 0 8 0
min(I(:))
ans =
3 2

```

To remove them, the example sets all pixels with the maximum value to the minimum value.
```

Imodified = I;
Imodified(Imodified == 4080) = 32;

```

View the processed image.
imshow(Imodified)


4 Generate a new DICOM unique identifier (UID) using the dicomuid function. You need a new UID to write the modified image as a new series.
```

uid = dicomuid

```
uid =
1.3.6.1.4.1.9590.100.1.1.56461980611264497732341403390561061497
dicomuid is guaranteed to generate a unique UID.
5 Set the value of the SeriesInstanceUID field in the metadata associated with the original DICOM file to the generated value.
```

info.SeriesInstanceUID = uid;

```

6 Write the modified image to a new DICOM file, specifying the modified metadata structure, info, as an argument. Because you set the SeriesInstanceUID value, the image you write is part of a new series. dicomwrite(Imodified,'ankle_newseries.dcm',info);

To verify this operation, view the image and the SeriesInstanceUID metadata field in the new file.

\section*{Image Arithmetic}

Image arithmetic is the implementation of standard arithmetic operations, such as addition, subtraction, multiplication, and division, on images. Image arithmetic has many uses in image processing both as a preliminary step in more complex operations and by itself. For example, image subtraction can be used to detect differences between two or more images of the same scene or object.

You can do image arithmetic using the MATLAB arithmetic operators; however, you must convert the images to class double to use these operators. To make working with images more convenient, the Image Processing Toolbox includes a set of functions that implement arithmetic operations for all numeric, nonsparse data types. The advantages to using these functions include
- No conversion to the double data type is necessary. The functions accept any numeric data type, including uint8, uint16, and double, and return the result image in the same format. Note that the functions perform the operations in double precision, on an element-by-element basis, but do not convert images to double-precision values in the MATLAB workspace.
- Overflow is handled automatically. The functions truncate return values to fit the data type. For details about this truncation, see "Image Arithmetic Truncation Rules" on page 2-30.

Note On Intel architecture processors, the image arithmetic functions can take advantage of the Intel Performance Primitives Library (IPPL), thus accelerating their execution time. IPPL is only activated, however, when the data passed to these functions is of specific classes. See the reference pages for the individual arithmetic functions for more information.

See "Summary of Image Arithmetic Functions" on page 2-30 for a complete list. For more information about using these functions to perform arithmetic operations, see these sections:
- "Adding Images" on page 2-31
- "Subtracting Images" on page 2-33
- "Multiplying Images" on page 2-34
- "Dividing Images" on page 2-35
- "Nesting Calls to Image Arithmetic Functions" on page 2-36

\section*{Summary of Image Arithmetic Functions}

The following table lists the image arithmetic functions. For more complete descriptions, see their reference pages.
\begin{tabular}{ll}
\hline Function & Description \\
\hline imabsdiff & Absolute difference of two images \\
\hline imadd & Add two images \\
\hline imcomplement & Complement an image \\
\hline imdivide & Divide two images \\
\hline imlincomb & Compute linear combination of two images \\
\hline immultiply & Multiply two images \\
\hline imsubtract & Subtract two images \\
\hline
\end{tabular}

\section*{Image Arithmetic Truncation Rules}

The results of integer arithmetic can easily overflow the data type allotted for storage. For example, the maximum value you can store in uint8 data is 255. Arithmetic operations can also result in fractional values, which cannot be represented using integer arrays.

The image arithmetic functions use these rules for integer arithmetic:
- Values that exceed the range of the integer type are truncated to that range.
- Fractional values are rounded.

For example, if the data type is uint8, results greater than 255 (including Inf) are set to 255 . The following table lists some additional examples.
\begin{tabular}{l|l|l}
\hline Result & Class & Truncated Value \\
\hline 300 & uint8 & 255 \\
\hline-45 & uint8 & 0 \\
\hline 10.5 & uint8 & 11 \\
\hline
\end{tabular}

\section*{Adding Images}

To add two images or add a constant value to an image, use the imadd function. imadd adds the value of each pixel in one of the input images with the corresponding pixel in the other input image and returns the sum in the corresponding pixel of the output image.

Image addition has many uses in image processing. For example, the following code fragment uses addition to superimpose one image on top of another. The images must be the same size and class.
```

I = imread('rice.png');
J = imread('cameraman.tif');
K = imadd(I,J);
imshow(K)

```


You can also use addition to brighten an image by adding a constant value to each pixel. For example, the following code brightens an RGB image.
```

RGB = imread('peppers.png');
imshow(RGB);

```


RGB2 = imadd(RGB, 50);
figure, imshow(RGB2);


\section*{Handling Overflow}

When you add the pixel values of two images, the result can easily overflow the maximum value supported by the data type, especially for uint8 data. When overflow occurs, imadd truncates the value to the maximum value supported by
the data type. This is an effect known as saturation. For example, imadd truncates uint8 data at 255 . To avoid saturation, convert the image to a larger data type, such as uint16, before performing the addition.

\section*{Subtracting Images}

To subtract one image from another, or subtract a constant value from an image, use the imsubtract function. imsubtract subtracts each pixel value in one of the input images from the corresponding pixel in the other input image and returns the result in the corresponding pixel in an output image.
Image subtraction can be used as a preliminary step in more complex image processing or by itself. For example, you can use image subtraction to detect changes in a series of images of the same scene. This code fragment subtracts the background from an image of rice grains. The images must be the same size and class.
rice= imread('rice.png');
background \(=\) imopen(rice, strel('disk', 15));
rice2 = imsubtract(rice,background);
imshow(rice), figure,imshow(rice2);


Original Image


Difference Image

To subtract a constant from each pixel in I, replace \(Y\) with a constant, as in the following example.
Z = imsubtract(I,50);

\section*{Handling Negative Values}

Subtraction can result in negative values for certain pixels. When this occurs with unsigned data types, such as uint8 or uint16, the imsubtract function truncates the negative value to zero (0), which is displayed as black. To avoid negative values but preserve the value differentiation of these pixels, use the imabsdiff function. The imabsdiff function calculates the absolute difference between corresponding pixels in the two images so the result is always nonnegative.

\section*{Multiplying Images}

To multiply two images, use the immultiply function. immultiply does an element-by-element multiplication (.*) of corresponding pixels in a pair of input images and returns the product of these multiplications in the corresponding pixel in an output image.

Multiplying an image by a constant, referred to as scaling, is a common image processing operation. When used with a scaling factor greater than 1 , scaling brightens an image; a factor less than 1 darkens an image. Scaling generally produces a much more natural brightening/darkening effect than simply adding an offset to the pixels, since it preserves the relative contrast of the image better. For example, this code scales an image by a constant factor.
```

I = imread('moon.tif');
J = immultiply(I,1.2);
imshow(I);
figure, imshow(J)

```


\section*{Handling Overflow}

Multiplication of uint8 images very often results in overflow. The immultiply function truncates values that overflow the data type to the maximum value. To avoid truncation, convert uint8 images to a larger data type, such as uint16, before performing multiplication.

\section*{Dividing Images}

To divide two images, use the imdivide function. The imdivide function does an element-by-element division (. /) of corresponding pixels in a pair of input images. The immultiply function returns the result in the corresponding pixel in an output image.

Image division, like image subtraction, can be used to detect changes in two images. However, instead of giving the absolute change for each pixel, division gives the fractional change or ratio between corresponding pixel values. Image division is also called ratioing.

For example, the following code divides the rice grain image by a morphologically opened version of the image itself. (For information about morphological image processing, see Chapter 9, "Morphological Operations.") The images must be the same size and class.
```

I = imread('rice.png');
background = imopen(I, strel('disk',15));
Ip = imdivide(I,background);
imshow(Ip,[])

```

\section*{Nesting Calls to Image Arithmetic Functions}

You can use the image arithmetic functions in combination to perform a series of operations. For example, to calculate the average of two images,
\[
C=\frac{A+B}{2}
\]

You could enter
```

I = imread('rice.png');
I2 = imread('cameraman.tif');
K = imdivide(imadd(I,I2), 2); % not recommended

```

When used with uint8 or uint16 data, each arithmetic function truncates its result before passing it on to the next operation. This truncation can significantly reduce the amount of information in the output image. A better way to perform this series of calculations is to use the imlincomb function. imlincomb performs all the arithmetic operations in the linear combination in double precision and only truncates the final result.
```

K = imlincomb(.5,I,.5,I2); % recommended

```

\section*{Coordinate Systems}

Locations in an image can be expressed in various coordinate systems, depending on context. This section discusses the two main coordinate systems used in the Image Processing Toolbox and the relationship between them. These two coordinate systems are described in
- "Pixel Coordinates"
- "Spatial Coordinates" on page 2-38

\section*{Pixel Coordinates}

Generally, the most convenient method for expressing locations in an image is to use pixel coordinates. In this coordinate system, the image is treated as a grid of discrete elements, ordered from top to bottom and left to right, as illustrated by the following figure.


\section*{The Pixel Coordinate System}

For pixel coordinates, the first component \(r\) (the row) increases downward, while the second component c (the column) increases to the right. Pixel coordinates are integer values and range between 1 and the length of the row or column.

There is a one-to-one correspondence between pixel coordinates and the coordinates MATLAB uses for matrix subscripting. This correspondence makes the relationship between an image's data matrix and the way the image is
displayed easy to understand. For example, the data for the pixel in the fifth row, second column is stored in the matrix element \((5,2)\).

\section*{Spatial Coordinates}

In the pixel coordinate system, a pixel is treated as a discrete unit, uniquely identified by a single coordinate pair, such as (5,2). From this perspective, a location such as \((5.3,2.2)\) is not meaningful.
At times, however, it is useful to think of a pixel as a square patch. From this perspective, a location such as (5.3,2.2) is meaningful, and is distinct from (5,2). In this spatial coordinate system, locations in an image are positions on a plane, and they are described in terms of \(x\) and \(y\) (not \(r\) and \(c\) as in the pixel coordinate system).

The following figure illustrates the spatial coordinate system used for images. Notice that y increases downward.


\section*{The Spatial Coordinate System}

This spatial coordinate system corresponds closely to the pixel coordinate system in many ways. For example, the spatial coordinates of the center point of any pixel are identical to the pixel coordinates for that pixel.
There are some important differences, however. In pixel coordinates, the upper left corner of an image is ( 1,1 ), while in spatial coordinates, this location by default is \((0.5,0.5)\). This difference is due to the pixel coordinate system's being discrete, while the spatial coordinate system is continuous. Also, the upper left corner is always \((1,1)\) in pixel coordinates, but you can specify a nondefault
origin for the spatial coordinate system. See "Using a Nondefault Spatial Coordinate System" on page 2-39 for more information.

Another potentially confusing difference is largely a matter of convention: the order of the horizontal and vertical components is reversed in the notation for these two systems. As mentioned earlier, pixel coordinates are expressed as ( \(r, c\) ), while spatial coordinates are expressed as ( \(x, y\) ). In the reference pages, when the syntax for a function uses \(r\) and \(c\), it refers to the pixel coordinate system. When the syntax uses \(x\) and \(y\), it refers to the spatial coordinate system.

\section*{Using a Nondefault Spatial Coordinate System}

By default, the spatial coordinates of an image correspond with the pixel coordinates. For example, the center point of the pixel in row 5 , column 3 has spatial coordinates \(x=3, y=5\). (Remember, the order of the coordinates is reversed.) This correspondence simplifies many of the toolbox functions considerably. Several functions primarily work with spatial coordinates rather than pixel coordinates, but as long as you are using the default spatial coordinate system, you can specify locations in pixel coordinates.

In some situations, however, you might want to use a nondefault spatial coordinate system. For example, you could specify that the upper left corner of an image is the point (19.0,7.5), rather than ( \(0.5,0.5\) ). If you call a function that returns coordinates for this image, the coordinates returned will be values in this nondefault spatial coordinate system.

To establish a nondefault spatial coordinate system, you can specify the XData and YData image properties when you display the image. These properties are two-element vectors that control the range of coordinates spanned by the image. By default, for an image A, XData is [1 \(\operatorname{size}(A, 2)\) ], and YData is [1 size (A, 1)].

For example, if A is a 100 row by 200 column image, the default XData is [ 1 200], and the default YData is [ 1 100]. The values in these vectors are actually the coordinates for the center points of the first and last pixels (not the pixel edges), so the actual coordinate range spanned is slightly larger; for instance, if XData is [1 200], the \(x\)-axis range spanned by the image is [0.5 200.5].

These commands display an image using nondefault XData and YData.
```

A = magic(5);
x = [19.5 23.5];
y = [8.0 12.0];
image(A,'XData',x,'YData',y), axis image, colormap(jet(25))

```


For information about the syntax variations that specify nondefault spatial coordinates, see the reference page for imshow.

\section*{Displaying and Printing Images}

This chapter introduces the image display techniques supported by the Image Processing Toolbox for each image type supported by the toolbox, binary, indexed, intensity, and RGB.

Terminology (p. 3-2)

Overview (p. 3-3)

Using the Image Viewer to Display Images (p. 3-4)

Using imshow to Display Images (p. 3-18)

Displaying Different Image Types (p. 3-24)

Special Display Techniques (p. 3-31)

Printing Images (p. 3-36)
Setting Toolbox Display Preferences (p. 3-37)

Provides definitions of image processing terms used in this section

Describes the toolbox displays functions and compares their use

Describes how to use the Image Viewer to display images

Describes how to use the imshow function to display images

Describes how to use the display functions with each type of image

Describes how to use the colorbar, montage, and warp functions

Describes how to print images
Describes how to view and set toolbox preferences

\section*{Terminology}

An understanding of the following terms will help you to use this chapter.
\begin{tabular}{l|l}
\hline Term & Definition \\
\hline color approximation & \begin{tabular}{l} 
There are two ways in which this term is used in MATLAB: \\
- The method by which MATLAB chooses the best colors for \\
an image whose number of colors you are decreasing \\
- The automatic choice of screen colors MATLAB makes when \\
displaying on a system with limited color display capability
\end{tabular} \\
\hline screen bit depth & Number of bits per screen pixel \\
\hline screen color resolution & \begin{tabular}{l} 
Number of distinct colors that can be produced on the screen \\
by your graphics hardware
\end{tabular} \\
\hline
\end{tabular}

\section*{Overview}

MATLAB includes two image display functions: image and imagesc. Both functions create a Handle Graphics \({ }^{\circledR}\) image object and include syntax for setting the various properties of the object. The imagesc function automatically scales the input data.

The Image Processing Toolbox includes two display functions, imview and imshow. In general, using these functions is preferable to using image and imagesc because they are easier to use and are optimized for displaying images. The following table shows an example of each function and gives a brief description comparing the tools.
\begin{tabular}{ll}
\hline Display Function & Description \\
\hline imview ( 'moon.tif' ) & \begin{tabular}{l} 
The imview function displays the image in a separate, \\
Java-based window called the Image Viewer. The Image \\
Viewer provides tools for flexible navigation, especially \\
for large images, and for pixel value inspection. Use \\
imview when you want to explore an image and get \\
information about pixel values. For more information, \\
see "Using the Image Viewer to Display Images" on \\
page 3-4.
\end{tabular} \\
\hline
\end{tabular}

\section*{Using the Image Viewer to Display Images}

This section describes how to use the Image Viewer to display images. Topics covered include
- "Opening and Closing the Image Viewer"
- "Understanding Image Viewer Tools" on page 3-6
- "Using Image Viewer Navigation Aids" on page 3-9
- "Using the Pixel Region Tool" on page 3-13
- "Using the Image Information Tool" on page 3-16
- "Managing Image Viewer Memory Usage" on page 3-16

For information about using imview with various image types, see "Displaying Different Image Types" on page 3-24.

\section*{Opening and Closing the Image Viewer}

This section describes how to open an image in the Image Viewer. Topics covered include
- "Starting the Image Viewer"
- "Viewing Multiple Images" on page 3-5
- "Specifying the Initial Image Size" on page 3-5
- "Closing the Image Viewer" on page 3-6

\section*{Starting the Image Viewer}

To start the Image Viewer, call the imview function, specifying the image you want to view. You can use imview to display an image that has already been imported into the MATLAB workspace.
```

moonfig = imread('moon.tif');
imview(moonfig);

```

You can also specify the name of the file containing the image, as in the following example.
```

imview('moon.tif');

```

The file must be in the current directory or on the MATLAB path. This syntax can be useful for scanning through images. Note, however, that when you use this syntax, the image data is not stored in the MATLAB workspace.

If you call imview without specifying any arguments, it displays a file chooser dialog box. For more detailed information about other syntax options, see the imview function reference page.

\section*{Viewing Multiple Images}

If you specify a file that contains multiple images, imview only displays the first image in the file. To view all the images in the file, use imread to import each image into the MATLAB workspace, and then call imview multiple times to display each image individually.

You can open up multiple Image Viewer windows at the same time. You are limited by the amount of memory available to the Java Virtual Machine that MATLAB uses. For information about increasing the amount of memory available to the Image Viewer, see "Managing Image Viewer Memory Usage" on page 3-16.

Some applications create collections of images related by time or view, such as magnetic resonance imaging (MRI) slices or frames of data acquired from a video stream. The Image Processing Toolbox supports these collections of images as four-dimensional arrays, where each separate image is called a frame and the frames are concatenated along the fourth dimension. All the frames in a multiframe image must be the same size. The Image Viewer can only display one image frame at a time. Use standard MATLAB indexing syntax to specify the frame to display.
```

imview(multiframe_array(:,:,:,1));

```

To view all the frames in a multiframe image at once, use the montage function. See "Displaying All Frames of a Multiframe Image at Once" on page 3-32 for more information.

\section*{Specifying the Initial Image Size}

By default, the imview function displays images at \(100 \%\) magnification. In this context, \(100 \%\) means that imview maps each image pixel to one screen pixel. This is generally the preferred way to display an image. In some cases, however, especially if you are working with small images, you might want imview to scale the image to fit the minimum size of the Image Viewer.

To control the initial magnification of the images displayed using imview, you can use either of these methods:
- Set the ImviewInitialMagnification preference to 'fit' for the current MATLAB session. The default value is 100 , specifying \(100 \%\) magnification. To learn how to change the value of toolbox preferences, see "Setting the Value of Toolbox Preferences" on page 3-38.
- Use the optional 'Initialmagnification' parameter to the imview function, specifying the value 'fit'. This overrides the setting of the ImviewInitialMagnification preference for the call to imview.
```

imshow(X, map,'InitialMagnification','fit')

```

For more information, see the imview function reference page.

\section*{Closing the Image Viewer}

To close the Image Viewer window, use the Close button in the window title bar. If you have multiple Image Viewer windows open you can close them all by using the syntax
imview close all
You can also use the imview function to return a handle to the Image Viewer and use the handle to close the Image Viewer. For more detailed information about these syntax options, see the imview function reference page.

\section*{Understanding Image Viewer Tools}

The Image Viewer displays an image in a separate window and provides information about the size of the image, the display range of pixel values, and the value of the pixel under the current location of the mouse pointer. In addition, the Image Viewer provides access to three other tools:
- Overview window - The Overview window displays the entire image in a small, separate window. In the Overview window, the portion of the image being displayed in the Image Viewer is outlined in a rectangle, called the detail rectangle. By moving this rectangle, you can change which part of the image appears in the main Image Viewer window. For more information, see "Using Image Viewer Navigation Aids" on page 3-9.
- Pixel Region tool - This tool lets you examine the values of pixels in specific regions of the image. You select the region by dragging the pixel region
rectangle over the image. The Pixel Region tool displays the values of the pixels in the region in a separate window. This tool can make it easier to identify specific visual elements in the image. For more information, see "Using the Pixel Region Tool" on page 3-13.
- Image Information window - This tool lets you display information about the image in a separate window. For more information, see "Using the Image Information Tool" on page 3-16.

The following figure shows the Image Viewer and the tools it makes available.


Image Viewer and Related Tools

\section*{Using Image Viewer Navigation Aids}

The Image Viewer provides several navigational tools that make it easy to explore an image, especially large images. These navigational tools include
- Overview window
- Pan tool
- Zoom in and Zoom out tools
- Image magnification edit box

\section*{Using the Overview Window for Navigation}

If an image is large or viewed at a large magnification, the Image Viewer displays only a portion of the entire image. When this occurs, the Image Viewer includes scroll bars to allow navigation around the image but in some cases scroll bars might not be sufficient. Sometimes, especially for large images, you need a view of the entire image to understand which portion of the image is currently displayed in the Image Viewer.
To provide this view of an image, the Image Viewer includes an Overview window. In this window, the Image Viewer displays a view of the entire image with a rectangle superimposed over it, called the detail rectangle. The detail rectangle shows which part of the image is currently being displayed in the Image Viewer window.

To activate the Overview window, click the Overview Window button in the Image Viewer toolbar. The Image Viewer opens a new window containing the entire image, scaled to fit. The following figure shows the Image Viewer and the Overview window.

Note If the entire image is displayed in the Image Viewer, the detail rectangle is not visible in the Overview window.


\section*{Image Viewer Overview Window}

To use the detail rectangle to view any part of the image displayed in the Image Viewer, follow this procedure:

1 Click the Overview Window button in the Image Viewer toolbar. The Image Viewer opens a new window containing the entire image, scaled to fit.

2 Using the mouse, move the cursor into the detail rectangle. The cursor changes to the fleur shape, 出.

3 Press and hold the mouse button to drag the detail rectangle anywhere on the image.

Note As you drag the detail rectangle over the image in the Overview window, the view of the image displayed in the Image Viewer changes.

\section*{Panning the Image Displayed in the Image Viewer}

To change the portion of the image displayed in the Image Viewer, you can use the Drag Image to Pan button to move the image in the window. This is called panning the image.

To pan an image displayed in the Image Viewer,
1 Click the Drag Image to Pan button \(\left\langle\begin{array}{ll}\text { Sm }\rangle \\ \text { in the toolbar. }\end{array}\right.\)
2 Using the mouse, move the cursor over the image in the Image Viewer. The cursor changes to a fleur shape, 晏。

3 Press and hold the mouse button and drag the image in the Image Viewer.

Note As you pan the image in the Image Viewer, the Overview window updates the position of the detail rectangle.

\section*{Zooming In and Out on an Image}

To enlarge an image to get a closer look or shrink an image to see the whole image in context, use the Zoom buttons on the toolbar. (You can also zoom in or out on an image by changing the magnification. See "Specifying the Magnification of the Image" on page 3-12 for more information.)

To zoom in or zoom out on an image,
1 Click the appropriate magnifying glass button.


2 Move the pointer over the image you want to zoom in or out on. The cursor changes to crosshairs, + .

You can use the zoom tool in two ways:
- Position the cursor over a location in the image and click the mouse. With each click, imview changes the magnification of the image. imview centers the new view of the image on the spot where you clicked.
- Alternatively, you can position the cursor over a location in the image and, while pressing and holding the mouse button, draw a rectangle defining the area you want to zoom in or out on. imview selects a magnification value based on the size of the rectangle.

When you zoom in or out on an image, the magnification value displayed in the magnification edit box changes and the Overview window updates the position of the detail rectangle.

3 To leave zoom mode, click the Drag Pixel Region Rectangle button \(\mid\) in the Image Viewer toolbar.

\section*{Specifying the Magnification of the Image}

To enlarge an image to get a closer look or to shrink an image to see the whole image in context, you can use the magnification edit box, shown in the following figure. (You can also use the Zoom buttons to enlarge or shrink an image. See "Zooming In and Out on an Image" on page 3-11 for more information.)


To change the magnification of an image,
1 Move the cursor into the magnification edit box of the window you want to change. The cursor changes to the text entry cursor.

2 Type a new value in the magnification edit box and press Enter. The Image Viewer changes the magnification of the image and displays the new view in the window.

You can also specify a magnification by clicking the menu associated with the magnification edit box and selecting from a list of preset magnifications. If you choose the Fit to Window option, imview scales the image so that it can fit in the current size of the Image Viewer.

\section*{Using the Pixel Region Tool}

The Pixel Region tool provides information about specific pixels in an image. When you click the Pixel Region button 箇 in the Image Viewer toolbar, a rectangular cursor, called the pixel region rectangle, appears in the center of the visible part of the image and the Pixel Region tool opens in a separate window.

The pixel region rectangle defines the region of the image you want to examine. The Pixel Region tool displays a grid of cells where each cell represents a pixel in the region specified by the rectangle. Each cell contains the numeric value of the pixel. For RGB images, each cell contains three numeric values, one for each band of the image. For indexed images, the cell contains the index value and the associated RGB value. The color of the cell represents the color of the pixel.

The following figure illustrates the Pixel Region tool. The following sections describe how to
- Select the region in the pixel region rectangle
- Select the size of the region defined by the pixel region rectangle
- Specify whether to include numeric values in the cells in the Pixel Region tool


\section*{Pixel Region Tool}

\section*{Selecting the Region}

To examine specific regions of an image in detail, perform this procedure:
1 Click the Pixel Region button \(\sigma_{\text {Ti }}\) in the Image Viewer toolbar. The Image Viewer opens the Pixel Region tool and displays the pixel region rectangle in the center of the visible part of the image.
The pixel region rectangle defines which pixels appear in the Pixel Region tool.

Note Scrolling the image can move the pixel region rectangle off the visible part of the image. To bring the pixel region rectangle back to the center, click the Pixel Region tool button again.

2 Click the Drag Pixel Region Rectangle button \(\mid\) in the Image Viewer toolbar. This is an optional step. You only need to do this if you have previously activated the Zoom In or Zoom Out buttons or the Drag Image to Pan button.

3 Using the mouse, position the pointer over the pixel region rectangle. The pointer changes to the fleur shape, \(\uparrow\).

4 Click the left mouse button and drag the pixel region rectangle to any part of the image. The pixel values displayed in the Pixel Region tool update as you move the pixel region rectangle over the image.

\section*{Specifying the Region Size}

By default, the pixel region rectangle defines a 5-by-5 pixel region. You can specify a larger region by selecting from the list in the top right corner of the Pixel Region tool.
\begin{tabular}{|l|}
\hline \(5 \times 5\) \\
\hline \(5 \times 5\) \\
\hline \(6 \times 6\) \\
\(7 \times 7\) \\
\(8 \times 8\) \\
\(8 \times 8\) \\
\(9 \times 9\) \\
\(10 \times 10\) \\
\(11 \times 11\) \\
\(12 \times 12\) \\
\hline
\end{tabular}

Note As you specify larger regions, the size of each element in the Pixel Region tool might become too small to fit the numeric pixel value. If you want to see the numeric value, resize the Pixel Region tool by positioning the cursor on any border of the Pixel Region tool and dragging the cursor.

\section*{Suppressing the Display of Numeric Pixel Values}

If you only want to see the color of each pixel in the Pixel Region tool and not its numeric value, clear the Display pixel values check box.

\section*{Using the Image Information Tool}

The Image Information tool provides information about the image being displayed in the Image Viewer. This is the same information provided by the imfinfo function.

To view this information, click the Image Information button e in the Image Viewer toolbar. The Image Viewer displays this image information in a separate window.

The information included varies depending on the image type. However, for all image types, the Image Information window displays these fields:
\begin{tabular}{l|l}
\hline Field & Description \\
\hline Width & \begin{tabular}{l} 
Length of the horizontal dimension, measured in \\
pixels
\end{tabular} \\
\hline Height & \begin{tabular}{l} 
Length of the vertical dimension, measured in \\
pixels
\end{tabular} \\
\hline Class type & MATLAB class, such as uint8, uint16, and double \\
\hline \begin{tabular}{l} 
Color type
\end{tabular} & 'grayscale ', 'indexed ', or 'truecolor' ' \\
\hline \begin{tabular}{l} 
Minimum intensity \\
value
\end{tabular} & Value of the pixel with the lowest value \\
\hline \begin{tabular}{l} 
Maximum intensity \\
value
\end{tabular} & Value of the pixel with the highest value \\
\hline
\end{tabular}

If the image is read from a file, the Image Information window displays additional fields. The exact list of these additional fields varies depending on the type of image file. For example, for a grayscale image, the Image Information window includes fields for bit depth, byte order, and format.

\section*{Managing Image Viewer Memory Usage}

By default, MATLAB sets a limit of 64 MB on the amount of memory the Java Virtual Machine (JVM) can allocate. The memory used by the Image Viewer to display an image must fit within this 64 MB limit. If you are having trouble
viewing large images, or displaying multiple images at the same time, you might need to increase the amount of memory the Image Viewer can allocate.

One way to increase the amount of JVM memory available to the Image Viewer, is to run MATLAB with the -nodesktop mode enabled.

Alternatively, you can increase the MATLAB JVM memory allocation limit. To increase the amount of memory MATLAB allows the JVM to allocate, create a file named java.opts and put it in your MATLAB startup directory. In this file, include the -Xmx option, specifying the amount of memory you want to give the JVM.

For example, to increase the JVM memory allocation limit to 128 MB , use this syntax in the java.opts file.
-Xmx128m

Note To avoid virtual memory thrashing, never set the -Xmx option to more than \(66 \%\) of the physical RAM available.

On UNIX systems, create the java.opts file in a directory where you intend to start MATLAB and move to that directory before starting MATLAB.

On Windows systems,
1 Create the java.opts file in a directory where you intend to start MATLAB.
2 Create a shortcut to MATLAB.
3 Right-click the shortcut and select Properties.
4 In the Properties dialog box, specify the name of the directory in which you created the java.opts file as the MATLAB startup directory.

\section*{Using imshow to Display Images}

This section describes how to use the imshow function to display images. Topics covered include
- "Opening Images"
- "Specifying the Initial Image Size" on page 3-19
- "Viewing Multiple Images" on page 3-19
- "Understanding Handle Graphics Object Property Settings" on page 3-22

For information about using imshow with various image types, see "Displaying Different Image Types" on page 3-24.

\section*{Opening Images}

To view images, you can use the imshow function. You use imshow to display an image that has already been imported into the MATLAB workspace, as in the following example.
```

moon = imread('moon.tif');
imshow(moon);

```

You can also simply specify the name of the file containing the image as an argument to the imshow function, as in the following example. The file must be in the current directory or on the MATLAB path.
```

imshow('moon.tif');

```

This syntax can be useful for scanning through images. Note, however, that when you use this syntax, the image data is not stored in the MATLAB workspace. If you want to bring the image into the workspace, you must use the getimage function, which retrieves the image data from the current Handle Graphics image object. For example:
```

moon = getimage;

```
assigns the image data from moon. tif to the variable moon if the figure window in which it is displayed is currently active.

Note One of the most common toolbox usage errors is using the wrong syntax of imshow for your image type. To find out which syntax is appropriate for each type of image, see "Displaying Different Image Types" on page 3-24.

\section*{Specifying the Initial Image Size}

In most situations, when the toolbox is operating under default behavior, imshow assigns a single screen pixel to each image pixel, e.g., a 200-by-300 image is 200 screen pixels in height and 300 screen pixels in width. This is generally the preferred way to display an image. imshow calls the truesize command to create this image pixel-to-screen pixel mapping.

In some cases, you might not want imshow to automatically call truesize (for example, if you are working with a small image). In these cases, the image is displayed at the default axis size. To use imshow without calling the truesize function,
- Set the ImshowTruesize preference to 'manual' for the current MATLAB session. To learn how to change the values of toolbox preferences, see "Setting the Value of Toolbox Preferences" on page 3-38.
- Set the imshow function display_option parameter to 'notruesize'. This overrides the setting of the ImshowTruesize preference for the call to imshow.
```

imshow(X, map,'notruesize')

```

For more information, see the imshow function reference page.
When imshow does not use the truesize function, it must use interpolation to determine the values for screen pixels that do not directly correspond to elements in the image matrix. For more information, see "Interpolation" on page 4-3.

\section*{Viewing Multiple Images}

If you specify a file that contains multiple images, imshow only displays the first image in the file. To view all the images in the file, import the images into the MATLAB workspace by calling imread. See "Reading Multiple Images from a Graphics File" on page 2-17 for more information.

Some applications create collections of images related by time or view, such as magnetic resonance imaging (MRI) slices or frames of data acquired from a video stream. The Image Processing Toolbox supports these collections of images as four-dimensional arrays, where each separate image is called a frame and the frames are concatenated along the fourth dimension. All the frames in a multiframe image must be the same size.

Once the images are in the MATLAB workspace, there are two ways to display them using imshow:
- Displaying each image in a separate figure window
- Displaying multiple frames in a single figure window

To view all the frames in a multiframe image at once, you can also use the montage function. See "Displaying All Frames of a Multiframe Image at Once" on page 3-32 for more information.

\section*{Displaying Each Image in a Separate Figure}

The simplest way to display multiple images is to display them in separate figure windows. MATLAB does not place any restrictions on the number of images you can display simultaneously. However, there are usually system limitations that are dependent on the computer hardware you are using.
imshow always displays an image in the current figure, so if you display two images in succession, the second image replaces the first image. To avoid replacing the image in the current figure, use the figure command to explicitly create a new empty figure before calling imshow for the next image. For example, to view the first three frames in an array of intensity images I,
```

imshow(I(:,:,:,1))
figure, imshow(I(:,:,:,2))
figure, imshow(I(:,:,:,3))

```

When you use this approach, the figures you create are empty initially.

\section*{Displaying Multiple Images in the Same Figure}

You can use the imshow function with the MATLAB subplot function or the MATLAB subimage function to display multiple images in a single figure window.

Dividing a Figure Window into Multiple Display Regions. subplot divides a figure into multiple display regions. The syntax of subplot is
subplot (m, n, p)

This syntax divides the figure into an m-by-n matrix of display regions and makes the pth display region active.

For example, if you want to display two images side by side, use
```

[X1,map1]=imread('forest.tif');
[X2,map2]=imread('trees.tif');
subplot(1,2,1), imshow(X1,map2)
subplot(1,2,2), imshow(X2,map2)

```


\section*{Two Images in Same Figure Using the Same Colormap}

If sharing a colormap (using the subplot function) produces unacceptable display results, use the subimage function, described below. Or, as another alternative, you can map all images to the same colormap as you load them.

Using the subimage Function to Display Multiple Images. subimage converts images to RGB before displaying and therefore circumvents the colormap sharing
problem. This example displays the same two images shown with better results.
```

[X1,map1]=imread('forest.tif');
[X2,map2]=imread('trees.tif');
subplot(1,2,1), subimage(X1,map1)
subplot(1,2,2), subimage(X2,map2)

```


\section*{Two Images in Same Figure Using Separate Colormaps}

\section*{Understanding Handle Graphics Object Property Settings}

When you display an indexed, intensity, binary, or RGB image, imshow sets the Handle Graphics properties that control how the image is displayed. The following table lists the relevant properties and their settings for each type of image. The table uses standard toolbox terminology to refer to the various image types: \(X\) represents an indexed image, \(I\) represents an intensity image, BW represents a binary image, and RGB represents an RGB (or true-color) image.

Note When you use the imshow automatic scaling syntax, imshow(I, []), the function sets the axes CLim property to [min(J(:)) max(J(:))]. CDataMapping is always scaled for intensity images, so that the value \(\min (J(:))\) is displayed using the first colormap color, and the value \(\max (\mathrm{J}(:))\) is displayed using the last colormap color.
\begin{tabular}{|c|c|c|c|c|}
\hline Handle Graphics Property & \begin{tabular}{l}
Indexed \\
Images
\end{tabular} & Intensity (Grayscale) Images & Binary Images & RGB (True-color) Images \\
\hline CData (Image) & Set to the data in \(X\) & Set to the data in I & Set to data in BW & Set to data in RGB \\
\hline CDataMapping (Image) & Set to 'direct' & Set to 'scaled' & Set to 'direct' & Ignored when CData is 3-D \\
\hline CLim (Axes) & Does not apply & \begin{tabular}{l}
double: [ 0 1] \\
uint8: [0 255] \\
uint16: [0 65535]
\end{tabular} & Set to [ 0 1] & Ignored when CData is 3-D \\
\hline Colormap (Figure) & Set to data in map & Set to grayscale colormap & Set to a grayscale colormap whose values range from black to white & Ignored when CData is 3-D \\
\hline
\end{tabular}

\section*{Displaying Different Image Types}

This section describes how to use imshow and imview with the different types of images supported by the Image Processing Toolbox.
- Indexed images
- Intensity (grayscale) images
- Binary images
- RGB (true-color) images

If you need help determining what type of image you are working with, see "Image Types in the Toolbox" on page 2-6.

\section*{Displaying Indexed Images}

To display an indexed image, using either imshow or imview, specify both the image matrix and the colormap.
```

imshow(X,map)

```
or
```

imview(X,map)

```

For each pixel in \(X\), these functions display the color stored in the corresponding row of map. If the image matrix data is of class double, the value 1 points to the first row in the colormap, the value 2 points to the second row, and so on. However, if the image matrix data is of class uint8 or uint16, the value 0 (zero) points to the first row in the colormap, the value 1 points to the second row, and so on. This offset is handled automatically by the imview and imshow functions.

If the colormap contains a greater number of colors than the image, the functions ignore the extra colors in the colormap. If the colormap contains fewer colors than the image requires, the functions set all image pixels over the limits of the colormap's capacity to the last color in the colormap. For example, if an image of class uint8 contains 256 colors, and you display it with a colormap that contains only 16 colors, all pixels with a value of 15 or higher are displayed with the last color in the colormap.

\section*{Displaying Intensity Images}

To display an intensity (grayscale) image, using either imshow or imview, specify the image matrix as an argument.
```

imshow(I)

```
or
```

imview(I)

```

Both functions display the image by scaling the intensity values to serve as indices into a grayscale colormap.

If I is double, a pixel value of 0.0 is displayed as black, a pixel value of 1.0 is displayed as white, and pixel values in between are displayed as shades of gray. If I is uint8, then a pixel value of 255 is displayed as white. If I is uint16, then a pixel value of 65535 is displayed as white.
Intensity images are similar to indexed images in that each uses an m-by-3 RGB colormap, but normally, you do not specify a colormap for an intensity image. MATLAB displays intensity images by using a grayscale system colormap (where \(\mathrm{R}=\mathrm{G}=\mathrm{B}\) ). By default, the number of levels of gray in the colormap is 256 on systems with 24 -bit color, and 64 or 32 on other systems. (See "Working with Different Screen Bit Depths" on page 13-3 for a detailed explanation.)

\section*{Specifying the Number of Gray Levels}

Using imshow, you can optionally specify the number of gray levels to use for intensity images. For example, to display an image with 32 gray levels, use this syntax.
imshow(I, 32)
Because MATLAB scales intensity images to fill the colormap range, a colormap of any size can be used. Larger colormaps enable you to see more detail, but they also use up more color slots. The availability of color slots is discussed further in "Working with Different Screen Bit Depths" on page 13-3.

\section*{Displaying Intensity Images That Have Unconventional Ranges}

In some cases, you might have data you want to display as an intensity image, even though the data is outside the conventional toolbox range (i.e., \([0,1]\) for double arrays, \([0,255]\) for uint8 arrays, or [0,65535] for uint16 arrays). For
example, if you filter an intensity image, some of the output data might fall outside the range of the original data.

To display unconventional range data as an image, you can specify the display range directly, using this syntax for both the imshow and imview functions.
```

imshow(I,[low high])
or
imview(I,[low high])

```

If you use an empty matrix ([ ]) for the display range, these functions scale the data automatically, setting low and high to the minimum and maximum values in the array. The next example filters an intensity image, creating unconventional range data. The example calls imview to display the image, using the automatic scaling option. If you execute this example, note the display range specified in the lower right corner of the Image Viewer window.
```

I = imread('testpat1.png');
J = filter2([1 2;-1 -2],I);
imview(J,[]);

```


\section*{Displaying Binary Images}

In MATLAB, a binary image is of class logical. Binary images contain only 0's and 1's. Pixels with the value 0 are displayed as black; pixels with the value 1 are displayed as white.

Note For the toolbox to interpret the image as binary, it must be of class logical. Intensity images that happen to contain only 0's and 1's are not binary images.

To display a binary image, using either imshow or imview, specify the image matrix as an argument. For example, this code reads a binary image into the MATLAB workspace and then displays the image.
    \(\mathrm{BW}=\) imread('circles.png');
    imshow(BW)
or
imview(BW)


\section*{Changing the Display Colors of a Binary Image}

You might prefer to invert binary images when you display them, so that 0 values are displayed as white and 1 values are displayed as black. To do this, use the NOT ( \(\sim\) ) operator in MATLAB. (In this figure, a box is drawn around the image to show the image boundary.) For example:
```

imshow(~BW)

```
or
imview (~BW)


You can also display a binary image using the indexed image colormap syntax. For example, the following command specifies a two-row colormap that displays 0 's as red and 1's as blue.
```

imshow(BW,[1 0 0; 0 0 1])

```
or
imview(BW,[10 0 ; 0 0 1])


\section*{Displaying RGB Images}

RGB images, also called true-color images, represent color values directly, rather than through a colormap. An RGB image is an m-by-n-by-3 array. For each pixel ( \(r, c\) ) in the image, the color is represented by the triplet ( \(r, c, 1: 3\) ).

To display an RGB image, using either imshow or imview, specify the image matrix as an argument. For example, this code reads an RGB image into the MATLAB workspace and then displays the image.
```

 RGB = imread(peppers.png');
 imshow(RGB)
    ```
or
imview(RGB)


Systems that use 24 bits per screen pixel can display true-color images directly, because they allocate 8 bits ( 256 levels) each to the red, green, and blue color planes. On systems with fewer colors, imshow displays the image using a combination of color approximation and dithering. See "Working with Different Screen Bit Depths" on page 13-3 for more information.

Note If you display a color image and it appears in black and white, check if the image is an indexed image. With indexed images, you must specify the colormap associated with the image. For more information, see "Displaying Indexed Images" on page 3-24.

\section*{Special Display Techniques}

In addition to imshow and imview, the toolbox includes functions that perform specialized display operations, or exercise more direct control over the display format. These functions, together with the MATLAB graphics functions, provide a range of image display options.

This section includes the following topics:
- "Adding a Colorbar" on page 3-31
- "Displaying All Frames of a Multiframe Image at Once" on page 3-32
- "Converting a Multiframe Image to a Movie" on page 3-34
- "Texture Mapping" on page 3-35

\section*{Adding a Colorbar}

To display an image with a colorbar that indicates the range of intensity values, use the imshow function to display the image in a MATLAB figure window and then call the colorbar function. When you add a colorbar to an axes object that contains an image object, the colorbar indicates the data values that the different colors in the image correspond to. You cannot add a colorbar to an image displayed in the Image Viewer.

Seeing the correspondence between data values and the colors displayed by using a colorbar is especially useful if you are displaying unconventional range data as an image, as described under "Displaying Intensity Images That Have Unconventional Ranges" on page 3-25.

In the example below, a grayscale image of class uint8 is filtered, resulting in data that is no longer in the range \([0,255]\).
```

RGB = imread('saturn.png');
I = rgb2gray(RGB);
h = [1 2 1; 0 0 0; -1 -2 -1];
I2 = filter2(h,I);
imshow(I2,[]), colorbar

```


\section*{Displaying All Frames of a Multiframe Image at Once}

To view all the frames in a multiframe array at one time, use the montage function. montage divides a figure window into multiple display regions and displays each image in a separate region.

The syntax for montage is similar to the imshow syntax. To display a multiframe intensity image, the syntax is
```

montage(I)

```

To display a multiframe indexed image, the syntax is
```

montage(X,map)

```

Note All the frames in a multiframe indexed array must use the same colormap.

This example loads and displays all frames of a multiframe indexed image. The example initializes an array to hold the 27 frames in the multiframe image file and then loops, using imread to read a single frame from the image file at each iteration.
```

mri = uint8(zeros(128,128,1,27));
for frame=1:27
[mri(:,:,:,frame),map] = imread('mri.tif',frame);
end
montage(mri,map);

```


All Frames of Multiframe Image Displayed in One Figure
montage displays the first frame in the first position of the first row, the next frame in the second position of the first row, and so on. montage arranges the frames so that they roughly form a square.

\section*{Converting a Multiframe Image to a Movie}

To create a MATLAB movie from a multiframe image array, use the immovie function. This example creates a movie from a multiframe indexed image.
```

mov = immovie(X,map);

```

In the example, X is a four-dimensional array of images that you want to use for the movie.

You can play the movie in MATLAB using the movie function.
```

movie(mov);

```

This example loads the multiframe image mri.tif and makes a movie out of it. It won't do any good to show the results here, so try it out; it's fun to watch.
```

mri = uint8(zeros(128,128,1,27));
for frame=1:27
[mri(:,:,:,frame),map] = imread('mri.tif',frame);
end
mov = immovie(mri,map);
movie(mov);

```

Note that immovie displays the movie as it is being created, so you actually see the movie twice. The movie runs much faster the second time (using movie).

Note To view a MATLAB movie, you must have MATLAB installed. To make a movie that can be run outside MATLAB, use the MATLAB avifile and addframe functions to create an AVI file. AVI files can be created using indexed and RGB images of classes uint8 and double, and don't require a multiframe image. For instructions on creating an AVI file, see the Development Environment section in the MATLAB documentation.

\section*{Texture Mapping}

When you use imshow or imview to view an image, MATLAB displays the image in two dimensions. However, it is also possible to map an image onto a parametric surface, such as a sphere, or below a surface plot. The warp function creates these displays by texture mapping the image. Texture mapping is a process that maps an image onto a surface grid using interpolation.
This example texture-maps an image of a test pattern onto a cylinder.
```

[x,y,z] = cylinder;
I = imread('testpat1.png');
warp(x,y,z,I);

```


\section*{An Image Texture Mapped onto a Cylinder}

The image might not map onto the surface in the way that you had expected. One way to modify the way the texture map appears is to change the settings of the Xdir, Ydir, and Zdir properties. For more information, see "Changing Axis Direction" in the MATLAB Graphics documentation.

For more information about texture mapping, see the reference entry for the warp function.

\section*{Printing Images}

If you want to output a MATLAB image to use in another application (such as a word-processing program or graphics editor), use imwrite to create a file in the appropriate format. See "Writing a Graphics Image" on page 2-17 for details.

If you want to print an image, use imshow to display the image in a MATLAB figure window. You cannot print an image from the Image Viewer.

Once the image is displayed in a figure window, you can use either the MATLAB print command or the Print option from the File menu of the figure window to print the image. When you print from the figure window, the output includes nonimage elements such as labels, titles, and other annotations.

The output reflects the settings of various properties of Handle Graphic objects. In some cases, you might need to change the settings of certain properties to get the results you want. Here are some tips that might be helpful when you print images:
- Image colors print as shown on the screen. This means that images are not affected by the figure object's InvertHardcopy property.
- To ensure that printed images have the proper size and aspect ratio, set the figure object's PaperPositionMode property to auto. When PaperPositionMode is set to auto, the width and height of the printed figure are determined by the figure's dimensions on the screen. By default, the value of PaperPositionMode is manual. If you want the default value of PaperPositionMode to be auto, you can add this line to your startup.m file.
```

set(0,'DefaultFigurePaperPositionMode','auto')

```

For detailed information about printing with File/Print or the print command (and for information about Handle Graphics), see "Printing and Exporting Figures with MATLAB" in the MATLAB Graphics documentation. For a complete list of options for the print command, enter help print at the MATLAB command-line prompt or see the print command reference page in the MATLAB documentation.

\section*{Setting Toolbox Display Preferences}

You can use Image Processing Toolbox preferences to control certain characteristics of how imshow and imview display images on your screen. For example, using toolbox preferences, you can suppress the display of axes and tick marks in a figure window by imshow or specify the initial magnification used by imview.

This section
- Lists the preferences supported by the toolbox
- Describes how to get the current value of a preference using the iptgetpref function
- Describes how to set the value of a preference using the iptsetpref function

\section*{Toolbox Preferences}

The Image Processing Toolbox supports several preferences that affect how imshow and imview display images. The following table lists these preferences with brief descriptions. For detailed information about toolbox preferences and their values, see the iptsetpref reference page.
\begin{tabular}{l|l}
\hline Toolbox Preference & Description \\
\hline ImshowBorder & \begin{tabular}{l} 
Controls whether imshow displays the figure window as \\
larger than the image (leaving a border between the image \\
axes and the edges of the figure), or the same size as the \\
image (leaving no border).
\end{tabular} \\
\hline ImshowAxesVisible & \begin{tabular}{l} 
Controls whether imshow displays images with the axes box \\
and tick labels.
\end{tabular} \\
\hline ImshowTruesize & \begin{tabular}{l} 
Controls whether imshow calls the truesize function. This \\
preference can be overridden for a single call to imshow; see \\
"Specifying the Initial Image Size" on page 3-19 for more \\
details.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Toolbox Preference & Description \\
\hline ImviewInitialMagnification & \begin{tabular}{l} 
Controls the magnification the Image Viewer uses when it \\
initially displays an image.
\end{tabular} \\
\hline TrueSizeWarning & \begin{tabular}{l} 
Controls whether you receive a warning message if an image \\
is too large for the screen.
\end{tabular} \\
\hline
\end{tabular}

\section*{Retrieving the Value of Toolbox Preferences}

To determine the current value of a preference, use the iptgetpref function. This example uses iptgetpref to determine the value of the ImviewInitialMagnification preference.
```

iptgetpref('ImviewInitialMagnification')
ans =

```

100
Preference names are case insensitive and can be abbreviated. For more information, see the iptgetpref reference page.

\section*{Setting the Value of Toolbox Preferences}

To specify the value of a toolbox preference, use the iptsetpref function. This example calls iptsetpref to specify that imshow resize the figure window so that it fits tightly around displayed images.
```

iptsetpref('ImshowBorder', 'tight');

```

For detailed information about toolbox preferences and their values, see the iptsetpref reference page.

The value you specify lasts for the duration of the current MATLAB session. To preserve your preference settings from one session to the next, include the iptsetpref commands in your startup.m file.

\section*{Spatial Transformations}

This chapter describes the spatial transformation functions in the Image Processing Toolbox. Spatial transformations map pixel locations in an input image to new locations in an output image.

Terminology (p. 4-2)

Interpolation (p. 4-3)

Image Resizing (p. 4-5)

Image Rotation (p. 4-8)

Image Cropping (p. 4-10)

Performing General Spatial
Transformations (p. 4-11)

Provides definitions of image processing terms used in this section

Defines interpolation, the process used to estimate the value of a pixel in an output image when that pixel does not appear in the input image

Describes how to use the imresize function to change the size of an image
Describes how to use the imrotate function to rotate an image

Describes how to use the imcrop function to extract a rectangular portion of an image

Describes the general spatial transformation capabilities of the toolbox

\section*{Terminology}

An understanding of the following terms will help you to use this chapter.
\begin{tabular}{l|l}
\hline Term & Definition \\
\hline aliasing & \begin{tabular}{l} 
Artifacts in an image that can appear as a \\
result of reducing an image's size. When the \\
size of an image is reduced, original pixels \\
are downsampled to create fewer pixels. \\
Aliasing that occurs as a result of size \\
reduction normally appears as "stair-step" \\
patterns (especially in high contrast images), \\
or as "moire" (ripple-effect) patterns.
\end{tabular} \\
\hline antialiasing & \begin{tabular}{l} 
Any method for correcting aliasing (see \\
above). The method discussed in this chapter \\
is low-pass filtering (see below).
\end{tabular} \\
\hline bicubic interpolation & \begin{tabular}{l} 
Output pixel values are calculated from a \\
weighted average of pixels in the nearest \\
4-by-4 neighborhood.
\end{tabular} \\
\hline bilinear interpolation & \begin{tabular}{l} 
Output pixel values are calculated from a \\
weighted average of pixels in the nearest \\
2 -by-2 neighborhood.
\end{tabular} \\
\hline geometric operation & \begin{tabular}{l} 
An operation that modifies the spatial \\
relations between pixels in an image. \\
Examples include resizing (growing or \\
shrinking), rotating, and shearing.
\end{tabular} \\
\hline interpolation & \begin{tabular}{l} 
The process by which we estimate an image \\
value at a location in between image pixels.
\end{tabular} \\
\hline nearest-neighbor & \begin{tabular}{l} 
Output pixel values are assigned the value of \\
the pixel that the point falls within. No other \\
pixels are considered.
\end{tabular} \\
\hline
\end{tabular}

\section*{Interpolation}

Interpolation is the process used to estimate an image value at a location in between image pixels. For example, if you resize an image so it contains more pixels than it did originally, the software obtains values for the additional pixels through interpolation. The imresize and imrotate geometric functions use two-dimensional interpolation as part of the operations they perform. (The improfile image analysis function also uses interpolation. See "Intensity Profile" on page 10-5 for information about this function.)

The Image Processing Toolbox provides three interpolation methods:
- Nearest-neighbor interpolation
- Bilinear interpolation
- Bicubic interpolation

The interpolation methods all work in a fundamentally similar way. In each case, to determine the value for an interpolated pixel, they find the point in the input image that the output pixel corresponds to. They then assign a value to the output pixel by computing a weighted average of some set of pixels in the vicinity of the point. The weightings are based on the distance each pixel is from the point.
The methods differ in the set of pixels that are considered:
- For nearest-neighbor interpolation, the output pixel is assigned the value of the pixel that the point falls within. No other pixels are considered.
- For bilinear interpolation, the output pixel value is a weighted average of pixels in the nearest 2-by-2 neighborhood.
- For bicubic interpolation, the output pixel value is a weighted average of pixels in the nearest 4-by-4 neighborhood.

The number of pixels considered affects the complexity of the computation. Therefore the bilinear method takes longer than nearest-neighbor interpolation, and the bicubic method takes longer than bilinear. However, the greater the number of pixels considered, the more accurate the effect is, so there is a tradeoff between processing time and quality.

\section*{Image Types}

The functions that use interpolation take an argument that specifies the interpolation method. For most of these functions, the default method is nearest-neighbor interpolation. This method produces acceptable results for all image types, and is the only method that is appropriate for indexed images. For intensity and RGB images, however, you should generally specify bilinear or bicubic interpolation, because these methods produce better results than nearest-neighbor interpolation.

For RGB images, interpolation is performed on the red, green, and blue image planes individually.

For binary images, interpolation has effects that you should be aware of. If you use bilinear or bicubic interpolation, the computed values for the pixels in the output image will not all be 0 or 1 . The effect on the resulting output image depends on the class of the input image:
- If the class of the input image is double, the output image is a grayscale image of class double. The output image is not binary, because it includes values other than 0 and 1.
- If the class of the input image is uint8, the output image is a binary image of class uint8. The interpolated pixel values are rounded off to 0 and 1 so the output image can be of class uint8.

Note For bicubic interpolation, you might need to clamp doubles to within the [01] range.

If you use nearest-neighbor interpolation, the result is always binary, because the values of the interpolated pixels are taken directly from pixels in the input image.

\section*{Image Resizing}

To change the size of an image, use the imresize function. Using imresize, you can
- Specify the size of the output image
- Specify the interpolation method used
- Specify the filter to use to prevent aliasing

\section*{Specifying the Size of the Output Image}

Using imresize, you can specify the size of the output image in two ways:
- By specifying the magnification factor to be used on the image
- By specifying the dimensions of the output image

\section*{Using the Magnification Factor}

To enlarge an image, specify a magnification factor greater than 1 . To reduce an image, specify a magnification factor between 0 and 1 . For example, the command below increases the size of the image I by 1.25 times.
```

I = imread('circuit.tif');
J = imresize(I,1.25);
imshow(I)
figure, imshow(J)

```


Image Courtesy of Steve Decker and Shujaat Nadeem

\section*{Specifying the Size of the Output Image}

You can specify the size of the output image by passing a vector that contains the number of rows and columns in the output image. The following command creates an output image, Y , with 100 rows and 150 columns.
```

Y = imresize(X,[100 150])

```

Note If the specified size does not produce the same aspect ratio as the input image, the output image is distorted.

\section*{Specifying the Interpolation Method}

By default, imresize uses nearest-neighbor interpolation to determine the values of pixels in the output image, but you can specify other interpolation methods. This table lists the supported interpolation methods in order of complexity. See "Interpolation" on page 4-3 for more information about these methods.
\begin{tabular}{ll}
\hline Argument Value & Interpolation Method \\
\hline 'nearest' & Nearest-neighbor interpolation (the default) \\
\hline 'bilinear' & Bilinear interpolation \\
\hline 'bicubic' & Bicubic interpolation \\
\hline
\end{tabular}

In this example, imresize uses the bilinear interpolation method.
```

Y = imresize(X,[100 150],'bilinear')

```

\section*{Using Filters to Prevent Aliasing}

Reducing the size of an image can introduce artifacts, such as aliasing, in the output image because information is always lost when you reduce the size of an image. Aliasing appears as ripple patterns (called moiré patterns) in the output image.

When you reduce the size of the image using either bilinear or bicubic interpolation, imresize automatically applies a lowpass filter to the image before interpolation, to limit the impact of aliasing on the output image. You can specify the size of this filter or specify a different filter.

Note Even with lowpass filtering, resizing can introduce artifacts, because information is always lost when you reduce the size of an image.

The imresize function does not apply a lowpass filter if nearest-neighbor interpolation is used. Nearest-neighbor interpolation is primarily used for indexed images, and lowpass filtering is not appropriate for these images.

You can also specify a filter of your own creation. For more information about specifying a filter, see the reference page for imresize.

\section*{Image Rotation}

To rotate an image, use the imrotate function. imrotate accepts two primary arguments:
- The image to be rotated
- The rotation angle

You specify the rotation angle in degrees. If you specify a positive value, imrotate rotates the image counterclockwise; if you specify a negative value, imrotate rotates the image clockwise. This example rotates the image I 35 degrees in the counterclockwise direction.
```

J = imrotate(I,35);

```

As optional arguments to imrotate, you can also specify
- The interpolation method
- The size of the output image

\section*{Specifying the Interpolation Method}

By default, imrotate uses nearest-neighbor interpolation to determine the value of pixels in the output image, but you can specify other interpolation methods. This table lists the supported interpolation methods in order of complexity. See "Interpolation" on page 4-3 for more information about these methods.
\begin{tabular}{l|l}
\hline Argument Value & Interpolation Method \\
\hline 'nearest' & Nearest-neighbor interpolation (the default) \\
\hline 'bilinear' & Bilinear interpolation \\
\hline 'bicubic' & Bicubic interpolation \\
\hline
\end{tabular}

For example, these commands rotate an image \(35^{\circ}\) counterclockwise and use bilinear interpolation.
```

I = imread('circuit.tif');
J = imrotate(I,35,'bilinear');
imshow(I)

```
figure, imshow(J)


\section*{Specifying the Size of the Output Image}

By default, imrotate creates an output image large enough to include the entire original image. Pixels that fall outside the boundaries of the original image are set to 0 and appear as a black background in the output image. If you specify the text string crop' as an argument, imrotate crops the output image to be the same size as the input image. (See the reference page for imrotate for an example of cropping.)

\section*{Image Cropping}

To extract a rectangular portion of an image, use the imcrop function. imcrop accepts two primary arguments:
- The image to be cropped
- The coordinates of a rectangle that defines the crop area

If you call imcrop without specifying the crop rectangle, you can specify the crop rectangle interactively. In this case, the cursor changes to crosshairs when it is over the image. Position the crosshairs over a corner of the crop region and press and hold the left mouse button. When you drag the crosshairs over the image you specify the rectangular crop region. imcrop draws a rectangle around the area you are selecting. When you release the mouse button, imcrop creates a new image from the selected region.
In this example, you display an image and call imcrop. The imcrop function displays the image in a figure window and waits for you to draw the cropping rectangle on the image. In the figure, the rectangle you select is shown in red. The example then calls imshow to view the cropped image.
imshow circuit.tif
I = imcrop;
imshow(I);


\section*{Performing General Spatial Transformations}

To perform general two-dimensional (2-D) spatial transformations, use the imtransform function. (For information about performing advanced transformations, see "Advanced Spatial Transformation Techniques" on page 4-13.)

The imtransform function accepts two primary arguments:
- The image to be transformed
- A spatial transformation structure, called a TFORM, that specifies the type of transformation you want to perform

\section*{Specifying the Transformation Type}

You specify the type of transformation you want to perform in a TFORM structure. There are two ways to create a TFORM structure:
- Using the maketform function
- Using the cp2tform function

\section*{Using makefform}

When you use the maketform function, you can specify the type of transformation you want to perform. The following table lists the types of transformations maketform supports in alphabetical order.
\begin{tabular}{l|l}
\hline Transformation & Description \\
\hline 'affine ' & \begin{tabular}{l} 
Transformation that can include translation, \\
rotation, scaling, stretching, and shearing. Straight \\
lines remain straight, and parallel lines remain \\
parallel, but rectangles might become \\
parallelograms.
\end{tabular} \\
\hline 'box' & \begin{tabular}{l} 
Special case of an affine transformation where each \\
dimension is shifted and scaled independently.
\end{tabular} \\
\hline 'composite' & Composition of two or more transformations. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Transformation & Description \\
\hline 'custom' & \begin{tabular}{l} 
User-defined transformation, providing the forward \\
and/or inverse functions that are called by \\
imtransform.
\end{tabular} \\
\hline 'projective' & \begin{tabular}{l} 
Transformation in which straight lines remain \\
straight but parallel lines converge toward vanishing \\
points. (The vanishing points can fall inside or \\
outside the image - even at infinity.)
\end{tabular} \\
\hline
\end{tabular}

The 'custom' and 'composite' capabilities of maketform allow a virtually limitless variety of spatial transformations to be used with imtransform and/or tformarray.

\section*{Using cp2fform}

You use cp2tform to create the TFORM when you want to perform a transformation that requires fitting of data points, such as a polynomial transformation. Chapter 5, "Image Registration," explains how to use the cp2tform function to fit a 2-D transformation to a set of control points selected in a pair of images.

Note When used with imtransform, TFORM structures must define a 2-D spatial transformation. If an image contains more than two dimensions, such as an RGB image, the same 2-D transformation is automatically applied to all 2-D planes along the higher dimensions. To define an n-dimensional transformation, use the tformarray function.

\section*{Performing the Transformation}

Once you define the transformation in a TFORM struct, you can perform the transformation by calling imtransform.

For example, this code uses imtransform to perform a projective transformation of a checkerboard image.
```

I = checkerboard(20,1,1);
figure; imshow(I)
T = maketform('projective',[1 1; 41 1; 41 41; 1 41],...
[5 5; 40 5; 35 30; -10 30]);
R = makeresampler('cubic','circular');
K = imtransform(I,T,R,'Size',[100 100],'XYScale',1);
figure, imshow(K)

```


The imtransform function options let you control many aspects of the transformation. For example, note how the transformed image appears to contain multiple copies of the original image. This is accomplished by using the 'Size ' option, to make the output image larger than the input image, and then specifying a padding method that extends the input image by repeating the pixels in a circular pattern. The Image Processing Toolbox Image Transformation demos provide more examples of using the imtransform function, and related functions, to perform different types of spatial transformations.

\section*{Advanced Spatial Transformation Techniques}

The following functions, when used in combination, provide a vast array of options for defining and working with 2-D, N-D, and mixed-D spatial transformations:
- maketform
- fliptform
- tformfwd
- tforminv
- findbounds
- makeresampler
- tformarray
- imtransform

The imtransform, findbounds, and tformarray functions use the tformfwd and tforminv functions internally to encapsulate the forward transformations needed to determine the extent of an output image or array and/or to map the output pixels/array locations back to input locations. You can use tformfwd and tforminv to explore the geometric effects of a transformation by applying them to points and lines and plotting the results. They support a consistent handling of both image and pointwise data.

The previous example, "Performing the Transformation" on page 4-13, used the makeresampler function with a standard interpolation method. You can also use it to obtain special effects or custom processing. For example, you could specify your own separable filtering/interpolation kernel, build a custom resampler around the MATLAB interp2 or interp3 functions, or even implement an advanced antialiasing technique.

And, as noted, you can use tformarray to work with arbitrary-dimensional array transformations. The arrays do not even need to have the same dimensions. The output can have either a lower or higher number of dimensions than the input.

For example, if you are sampling 3-D data on a 2-D slice or manifold, the input array might have a lower dimensionality. The output dimensionality might be higher, for example, if you combine multiple 2-D transformations into a single 2-D to 3-D operation.

\section*{Image Registration}

This chapter describes the image registration capabilities of the Image Processing Toolbox. Image registration is the process of aligning two or more images of the same scene. Image registration is often used as a preliminary step in other image processing applications.

Terminology (p. 5-2)

Registering an Image (p. 5-4)

Types of Supported Transformations (p. 5-13)

Selecting Control Points (p. 5-15)

Using Correlation to Improve Control Points (p. 5-32)

Provides definitions of image processing terms used in this section

Steps you through an example of the image registration process

Lists the types of supported transformations

Describes how to use the Control Point Selection Tool (cpselect) to select control points in pairs of images

Describes how to use the cpcorr function to fine-tune your control point selections

\section*{Terminology}

An understanding of the following terms will help you to use this chapter.
\begin{tabular}{l|l}
\hline Term & Definition \\
\hline aligned image & \begin{tabular}{l} 
Output image after registration has been \\
performed. The output image is derived by \\
applying a transformation to the input \\
image (see below) that brings it into \\
alignment with the base image (see below).
\end{tabular} \\
\hline base image & \begin{tabular}{l} 
Image against which you compare the image \\
to be registered. It is also often called the \\
reference image.
\end{tabular} \\
\hline control point pairs & \begin{tabular}{l} 
Matching locations, also referred to as \\
landmarks, in the input image and the base \\
image.
\end{tabular} \\
\hline distortion & \begin{tabular}{l} 
Differences in one image as compared to \\
another of the same subject. These \\
differences might have occurred as a result \\
of terrain relief and other changes in \\
perspective when imaging the same scene \\
from different viewpoints. Lens and other \\
internal sensor distortions, or differences \\
between sensors and sensor types, can also \\
cause distortion.
\end{tabular} \\
\hline global transformation & \begin{tabular}{l} 
Transformation in which a single \\
mathematical expression applies to an entire \\
image.
\end{tabular} \\
\hline input image & \begin{tabular}{l} 
Image that you want to register. It is often \\
called the observed image.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Term & Definition \\
\hline local transformation & \begin{tabular}{l} 
Transformation in which different \\
mathematical expressions (usually differing \\
in parameters rather than form) apply to \\
different regions within an image.
\end{tabular} \\
\hline spatial transformation & \begin{tabular}{l} 
Mapping of locations of points in one image \\
to new locations in another image.
\end{tabular} \\
\hline
\end{tabular}

\section*{Registering an Image}

Image registration is the process of aligning two or more images of the same scene. Typically, one image, called the base image, is considered the reference to which the other images, called input images, are compared. The object of image registration is to bring the input image into alignment with the base image by applying a spatial transformation to the input image.

A spatial transformation maps locations in one image to new locations in another image. (For more details, see Chapter 4, "Spatial Transformations.") Determining the parameters of the spatial transformation needed to bring the images into alignment is key to the image registration process.
Image registration is often used as a preliminary step in other image processing applications. For example, you can use image registration to align satellite images of the earth's surface or images created by different medical diagnostic modalities (MRI and SPECT). After registration, you can compare features in the images to see how a river has migrated, how an area is flooded, or to see if a tumor is visible in an MRI or SPECT image.

\section*{Point Mapping}

The Image Processing Toolbox provides tools to support point mapping to determine the parameters of the transformation required to bring an image into alignment with another image. In point mapping, you pick points in a pair of images that identify the same feature or landmark in the images. Then, a spatial mapping is inferred from the positions of these control points.

Image registration using point mapping involves these steps:
1 Read the images into the MATLAB workspace.
2 Specify control point pairs in the images.
3 Save the control point pairs.
4 Fine-tune the control points using cross-correlation. (This is an optional step.)

5 Specify the type of transformation to be used and infer its parameters from the control point pairs.

6 Transform the unregistered image to bring it into alignment.
This process is best understood by looking at an example. See "Example: Registering to a Digital Orthophoto" on page 5-6 for an extended example.

Note You might need to perform several iterations of this process, experimenting with different types of transformations, before you achieve a satisfactory result. In some cases, you might perform successive registrations, removing gross global distortions first, and then removing smaller local distortions in subsequent passes.

The following figure provides a graphic illustration of this process.


\section*{Overview of Image Registration Process}

\section*{Example: Registering to a Digital Orthophoto}

This example registers a digital aerial photograph to a digital orthophoto covering the same area. Both images are centered on the business district of West Concord, Massachusetts.

The aerial image is geometrically uncorrected: it includes camera perspective, terrain and building relief, and internal (lens) distortions, and it does not have any particular alignment or registration with respect to the earth.

The orthophoto, supplied by the Massachusetts Geographic Information System (MassGIS), has been orthorectified to remove camera, perspective, and relief distortions (via a specialized image transformation process). It is also georegistered (and geocoded)-the columns and rows of the digital orthophoto image are aligned to the axes of the Massachusetts State Plane coordinate system, each pixel center corresponds to a definite geographic location, and every pixel is 1 meter square in map units.

\section*{Step 1: Read the Images into MATLAB}

In this example, the base image is westconcordorthophoto.png, the MassGIS georegistered orthophoto. It is a panchromatic (grayscale) image. The image to be registered is westconcordaerial.png, a digital aerial photograph supplied by mPower3/Emerge, and is a visible-color RGB image.
```

orthophoto = imread('westconcordorthophoto.png');
figure, imshow(orthophoto)
unregistered = imread('westconcordaerial.png');
figure, imshow(unregistered)

```

You do not have to read the images into the MATLAB workspace. The cpselect function accepts file specifications for grayscale images. However, if you want to use cross-correlation to tune your control point positioning, the images must be in the workspace.


Aerial Photo Image


Image Courtesy of MassGIS

\section*{Step 2: Choose Control Points in the Images}

The toolbox provides an interactive tool, called the Control Point Selection Tool, that you can use to pick pairs of corresponding control points in both images. Control points are landmarks that you can find in both images, like a road intersection, or a natural feature.

To start this tool, enter cpselect at the MATLAB prompt, specifying as arguments the input and base images.

Note The unregistered image is an RGB image. Because the Control Point Selection Tool only accepts grayscale images, the example passes only one plane of the color image to cpselect.
```

cpselect(unregistered(:,:,1),orthophoto)

```

The cpselect function displays two views of both the input image and the base image in which you can pick control points by pointing and clicking. For more information, see "Selecting Control Points" on page \(5-15\). This figure shows the Control Point Selection Tool with four pairs of control points selected. The number of control point pairs you pick is at least partially determined by the type of transformation you want to perform (specified in Step 5). See "Types of Supported Transformations" on page 5-13 for information about the minimum number of points required by each transformation.


Step 3: Save the Control Point Pairs to the MATLAB Workspace
In the Control Point Selection Tool, click the File menu and choose the Save Points to Workspace option. See "Saving Control Points" on page 5-30 for more information.

For example, the Control Point Selection Tool returns the following set of control points in the input image. These values represent spatial coordinates; the left column are \(x\)-coordinates, the right column are \(y\)-coordinates.
```

input_points =
120.7086 93.9772
319.2222 78.9202
127.9838 291.6312
352.0729 281.1445

```

\section*{Step 4: Fine-Tune the Control Point Pair Placement}

This is an optional step that uses cross-correlation to adjust the position of the control points you selected with cpselect. See "Using Correlation to Improve Control Points" on page 5-32 for more information.

Note cpcorr can only adjust points for images that are the same scale and have the same orientation. Because the Concord image is rotated in relation to the base image, cpcorr cannot tune the control points. When it cannot tune the points, cpcorr returns the input points unmodified.
```

input_points_corr = cpcorr(input_points,base_points,...
unregistered(:,:,1),orthophoto)
input_points_corr =
120.7086 93.9772
319.2222 78.9202
127.1046 289.8935
352.0729 281.1445

```

\section*{Step 5: Specify the Type of Transformation and Infer Its Parameters}

In this step, you pass the control points to the cp2tform function that determines the parameters of the transformation needed to bring the image into alignment. cp2tform is a data-fitting function that determines the transformation based on the geometric relationship of the control points. cp2tform returns the parameters in a geometric transformation structure, called a TFORM structure.

When you use cp2tform, you must specify the type of transformation you want to perform. The cp2tform function can infer the parameters for five types of
transformations. You must choose which transformation will correct the type of distortion present in the input image. See "Types of Supported Transformations" on page 5-13 for more information. Images can contain more than one type of distortion.

The predominant distortion in the aerial image of West Concord (the input image) results from the camera perspective. Ignoring terrain relief, which is minor in this area, image registration can correct for this using a projective transformation. The projective transformation also rotates the image into alignment with the map coordinate system underlying the base digital orthophoto image. (Given sufficient information about the terrain and camera, you could correct these other distortions at the same time by creating a composite transformation with maketform. See "Performing General Spatial Transformations" on page 4-11 for more information.)
```

mytform = cp2tform(input_points,base_points,'projective');

```

\section*{Step 6: Transform the Unregistered Image}

As the final step in image registration, transform the input image to bring it into alignment with the base image. You use imtransform to perform the transformation, passing it the input image and the TFORM structure, which defines the transformation. imtransform returns the transformed image. For more information about using imtransform, see Chapter 4, "Spatial Transformations."
```

registered = imtransform(unregistered,mytform)

```

Note imtransform applies the transformation defined in mytform, which is based on control points picked in only one plane of the RGB image, to all three planes of the input image.

Compare the transformed image to the base image to see how the registration came out.


Registered Image


Orthophoto Image

\section*{Types of Supported Transformations}

The cp2tform function can infer the parameters for six types of transformations. This table lists the transformations in order of complexity, with examples of each type of distortion.

The first four transformations, 'linear conformal', 'affine', 'projective', and 'polynomial' are global transformations. In these transformations, a single mathematical expression applies to an entire image. The last two transformations, 'piecewise linear' and 'lwm' (local weighted mean), are local transformations. In these transformations, different mathematical expressions apply to different regions within an image.

When exploring how different transformations affect the images you are working with, try the global transformations first. If these transformations are not satisfactory, try the local transformations: the piecewise linear transformation first and then the local weighted mean transformation.
\begin{tabular}{l|l|l|}
\hline Transformation Type & Description & \begin{tabular}{l} 
Minimum \\
Control Points
\end{tabular} \\
\hline 'linear conformal' & \begin{tabular}{l} 
Use this transformation when \\
shapes in the input image are \\
unchanged, but the image is \\
distorted by some combination of \\
translation, rotation, and scaling.
\end{tabular} & 2 pairs \\
\hline \begin{tabular}{l} 
Straight lines remain straight, and \\
parallel lines are still parallel.
\end{tabular} & & \\
\hline 'affine' & \begin{tabular}{l} 
Use this transformation when \\
shapes in the input image exhibit \\
shearing. Straight lines remain \\
straight, and parallel lines remain \\
parallel, but rectangles become \\
parallelograms.
\end{tabular} & 3 pairs
\end{tabular}
\(\left.\begin{array}{|l|l|l}\hline \text { 'projective' } & \begin{array}{l}\text { Use this transformation when the } \\ \text { scene appears tilted. Straight lines } \\ \text { remain straight, but parallel lines } \\ \text { converge toward vanishing points } \\ \text { (which might or might not fall }\end{array} & 4 \text { pairs } \\ \text { within the image). }\end{array} \quad \begin{array}{l}\text { Use this transformation when } \\ \text { objects in the image are curved. The } \\ \text { higher the order of the polynomial, } \\ \text { the better the fit, but the result can } \\ \text { contain more curves than the base } \\ \text { image. }\end{array} \begin{array}{l}\text { (order 2) } \\ \text { (order 3) }\end{array}\right]\)

\section*{Selecting Control Points}

The toolbox includes an interactive tool that enables you to specify control points in the images you want to register. The tool displays the images side by side. When you are satisfied with the number and placement of the control points, you can save the control points.

\section*{Using the Control Point Selection Tool}

To specify control points in a pair of images you want to register, use the Control Point Selection Tool, cpselect. The tool displays the image you want to register, called the input image, next to the image you want to compare it to, called the base image or reference image.

Specifying control points is a four-step process:
1 Start the tool, specifying the input image and the base image.
2 View the images, looking for visual elements that you can identify in both images. cpselect provides many ways to navigate around the image, panning and zooming to view areas of the image in more detail.

3 Specify matching control point pairs in the input image and the base image.
4 Save the control points in the MATLAB workspace.
The following figure shows the default appearance of the tool when you first start it.


\section*{Control Point Selection Tool}

\section*{Starting the Control Point Selection Tool}

To use the Control Point Selection Tool, enter the cpselect command at the MATLAB prompt. As arguments, specify the image you want to register (the input image), and the image you want to compare it to (the base image).

To illustrate, this code fragment reads an image into a variable, moon_base, in the MATLAB workspace. It then creates another version of the image with a
deliberate size distortion, called moon_input. This is the image that needs registration to remove the size distortion. The code then starts the cpselect tool, specifying the two images.
```

moon_base = imread('moon.tif);
moon_input = imresize(moon_base, 1.2);
cpselect(moon_input, moon_base);

```

The cpselect command has other optional arguments. For example, you can restart a control point selection session by including a cpstruct structure as the third argument. For more information about restarting sessions, see "Saving Control Points" on page 5-30. For complete details, see the cpselect reference page.

\section*{Default Views of the Images}

When the Control Point Selection Tool starts, it contains four image display windows. The top two windows are called the Detail windows. These windows show a closeup view of a portion of the images you are working with. The input image is on the left and the base image is on the right. The two windows at the bottom of the interface are called the Overview windows. These windows show the images in their entirety, at the largest scale that fits the window. The input overview image is on the left and the base overview image is on the right.

Superimposed on the image in the Overview windows is a rectangle, called the detail rectangle. This rectangle defines the part of the image that is visible in the Detail window. By default, at startup, the detail rectangle covers one quarter of the entire image and is positioned over the center of the image.


\section*{Viewing the Images}

By default, cpselect displays the entire base and input images in the Overview windows and displays a closeup view of a portion of these images in the Detail windows. However, to find visual elements that are common to both images, you might want to change the section of the image displayed in the detail view or zoom in on a part of the image to view it in more detail. The following sections describe the different ways to change your view of the images:
- "Using Scroll Bars to View Other Parts of an Image" on page 5-19
- "Using the Detail Rectangle to Change the View" on page 5-19
- "Panning the Image Displayed in the Detail Window" on page 5-19
- "Zooming In and Out on an Image" on page 5-20
- "Specifying the Magnification of the Images" on page 5-21
- "Locking the Relative Magnification of the Input and Base Images" on page 5-22

\section*{Using Scroll Bars to View Other Parts of an Image}

To view parts of an image that are not visible in the Detail or Overview windows, use the scroll bars provided in each window.

As you scroll the image in the Detail window, note how the detail rectangle moves over the image in the Overview window. The position of the detail rectangle always shows the portion of the image in the Detail window.

\section*{Using the Detail Rectangle to Change the View}

To get a closer view of any part of the image, move the detail rectangle in the Overview window over that section of the image. cpselect displays that section of the image in the Detail window at a higher magnification than the overview window.

To move the detail rectangle,
1 Click the Default Cursor button \(\quad\) in the toolbar.
2 Move the pointer into the detail rectangle. The cursor changes to the fleur shape, 出

3 Press and hold the mouse button to drag the detail rectangle anywhere on the image.

Note As you move the detail rectangle over the image in the Overview window, the view of the image displayed in the Detail window changes.

\section*{Panning the Image Displayed in the Detail Window}

To change the section of the image displayed in the Detail window, use the pan tool to move the image in the window.

To use the pan tool,
1 Click the Drag Images to Pan button sin in the toolbar.

2 Move the pointer over the image in the Detail window. The cursor changes to the fleur shape, 出•

3 Press and hold the mouse button and drag the image in the Detail window.

Note As you move the image in the Detail window, the detail rectangle in the Overview window moves.

\section*{Zooming In and Out on an Image}

To enlarge an image to get a closer look or shrink an image to see the whole image in context, use the Zoom buttons on the button bar. (You can also zoom in or out on an image by changing the magnification. See "Specifying the Magnification of the Images" on page 5-21 for more information.)

To zoom in or zoom out on the base or input images,
1 Click the appropriate magnifying glass button.

Zoom in


2 Move the pointer over the image you want to zoom in or out on. The cursor changes to crosshairs, +

You can zoom in or out on either the input or the base images, in either the Detail or Overview windows. To keep the relative magnifications of the base and input images synchronized, click the Lock ratio check box. See "Locking the Relative Magnification of the Input and Base Images" on page 5-22 for more information.

Note If you zoom in close on the image displayed in the Overview window, the detail rectangle might no longer be visible.

You can use the zoom tool in two ways:
- Position the cursor over a location in the image and click the mouse. With each click, cpselect changes the magnification of the image by a preset amount. (See "Specifying the Magnification of the Images" on page 5-21 for a list of some of these magnifications.) cpselect centers the new view of the image on the spot where you clicked.
- Alternatively, you can position the cursor over a location in the image and, while pressing and holding the mouse button, draw a rectangle defining the area you want to zoom in or out on. cpselect magnifies the image so that the chosen section fills the Detail window. cpselect resizes the detail rectangle in the Overview window as well.

Note When you zoom in or out on an image, notice how the magnification value changes.

\section*{Specifying the Magnification of the Images}

To enlarge an image to get a closer look or to shrink an image to see the whole image in context, use the magnification edit box. (You can also use the Zoom buttons to enlarge or shrink an image. See "Zooming In and Out on an Image" on page 5-20 for more information.)

To change the magnification of an image,
1 Move the cursor into the magnification edit box of the window you want to change. The cursor changes to the text entry cursor.

Note Each Detail window and Overview window has its own magnification edit box.

2 Type a new value in the magnification edit box and press Enter, or click the menu associated with the edit box and choose from a list of preset magnifications. cpselect changes the magnification of the image and displays the new view in the appropriate window.


\section*{Locking the Relative Magnification of the Input and Base Images}

To keep the relative magnification of the input and base images automatically synchronized in the Detail or Overview windows, click the Lock Ratio check box. The two Detail windows and the two Overview windows each have their own Lock ratio check boxes.

When the Lock Ratio check box is selected, cpselect changes the magnification of both the input and base images when you zoom in or out on either one of the images or specify a magnification value for either of the images.


\section*{Specifying Matching Control Point Pairs}

The primary function of the Control Point Selection Tool is to enable you to pick control points in the image to be registered, the input image, and the image to which you are comparing it, the base image. When you start cpselect, the point selection tool is enabled, by default.

You specify control points by pointing and clicking in the input and base images, in either the Detail or the Overview windows. Each point you specify in the input image must have a match in the base image. The following sections describe the ways you can use the Control Point Selection Tool to choose control point pairs:
- "Picking Control Point Pairs Manually"
- "Using Control Point Prediction" on page 5-25

This section also describes how to move control points after you've created them and how to delete control points.

\section*{Picking Control Point Pairs Manually}

To specify a pair of control points in your images,
1 Click the Control Point Selection button \(\oplus\). Control point selection mode is active by default.

2 Position the cursor over a feature you have visually selected in any of the images displayed. The cursor changes to a pointing finger,

You can pick control points in either of the Detail windows, input or base, or in either of the Overview windows, input or base. You also can work in either direction: input-to-base image, or base-to-input image.

3 Click the mouse button. cpselect places a control point symbol at the position you specified, in both the Detail window and the Overview window. (The appearance of the control point symbol indicates its current state. Initially, control points are in an active, unmatched state. See "Control Point States" on page 5-27 for more information.

Note Depending on where in the image you pick control points, the symbol for the point might be visible in the Overview window, but not in the Detail window.

4 To create the match for this control point, move the cursor into the corresponding Detail or Overview window. For example, if you started in an input window, move the cursor to a base window.

5 Click the mouse button. cpselect places a control point symbol at the position you specified, in both the Detail and Overview windows. Because this control point completes a pair, the appearance of this symbol indicates an active, matched state. Note that the appearance of the first control point you selected (in step 3) also changes to an active, matched state.

You pick pairs of control points by moving from a view of the input image to a view of the base image, or vice versa. You can pick several control points in one view of the image, and then move to the corresponding window to locate their matches. To match an unmatched control point, select it to make it active, and then pick a point in the corresponding view window. When you select a match for a control point, the symbols for both points change to indicate their matched state. You can move or delete control points after you create them.

The following figure illustrates control points in several states.


\section*{Using Control Point Prediction}

Instead of picking matching control points by moving the cursor between corresponding Detail or Overview windows, you can let the Control Point Selection Tool estimate the match for the control points you specify, automatically. The Control Point Selection Tool determines the position of the matching control point based on the geometric relationship of the previously selected control points.

Note By default, the Control Point Selection Tool does not include predicted points in the set of valid control points returned in input_points or base_points. To include predicted points, you must accept them by selecting the points and fine-tuning their position with the cursor. When you move a predicted point, the Control Point Selection Tool changes the symbol to indicate that it has changed to a standard control point. For more information, see "Moving Control Points" on page 5-28.

To illustrate point prediction, this figure shows four control points selected in the input image, where the points form the four corners of a square. (The control points selections in the figure do not attempt to identify any landmarks in the image.) The figure shows the picking of a fourth point, in the left window, and the corresponding predicted point in the right window. Note how the Control Point Selection Tool places the predicted point at the same location relative to the other control points, forming the bottom right corner of the square.


Note Because the Control Point Selection Tool predicts control point locations based on the locations of the previous control points, you cannot use point prediction until you have a minimum of two pairs of matched points. Until this minimum is met, the Control Point Prediction button is disabled.

To use control point prediction,
1 Click the Control Point Prediction button \(\oplus \oplus\).
2 Position the cursor anywhere in any of the images displayed. The cursor changes to a pointing finger, \(\sqrt{\mathrm{m}}\) •

You can pick control points in either of the Detail windows, input or base, or in either of the Overview windows, input or base. You also can work in either direction: input-to-base image or base-to-input image.

3 Click either mouse button. The Control Point Selection Tool places a control point symbol at the position you specified and places another control point symbol for a matching point in all the other windows. The symbol for the predicted point contains the letter " P ," indicating that it's a predicted control point.

This figure illustrates predicted points in active unmatched, matched, and predicted states. For a complete description of all point states, see "Control Point States" on page 5-27.


\section*{Control Point States}

The appearance of control point symbols indicates their current state. When you first pick a control point, its state is active and unmatched. When you pick
the match for a control point，the appearance of both symbols changes to indicate their matched status．

This table lists all the possible control point states with their symbols． cpselect displays this list in a separate window called a Legend．The Legend is visible by default，but you can control its visibility using the Legend option from the View menu．

\section*{Control Point States}
\begin{tabular}{|c|c|c|}
\hline Symbol & State & Description \\
\hline 図 & Active unmatched & The point is currently selected but does not have a matching point．This is the initial state of most points． \\
\hline 兆 & Active matched & The point is currently selected and has a matching point． \\
\hline 回 & Active predicted & The point is a predicted point．If you move its position，the point changes to active matched state． \\
\hline （1） & Unmatched & The point is not selected and it is unmatched．You must select it before you can create its matching point． \\
\hline \(\oplus\) & Matched & The point has a matching point． \\
\hline （1） & Predicted & This point was added by cpselect during point prediction． \\
\hline
\end{tabular}

\section*{Moving Control Points}

To move a control point，
1 Click the Control Point Selection button \(\oplus\) or the Default Cursor button － 1 ．

2 Position the cursor over the control point you want to move．
3 Press and hold the mouse button and drag the control point．The state of the control point changes to active when you move it．

If you move a predicted control point, the state of the control point changes to a regular (nonpredicted) control point.

\section*{Deleting Control Points}

To delete a control point, and optionally its matching point,
1 Click the Control Point Selection button \(\triangle \oplus\) or the Default Cursor button \({ }^{*}\).

2 Click the control point you want to delete. Its state changes to active. If the control point has a match, both points become active.

3 Delete the point (or points) using one of these methods:
- Pressing the Backspace key
- Pressing the Delete key
- Choosing one of the delete options from the Edit menu

Using this menu you can delete individual points or pairs of matched points, in the input or base images.


\section*{Undoing and Redoing Control Point Selections}

You can undo a deletion or series of deletions using the Undo Delete option on the cpselect Edit menu.


After undoing a deletion, you can delete the points again using the Redo option, also on the Edit menu.

\section*{Saving Control Points}

After you specify control point pairs, you must save them in the MATLAB workspace to make them available for the next step in image registration, processing by cp2tform.
To save control points to the MATLAB workspace,
1 Select File on the Control Point Selection Tool menu bar.
2 Choose the Save Points to Workspace option. The Control Point Selection Tool displays this dialog box:


By default, the Control Point Selection Tool saves the \(x\)-coordinates and \(y\)-coordinates that specify the locations of the control points you selected in two arrays named input_points and base_points, although you can specify other names. These are \(n\)-by- 2 arrays, where \(n\) is the number of valid control point pairs you selected. For example, this is an example of the input_points array if you picked four pairs of control points. The values in the left column represent the \(x\)-coordinates; the values in the right column represent the \(y\)-coordinates.
```

input_points =
215.6667 262.3333
225.7778 311.3333
156.5556 340.1111
270.8889 368.8889

```

Whenever you exit the Control Point Selection Tool, it asks if you want to save your control points.

\section*{Saving Your Control Point Selection Session}

To save the current state of the Control Point Selection Tool, select the Structure with all points check box in the Save Points to Workspace dialog box.


This option saves the positions of all the control points you specified and their current states in a cpstruct structure.
```

cpstruct =
inputPoints: [4x2 double]
basePoints: [4\times2 double]
inputBasePairs: [4x2 double]
ids: [4x1 double]
inputIdPairs: [4x2 double]
baseIdPairs: [4x2 double]
isInputPredicted: [4x1 double]
isBasePredicted: [4x1 double]

```

You can use the cpstruct to restart a control point selection session at the point where you left off.

This option is useful if you are picking many points over a long time and want to preserve unmatched and predicted points when you resume work. The Control Point Selection Tool does not include unmatched and predicted points in the input_points and base_points arrays.

To extract the arrays of valid control point coordinates from a cpstruct, use the cpstruct2pairs function.

\section*{Using Correlation to Improve Control Points}

You might want to fine-tune the control points you selected using cpselect. Using cross-correlation, you can sometimes improve the points you selected by eye using the Control Point Selection Tool.

To use cross-correlation, pass sets of control points in the input and base images, along with the images themselves, to the cpcorr function.
```

input_pts_adj= cpcorr(input_points, base_points, input, base);

```

The cpcorr function defines 11-by-11 regions around each control point in the input image and around the matching control point in the base image, and then calculates the correlation between the values at each pixel in the region. Next, the cpcorr function looks for the position with the highest correlation value and uses this as the optimal position of the control point. The cpcorr function only moves control points up to 4 pixels based on the results of the cross-correlation.

Note Features in the two images must be at the same scale and have the same orientation. They cannot be rotated relative to each other.

If cpcorr cannot correlate some of the control points, it returns their values in input_points unmodified.

\section*{Neighborhood and Block Operations}

This chapter discusses these generic block processing functions. Topics covered include

Terminology (p. 6-2)

Block Processing Operations (p. 6-3)

Sliding Neighborhood Operations (p. 6-4)

Distinct Block Operations (p. 6-8)
Column Processing (p. 6-11)

Provides definitions of image processing terms used in this section

Provides an overview of the types of block processing operations supported by the toolbox

Defines sliding neighborhood operations and describes how you can use them to implement many types of filtering operations
Describes block operations
Describes how to process sliding neighborhoods or distinct blocks as columns

\section*{Terminology}

An understanding of the following terms will help you to use this section.
\begin{tabular}{ll}
\hline Term & Definition \\
\hline block operation & \begin{tabular}{l} 
Operation in which an image is processed in \\
blocks rather than all at once. The blocks have \\
the same size across the image. Some operation \\
is applied to one block at a time. The blocks are \\
reassembled to form an output image.
\end{tabular} \\
\hline border padding & \begin{tabular}{l} 
Additional rows and columns temporarily \\
added to the border(s) of an image when some of \\
the blocks extend outside the image. The \\
additional rows and columns normally contain \\
zeros.
\end{tabular} \\
\hline center pixel & \begin{tabular}{l} 
Pixel at the center of a neighborhood.
\end{tabular} \\
\hline column processing & \begin{tabular}{l} 
Operation in which neighborhoods are reshaped \\
into columns before processing in order to speed \\
up computation time.
\end{tabular} \\
\hline distinct block & \begin{tabular}{l} 
Block operation in which the blocks do not \\
overlap.
\end{tabular} \\
operation & \begin{tabular}{l} 
Operation in which each output pixel is \\
computed from a set of neighboring input \\
pixels. Convolution, dilation, and median \\
filtering are examples of neighborhood \\
operations. A neighborhood operation can also \\
be called a sliding neighborhood operation.
\end{tabular} \\
\hline neighborhood & \begin{tabular}{l} 
Extra rows and columns of pixels outside a \\
operation
\end{tabular} \\
plock whose values are taken into account when \\
processing the block. These extra pixels cause \\
distinct blocks to overlap one another. The \\
blkproc function enables you to specify an \\
overlap.
\end{tabular}

\section*{Block Processing Operations}

Certain image processing operations involve processing an image in sections called blocks, rather than processing the entire image at once. The Image Processing Toolbox provides several functions for specific operations that work with blocks, for example, the imdilate function for image dilation. In addition, the toolbox provides more generic functions for processing an image in blocks. This section discusses these generic block processing functions.

To use one of the functions, you supply information about the size of the blocks, and specify a separate function to use to process the blocks. The block processing function does the work of breaking the input image into blocks, calling the specified function for each block, and reassembling the results into an output image.

\section*{Types of Block Processing Operations}

Using these functions, you can perform various block processing operations, including sliding neighborhood operations and distinct block operations:
- In a sliding neighborhood operation, the input image is processed in a pixelwise fashion. That is, for each pixel in the input image, some operation is performed to determine the value of the corresponding pixel in the output image. The operation is based on the values of a block of neighboring pixels.
- In a distinct block operation, the input image is processed a block at a time. That is, the image is divided into rectangular blocks, and some operation is performed on each block individually to determine the values of the pixels in the corresponding block of the output image.

In addition, the toolbox provides functions for column processing operations. These operations are not actually distinct from block operations; instead, they are a way of speeding up block operations by rearranging blocks into matrix columns.

Note that even if you do not use these block processing functions, the information here might be useful to you, as it includes concepts fundamental to many areas of image processing. In particular, the discussion of sliding neighborhood operations is applicable to linear filtering and morphological operations. See Chapter 7, "Linear Filtering and Filter Design," and Chapter 9, "Morphological Operations," for information about these applications.

\section*{Sliding Neighborhood Operations}

A sliding neighborhood operation is an operation that is performed a pixel at a time, with the value of any given pixel in the output image being determined by the application of an algorithm to the values of the corresponding input pixel's neighborhood. A pixel's neighborhood is some set of pixels, defined by their locations relative to that pixel, which is called the center pixel. The neighborhood is a rectangular block, and as you move from one element to the next in an image matrix, the neighborhood block slides in the same direction.

The following figure shows the neighborhood blocks for some of the elements in a 6 -by- 5 matrix with 2 -by- 3 sliding blocks. The center pixel for each neighborhood is marked with a dot.


\section*{Neighborhood Blocks in a 6-by-5 Matrix}

The center pixel is the actual pixel in the input image being processed by the operation. If the neighborhood has an odd number of rows and columns, the center pixel is actually in the center of the neighborhood. If one of the dimensions has even length, the center pixel is just to the left of center or just above center. For example, in a 2-by-2 neighborhood, the center pixel is the upper left one.
For any m-by-n neighborhood, the center pixel is
```

floor(([m n]+1)/2)

```

In the 2 -by- 3 block shown in Figure , the center pixel is (1,2), or the pixel in the second column of the top row of the neighborhood.

To perform a sliding neighborhood operation,
1 Select a single pixel.
2 Determine the pixel's neighborhood.
3 Apply a function to the values of the pixels in the neighborhood. This function must return a scalar.

4 Find the pixel in the output image whose position corresponds to that of the center pixel in the input image. Set this output pixel to the value returned by the function.

5 Repeat steps 1 through 4 for each pixel in the input image.
For example, the function might be an averaging operation that sums the values of the neighborhood pixels and then divides the result by the number of pixels in the neighborhood. The result of this calculation is the value of the output pixel.

\section*{Padding Borders}

As the neighborhood block slides over the image, some of the pixels in a neighborhood might be missing, especially if the center pixel is on the border of the image. For example, if the center pixel is the pixel in the upper left corner of the image, the neighborhoods include pixels that are not part of the image.

To process these neighborhoods, sliding neighborhood operations pad the borders of the image, usually with 0's. In other words, these functions process the border pixels by assuming that the image is surrounded by additional rows and columns of 0 's. These rows and columns do not become part of the output image and are used only as parts of the neighborhoods of the actual pixels in the image.

\section*{Linear and Nonlinear Filtering}

You can use sliding neighborhood operations to implement many kinds of filtering operations. One example of a sliding neighbor operation is convolution, which is used to implement linear filtering. MATLAB provides the conv and filter2 functions for performing convolution, and the toolbox
provides the imfilter function. See Chapter 7, "Linear Filtering and Filter Design," for more information about these functions.

In addition to convolution, there are many other filtering operations you can implement through sliding neighborhoods. Many of these operations are nonlinear in nature. For example, you can implement a sliding neighborhood operation where the value of an output pixel is equal to the standard deviation of the values of the pixels in the input pixel's neighborhood.

You can use the nlfilter function to implement a variety of sliding neighborhood operations. nlfilter takes as input arguments an image, a neighborhood size, and a function that returns a scalar, and returns an image of the same size as the input image. The value of each pixel in the output image is computed by passing the corresponding input pixel's neighborhood to the function. For example, this call computes each output pixel by taking the standard deviation of the values of the input pixel's 3 -by- 3 neighborhood (that is, the pixel itself and its eight contiguous neighbors).
```

I2 = nlfilter(I,[3 3],'std2');

```

You can write an M-file to implement a specific function, and then use this function with nlfilter. For example, this command processes the matrix I in 2-by-3 neighborhoods with a function called myfun.m.
```

nlfilter(I,[2 3],@myfun);

```
@myfun is an example of a function handle. You can also use an inline function. For example:
```

f = inline('sqrt(min(x(:)))');
I2 = nlfilter(I,[2 2],f);

```

The example below uses nlfilter to set each pixel to the maximum value in its 3-by-3 neighborhood.
```

I = imread('tire.tif');
f = inline('max(x(:))');
I2 = nlfilter(I,[3 3],f);
imshow(I);
figure, imshow(I2);

```


\section*{Each Output Pixel Set to Maximum Input Neighborhood Value}

Many operations that nlfilter can implement run much faster if the computations are performed on matrix columns rather than rectangular neighborhoods. For information about this approach, see the reference page for colfilt.

Note nlfilter is an example of a "function function." For more information on how to use this kind of function, see "Function Functions" in the MATLAB documentation. For more information on inline functions, see inline in the MATLAB Function Reference documentation. For more information on function handles, see function_handle in the MATLAB Function Reference documentation.

\section*{Distinct Block Operations}

Distinct blocks are rectangular partitions that divide a matrix into m-by-n sections. Distinct blocks overlay the image matrix starting in the upper left corner, with no overlap. If the blocks don't fit exactly over the image, the toolbox adds zero padding so that they do. The following figure shows a 15-by- 30 matrix divided into 4 -by- 8 blocks.


\section*{Image Divided into Distinct Blocks}

The zero padding process adds 0 's to the bottom and right of the image matrix, as needed. After zero padding, the matrix is size 16 -by- 32 .

The function blkproc performs distinct block operations. blkproc extracts each distinct block from an image and passes it to a function you specify. blkproc assembles the returned blocks to create an output image.
For example, the command below processes the matrix I in 4-by-6 blocks with the function myfun.
```

I2 = blkproc(I,[4 6],@myfun);

```

You can specify the function as an inline function. For example:
```

f = inline('mean2(x)*ones(size(x))');
I2 = blkproc(I,[4 6],f);

```

The example below uses blkproc to set every pixel in each 8-by-8 block of an image matrix to the average of the elements in that block.
```

I = imread('tire.tif');
f = inline('uint8(round(mean2(x)*ones(size(x))))');
I2 = blkproc(I,[8 8],f);
imshow(I)
figure, imshow(I2);

```


Notice that inline computes the mean of the block and then multiplies the result by a matrix of ones, so that the output block is the same size as the input block. As a result, the output image is the same size as the input image. blkproc does not require that the images be the same size; however, if this is the result you want, you must make sure that the function you specify returns blocks of the appropriate size.

Note blkproc is an example of a "function function." For more information on how to use this kind of function, see the "Function Functions" section in the MATLAB documentation.

\section*{Overlap}

When you call blkproc to define distinct blocks, you can specify that the blocks overlap each other, that is, you can specify extra rows and columns of pixels outside the block whose values are taken into account when processing the block. When there is an overlap, blkproc passes the expanded block (including the overlap) to the specified function.

The following figure shows the overlap areas for some of the blocks in a 15 -by- 30 matrix with 1-by-2 overlaps. Each 4-by-8 block has a one-row overlap above and below, and a two-column overlap on each side. In the figure, shading indicates the overlap. The 4 -by- 8 blocks overlay the image matrix starting in the upper left corner.


\section*{Image Divided into Distinct Blocks with Specified Overlaps}

To specify the overlap, you provide an additional input argument to blkproc. To process the blocks in the figure above with the function myfun, the call is
```

B = blkproc(A,[4 8],[1 2],@myfun)

```

Overlap often increases the amount of zero padding needed. For example, in the figure, the original 15 -by- 30 matrix became a 16 -by- 32 matrix with zero padding. When the 15 -by- 30 matrix includes a 1 -by- 2 overlap, the padded matrix becomes an 18 -by- 36 matrix. The outermost rectangle in the figure delineates the new boundaries of the image after padding has been added to accommodate the overlap plus block processing. Notice that in the preceding figure, padding has been added to the left and top of the original image, not just to the right and bottom.

\section*{Column Processing}

The toolbox provides functions that you can use to process sliding neighborhoods or distinct blocks as columns. This approach is useful for operations that MATLAB performs columnwise; in many cases, column processing can reduce the execution time required to process an image.

For example, suppose the operation you are performing involves computing the mean of each block. This computation is much faster if you first rearrange the blocks into columns, because you can compute the mean of every column with a single call to the mean function, rather than calling mean for each block individually.

You can use the colfilt function to implement column processing. This function

1 Reshapes each sliding or distinct block of an image matrix into a column in a temporary matrix

2 Passes the temporary matrix to a function you specify
3 Rearranges the resulting matrix back into the original shape

\section*{Sliding Neighborhoods}

For a sliding neighborhood operation, colfilt creates a temporary matrix that has a separate column for each pixel in the original image. The column corresponding to a given pixel contains the values of that pixel's neighborhood from the original image.

The following figure illustrates this process. In this figure, a 6-by- 5 image matrix is processed in 2-by-3 neighborhoods. colfilt creates one column for each pixel in the image, so there are a total of 30 columns in the temporary matrix. Each pixel's column contains the value of the pixels in its neighborhood, so there are six rows. colfilt zero-pads the input image as necessary. For example, the neighborhood of the upper left pixel in the figure has two zero-valued neighbors, due to zero padding.

colfilt Creates a Temporary Matrix for Sliding Neighborhood
The temporary matrix is passed to a function, which must return a single value for each column. (Many MATLAB functions work this way, for example, mean, median, std, sum, etc.) The resulting values are then assigned to the appropriate pixels in the output image.
colfilt can produce the same results as nlfilter with faster execution time; however, it might use more memory. The example below sets each output pixel to the maximum value in the input pixel's neighborhood, producing the same result as the nlfilter example shown in "Linear and Nonlinear Filtering" on page 6-5.
I2 = colfilt(I,[3 3],'sliding', @max);

\section*{Distinct Blocks}

For a distinct block operation, colfilt creates a temporary matrix by rearranging each block in the image into a column. colfilt pads the original image with 0 's, if necessary, before creating the temporary matrix.
The following figure illustrates this process. A 6-by-16 image matrix is processed in 4-by-6 blocks. colfilt first zero-pads the image to make the size 8 -by-18 (six 4-by-6 blocks), and then rearranges the blocks into six columns of 24 elements each.

colfilt Creates a Temporary Matrix for Distinct Block Operation
After rearranging the image into a temporary matrix, colfilt passes this matrix to the function. The function must return a matrix of the same size as the temporary matrix. If the block size is m-by-n, and the image is mm-by-nn, the size of the temporary matrix is \((m * n)\)-by- \((\operatorname{ceil}(m m / m) * \operatorname{ceil}(n n / n))\). After the function processes the temporary matrix, the output is rearranged into the shape of the original image matrix.

This example sets all the pixels in each 8 -by- 8 block of an image to the mean pixel value for the block, producing the same result as the blkproc example in "Distinct Block Operations" on page 6-8.
```

I = im2double(imread('tire.tif'));
f = inline('ones(64,1)*mean(x)');
I2 = colfilt(I,[8 8],'distinct',f);

```

Notice that the inline function computes the mean of the block and then multiplies the result by a vector of ones, so that the output block is the same size as the input block. As a result, the output image is the same size as the input image.

\section*{Restrictions}

You can use colfilt to implement many of the same distinct block operations that blkproc performs. However, colfilt has certain restrictions that blkproc does not:
- The output image must be the same size as the input image.
- The blocks cannot overlap.

For situations that do not satisfy these constraints, use blkproc.

\section*{Linear Filtering and Filter Design}

The Image Processing Toolbox provides a number of functions for designing and implementing two-dimensional linear filters for image data. This chapter describes these functions and how to use them effectively.

Terminology (p. 7-2)

Linear Filtering (p. 7-4)

Filter Design (p. 7-17)

Provides definitions of image processing terms used in this section
Provides an explanation of linear filtering and how it is implemented in the toolbox. This topic describes filtering in terms of the spatial domain, and is accessible to anyone doing image processing.
Discusses designing two-dimensional finite impulse response (FIR) filters. This section assumes you are familiar with working in the frequency domain.

\section*{Terminology}

An understanding of the following terms will help you to use this chapter. Note that this table includes brief definitions of terms related to filter design; a detailed discussion of these terms and the theory behind filter design is outside the scope of this user's guide.
\begin{tabular}{l|l}
\hline Term & Definition \\
\hline convolution & \begin{tabular}{l} 
Neighborhood operation in which each output pixel is a weighted \\
sum of neighboring input pixels. The weights are defined by the \\
convolution kernel. Image processing operations implemented with \\
convolution include smoothing, sharpening, and edge enhancement.
\end{tabular} \\
\hline convolution kernel & \begin{tabular}{l} 
Matrix of weights used to perform convolution. A convolution kernel \\
is a correlation kernel that has been rotated 180 degrees.
\end{tabular} \\
\hline correlation & \begin{tabular}{l} 
Neighborhood operation in which each output pixel is a weighted \\
sum of neighboring input pixels. The weights are defined by the \\
correlation kernel. Correlation is closely related mathematically to \\
convolution.
\end{tabular} \\
\hline correlation kernel & \begin{tabular}{l} 
Matrix of weights used to perform correlation. The filter design \\
functions in the Image Processing Toolbox return correlation \\
kernels. A correlation kernel is a convolution kernel that has been \\
rotated 180 degrees.
\end{tabular} \\
\hline FIR filter & \begin{tabular}{l} 
Filter whose response to a single point, or impulse, has finite extent. \\
FIR stands for finite impulse response. An FIR filter can be \\
implemented using convolution. All filter design functions in the
\end{tabular} \\
\hline Image Processing Toolbox return FIR filters.
\end{tabular}
\begin{tabular}{l|l}
\hline Term & Definition \\
\hline ripples & \begin{tabular}{l} 
Oscillations around a constant value. The frequency response of a \\
practical filter often has ripples where the frequency response of an \\
ideal filter is flat.
\end{tabular} \\
\hline window method & \begin{tabular}{l} 
Filter design method that multiples the ideal impulse response by a \\
window function, which tapers the ideal impulse response. The \\
resulting filter's frequency response approximates a desired \\
frequency response.
\end{tabular} \\
\hline
\end{tabular}

\section*{Linear Filtering}

Filtering is a technique for modifying or enhancing an image. For example, you can filter an image to emphasize certain features or remove other features.

Filtering is a neighborhood operation, in which the value of any given pixel in the output image is determined by applying some algorithm to the values of the pixels in the neighborhood of the corresponding input pixel. A pixel's neighborhood is some set of pixels, defined by their locations relative to that pixel. (See Chapter 6, "Neighborhood and Block Operations," for a general discussion of neighborhood operations.)

Linear filtering is filtering in which the value of an output pixel is a linear combination of the values of the pixels in the input pixel's neighborhood.
This section discusses linear filtering in MATLAB and the Image Processing Toolbox. It includes
- A description of filtering, using convolution and correlation
- A description of how to use the imfilter function to perform filtering
- A discussion about using predefined filter types

See "Filter Design" on page 7-17 for information about how to design filters.

\section*{Convolution}

Linear filtering of an image is accomplished through an operation called convolution. In convolution, the value of an output pixel is computed as a weighted sum of neighboring pixels. The matrix of weights is called the convolution kernel, also known as the filter.

For example, suppose the image is
\(A=\left[\begin{array}{rrrrr}17 & 24 & 1 & 8 & 15 \\ 23 & 5 & 7 & 14 & 16 \\ 4 & 6 & 13 & 20 & 22 \\ 10 & 12 & 19 & 21 & 3 \\ 11 & 18 & 25 & 2 & 9]\end{array}\right.\)
and the convolution kernel is
\[
\left.\mathrm{h}=\begin{array}{rll}
{[8} & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2
\end{array}\right]
\]

The following figure shows how to compute the \((2,4)\) output pixel using these steps:

1 Rotate the convolution kernel 180 degrees about its center element.
2 Slide the center element of the convolution kernel so that it lies on top of the \((2,4)\) element of A.

3 Multiply each weight in the rotated convolution kernel by the pixel of A underneath.

4 Sum the individual products from step 3.
Hence the \((2,4)\) output pixel is
\[
1 \cdot 2+8 \cdot 9+15 \cdot 4+7 \cdot 7+14 \cdot 5+16 \cdot 3+13 \cdot 6+20 \cdot 1+22 \cdot 8=575
\]


\section*{Computing the \((2,4)\) Output of Convolution}

\section*{Correlation}

The operation called correlation is closely related to convolution. In correlation, the value of an output pixel is also computed as a weighted sum of neighboring pixels. The difference is that the matrix of weights, in this case called the correlation kernel, is not rotated during the computation. The following figure shows how to compute the \((2,4)\) output pixel of the correlation of A, assuming \(h\) is a correlation kernel instead of a convolution kernel, using these steps:

1 Slide the center element of the correlation kernel so that lies on top of the \((2,4)\) element of A.

2 Multiply each weight in the correlation kernel by the pixel of A underneath.
3 Sum the individual products from step 3.
The \((2,4)\) output pixel from the correlation is
\[
1 \cdot 8+8 \cdot 1+15 \cdot 6+7 \cdot 3+14 \cdot 5+16 \cdot 7+13 \cdot 4+20 \cdot 9+22 \cdot 2=585
\]


\section*{Computing the \((2,4)\) Output of Correlation}

\section*{Filtering Using imfilter}

Filtering of images, either by correlation or convolution, can be performed using the toolbox function imfilter. This example filters an image with a 5 -by- 5 filter containing equal weights. Such a filter is often called an averaging filter.
```

I = imread('coins.png');
h = ones(5,5) / 25;
I2 = imfilter(I,h);
imshow(I), title('Original Image');
figure, imshow(I2), title('Filtered Image')

```


Original Image


Filtered Image

\section*{Data Types}

The imfilter function handles data types similarly to the way the image arithmetic functions do, as described in "Image Arithmetic Truncation Rules" on page 2-30. The output image has the same data type, or numeric class, as the input image. The imfilter function computes the value of each output pixel using double-precision, floating-point arithmetic. If the result exceeds the range of the data type, the imfilter function truncates the result to that data type's allowed range. If it is an integer data type, imfilter rounds fractional values.

Because of the truncation behavior, you might sometimes want to consider converting your image to a different data type before calling imfilter. In this example, the output of imfilter has negative values when the input is of class double.
```

A = magic(5)
A =

17	24	1	8	15
23	5	7	14	16
4	6	13	20	22
10	12	19	21	3
11	18	25	2	9

h = [-1 0 1]
h =
-1 0
imfilter(A,h)
ans =

24	-16	-16	14	-8
5	-16	9	9	-14

6	9	14	9	-20

18

```

Notice that the result has negative values. Now suppose A is of class uint8, instead of double.
```

A = uint8(magic(5));
imfilter(A,h)
ans =

24	0	0	14	0
5	0	9	9	0
6	9	14	9	0
12	9	9	0	0
18	14	0	0	0

```

Since the input to imfilter is of class uint8, the output also is of class uint8, and so the negative values are truncated to 0 . In such cases, it might be appropriate to convert the image to another type, such as a signed integer type, single, or double, before calling imfilter.

\section*{Correlation and Convolution Options}

The imfilter function can perform filtering using either correlation or convolution. It uses correlation by default, because the filter design functions, described in "Filter Design" on page 7-17, and the fspecial function, described in "Using Predefined Filter Types" on page 7-15, produce correlation kernels.

However, if you want to perform filtering using convolution instead, you can pass the string 'conv' as an optional input argument to imfilter. For example:
```

A = magic(5);
h = [-1 0 1]
imfilter(A,h) % filter using correlation
ans =
24 -16 -16 14 -8
5 -16
6
12 9 9
18
imfilter(A,h,'conv') % filter using convolution
ans =

-24	16	16	-14	8
-5	16	-9	-9	14
-6	-9	-14	-9	20
-12	-9	-9	16	21
-18	-14	16	16	2

```

\section*{Boundary Padding Options}

When computing an output pixel at the boundary of an image, a portion of the convolution or correlation kernel is usually off the edge of the image, as illustrated in the following figure.


\section*{When the Values of the Kernel Fall Outside the Image}

The imfilter function normally fills in these off-the-edge image pixels by assuming that they are 0 . This is called zero padding and is illustrated in the following figure.


\section*{Zero Padding of Outside Pixels}

When you filter an image, zero padding can result in a dark band around the edge of the image, as shown in this example.
```

I = imread('eight.tif');
h = ones(5,5) / 25;
I2 = imfilter(I,h);
imshow(I), title('Original Image');
figure, imshow(I2), title('Filtered Image with Black Border')

```


To eliminate the zero-padding artifacts around the edge of the image, imfilter offers an alternative boundary padding method called border replication. In border replication, the value of any pixel outside the image is determined by replicating the value from the nearest border pixel. This is illustrated in the following figure.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & \multicolumn{4}{|c|}{These pixel values are replicated from boundary pixels.} \\
\hline & & \multicolumn{4}{|c|}{} \\
\hline & & \multicolumn{4}{|l|}{\(1^{8} \quad 8^{1} \quad 15^{6}\)} \\
\hline 17 & 24 & & \(8^{5}\) & 15 & Center of kernel \\
\hline 23 & 5 & \(7^{4}\) & \[
14^{9}
\] & 16 & \\
\hline 4 & 6 & 13 & 20 & 22 & \\
\hline 10 & 12 & 19 & 21 & 3 & \\
\hline 11 & 18 & 25 & 2 & 9 & \\
\hline
\end{tabular}

\section*{Replicated Boundary Pixels}

To filter using border replication, pass the additional optional argument 'replicate' to imfilter.
```

I3 = imfilter(I,h,'replicate');
figure, imshow(I3);
title('Filtered Image with Border Replication')

```


Filtered Image with Border Replication

The imfilter function supports other boundary padding options, such as 'circular' and 'symmetric'. See the reference page for imfilter for details.

\section*{Multidimensional Filtering}

The imfilter function can handle both multidimensional images and multidimensional filters. A convenient property of filtering is that filtering a three-dimensional image with a two-dimensional filter is equivalent to filtering each plane of the three-dimensional image individually with the same two-dimensional filter. This example shows how easy it is to filter each color plane of a true-color image with the same filter:

1 Read in an RGB image and display it.
```

rgb = imread('peppers.png');

```
imshow(rgb);


2 Filter the image and display it.
h = ones \((5,5) / 25\);
rgb2 = imfilter(rgb,h); figure, imshow(rgb2)


\section*{Relationship to Other Filtering Functions}

MATLAB has several two-dimensional and multidimensional filtering functions. The function filter2 performs two-dimensional correlation, conv2 performs two-dimensional convolution, and convn performs multidimensional
convolution. Each of these filtering functions always converts the input to double, and the output is always double. These other filtering functions always assume the input is zero padded, and they do not support other padding options.

In contrast, the imfilter function does not convert input images to double. The imfilter function also offers a flexible set of boundary padding options, as described in "Boundary Padding Options" on page 7-10.

\section*{Using Predefined Filter Types}

The fspecial function produces several kinds of predefined filters, in the form of correlation kernels. After creating a filter with fspecial, you can apply it directly to your image data using imfilter. This example illustrates applying an unsharp masking filter to an intensity image. The unsharp masking filter has the effect of making edges and fine detail in the image more crisp.
```

I = imread('moon.tif');
h = fspecial('unsharp');
I2 = imfilter(I,h);
imshow(I), title('Original Image')
figure, imshow(I2), title('Filtered Image')

```


Image Courtesy of Michael Myers
Original Image


Filtered Image

\section*{Filter Design}

This section describes working in the frequency domain to design filters. Topics discussed include
- Finite impulse response (FIR) filters, the class of linear filter that the toolbox supports
- The frequency transformation method, which transforms a one-dimensional FIR filter into a two-dimensional FIR filter
- The frequency sampling method, which creates a filter based on a desired frequency response
- The windowing method, which multiplies the ideal impulse response with a window function to generate the filter
- Creating the desired frequency response matrix
- Computing the frequency response of a filter

This section assumes you are familiar with working in the frequency domain. This topic is discussed in many signal processing and image processing textbooks.

Note Most of the design methods described in this section work by creating a two-dimensional filter from a one-dimensional filter or window created using functions from the Signal Processing Toolbox. Although this toolbox is not required, you might find it difficult to design filters in the Image Processing Toolbox if you do not have the Signal Processing Toolbox as well.

\section*{FIR Filters}

The Image Processing Toolbox supports one class of linear filter, the two-dimensional finite impulse response (FIR) filter. FIR filters have several characteristics that make them ideal for image processing in the MATLAB environment:
- FIR filters are easy to represent as matrices of coefficients.
- Two-dimensional FIR filters are natural extensions of one-dimensional FIR filters.
- There are several well-known, reliable methods for FIR filter design.
- FIR filters are easy to implement.
- FIR filters can be designed to have linear phase, which helps prevent distortion.

Another class of filter, the infinite impulse response (IIR) filter, is not as suitable for image processing applications. It lacks the inherent stability and ease of design and implementation of the FIR filter. Therefore, this toolbox does not provide IIR filter support.

\section*{Frequency Transformation Method}

The frequency transformation method transforms a one-dimensional FIR filter into a two-dimensional FIR filter. The frequency transformation method preserves most of the characteristics of the one-dimensional filter, particularly the transition bandwidth and ripple characteristics. This method uses a transformation matrix, a set of elements that defines the frequency transformation.

The toolbox function ftrans2 implements the frequency transformation method. This function's default transformation matrix produces filters with nearly circular symmetry. By defining your own transformation matrix, you can obtain different symmetries. (See Jae S. Lim, Two-Dimensional Signal and Image Processing, 1990, for details.)

The frequency transformation method generally produces very good results, as it is easier to design a one-dimensional filter with particular characteristics than a corresponding two-dimensional filter. For instance, the next example designs an optimal equiripple one-dimensional FIR filter and uses it to create a two-dimensional filter with similar characteristics. The shape of the one-dimensional frequency response is clearly evident in the two-dimensional response.
```

b = remez(10,[0 0.4 0.6 1],[$$
\begin{array}{llll}{1}&{1}&{0}&{0}\end{array}
$$]);
h = ftrans2(b);
[H,w] = freqz(b,1,64,'whole');
colormap(jet(64))
plot(w/pi-1,fftshift(abs(H)))
figure, freqz2(h,[32 32])

```



\section*{One-Dimensional Frequency Response (left) and Corresponding Two-Dimensional Frequency Response (right)}

\section*{Frequency Sampling Method}

The frequency sampling method creates a filter based on a desired frequency response. Given a matrix of points that define the shape of the frequency response, this method creates a filter whose frequency response passes through those points. Frequency sampling places no constraints on the behavior of the frequency response between the given points; usually, the response ripples in these areas.

The toolbox function fsamp2 implements frequency sampling design for two-dimensional FIR filters. fsamp2 returns a filter \(h\) with a frequency response that passes through the points in the input matrix Hd. The example below creates an 11-by- 11 filter using fsamp2 and plots the frequency response of the resulting filter. (The freqz2 function in this example calculates the two-dimensional frequency response of a filter. See "Computing the Frequency Response of a Filter" on page 7-22 for more information.)
```

Hd = zeros(11,11); Hd(4:8,4:8) = 1;
[f1,f2] = freqspace(11,'meshgrid');
mesh(f1,f2,Hd), axis([-1 1 -1 1 0 1.2]), colormap(jet(64))
h = fsamp2(Hd);
figure, freqz2(h,[32 32]), axis([-1 1 -1 1 0 1.2])

```


\section*{Desired Two-Dimensional Frequency Response (left) and Actual Two-Dimensional Frequency Response (right)}

Notice the ripples in the actual frequency response, compared to the desired frequency response. These ripples are a fundamental problem with the frequency sampling design method. They occur wherever there are sharp transitions in the desired response.

You can reduce the spatial extent of the ripples by using a larger filter. However, a larger filter does not reduce the height of the ripples, and requires more computation time for filtering. To achieve a smoother approximation to the desired frequency response, consider using the frequency transformation method or the windowing method.

\section*{Windowing Method}

The windowing method involves multiplying the ideal impulse response with a window function to generate a corresponding filter. Like the frequency sampling method, the windowing method produces a filter whose frequency response approximates a desired frequency response. The windowing method, however, tends to produce better results than the frequency sampling method.

The toolbox provides two functions for window-based filter design, fwind1 and fwind2. fwind1 designs a two-dimensional filter by using a two-dimensional window that it creates from one or two one-dimensional windows that you specify. fwind2 designs a two-dimensional filter by using a specified two-dimensional window directly.
fwind1 supports two different methods for making the two-dimensional windows it uses:
- Transforming a single one-dimensional window to create a two-dimensional window that is nearly circularly symmetric, by using a process similar to rotation
- Creating a rectangular, separable window from two one-dimensional windows, by computing their outer product

The example below uses fwind1 to create an 11-by-11 filter from the desired frequency response Hd. Here, the hamming function from the Signal Processing Toolbox is used to create a one-dimensional window, which fwind1 then extends to a two-dimensional window.
```

Hd = zeros(11,11); Hd(4:8,4:8) = 1;
[f1,f2] = freqspace(11,'meshgrid');
mesh(f1,f2,Hd), axis([-1 1 -1 1 0 1.2]), colormap(jet(64))
h = fwind1(Hd,hamming(11));
figure, freqz2(h,[32 32]), axis([[-1 1 -1 1 1 0 1.2])

```



Desired Two-Dimensional Frequency Response (left) and Actual Two-Dimensional Frequency Response (right)

\section*{Creating the Desired Frequency Response Matrix}

The filter design functions fsamp2, fwind2, and fwind2 all create filters based on a desired frequency response magnitude matrix. You can create an appropriate desired frequency response matrix using the freqspace function.
freqspace returns correct, evenly spaced frequency values for any size response. If you create a desired frequency response matrix using frequency points other than those returned by freqspace, you might get unexpected results, such as nonlinear phase.
For example, to create a circular ideal lowpass frequency response with cutoff at 0.5 , use
```

[f1,f2] = freqspace(25,'meshgrid');
Hd = zeros(25,25); d = sqrt(f1.^2 + f2.^2) < 0.5;
Hd(d) = 1;
mesh(f1,f2,Hd)

```


\section*{Ideal Circular Lowpass Frequency Response}

Note that for this frequency response, the filters produced by fsamp2, fwind1, and fwind2 are real. This result is desirable for most image processing applications. To achieve this in general, the desired frequency response should be symmetric about the frequency origin \((f 1=0, f 2=0)\).

\section*{Computing the Frequency Response of a Filter}

The freqz2 function computes the frequency response for a two-dimensional filter. With no output arguments, freqz2 creates a mesh plot of the frequency response. For example, consider this FIR filter,
\[
\begin{array}{rrr}
\mathrm{h}=\left[\begin{array}{rrr}
0.1667 & 0.6667 & 0.1667 \\
& 0.6667 & -3.3333
\end{array}\right. & 0.6667 \\
& 0.1667 & 0.6667
\end{array}
\]

This command computes and displays the 64-by-64 point frequency response of h.
```

freqz2(h)

```


\section*{Frequency Response of a Two-Dimensional Filter}

To obtain the frequency response matrix H and the frequency point vectors f 1 and f2, use output arguments
\[
[H, f 1, f 2]=\operatorname{freqz2}(h) ;
\]
freqz2 normalizes the frequencies f1 and f2 so that the value 1.0 corresponds to half the sampling frequency, or \(\pi\) radians.

For a simple m-by-n response, as shown above, freqz2 uses the two-dimensional fast Fourier transform function fft2. You can also specify vectors of arbitrary frequency points, but in this case freqz2 uses a slower algorithm.

See "Fourier Transform" on page 8-3 for more information about the fast Fourier transform and its application to linear filtering and filter design.

\section*{Transforms}

The usual mathematical representation of an image is a function of two spatial variables: \(f(x, y)\). The value of the function at a particular location \((x, y)\) represents the intensity of the image at that point. The term transform refers to an alternative mathematical representation of an image.

This chapter defines several important transforms and shows examples of their application to image processing.

Terminology (p. 8-2)

Fourier Transform (p. 8-3)

Discrete Cosine Transform (p. 8-17)

Radon Transform (p. 8-21)

Fan-Beam Projection Data (p. 8-35)

Provides definitions of image processing terms used in this section

Defines the Fourier transform and some of its applications in image processing

Describes the discrete cosine transform (DCT) of an image and its application, particularly in image compression

Describes how the Image Processing Toolbox radon function computes projections of an image matrix along specified directions

Describes how the Image Processing Toolbox radon function computes projections of an image matrix along specified directions

\section*{Terminology}

An understanding of the following terms will help you to use this chapter. Note that this table includes brief definitions of terms related to transforms; a detailed discussion of these terms and the theory behind transforms is outside the scope of this user's guide.
\begin{tabular}{l|l}
\hline Term & Definition \\
\hline discrete transform & \begin{tabular}{l} 
Transform whose input and output values are discrete samples, \\
making it convenient for computer manipulation. Discrete \\
transforms implemented by MATLAB and the Image Processing \\
Toolbox include the discrete Fourier transform (DFT) and the \\
discrete cosine transform (DCT).
\end{tabular} \\
\hline frequency domain & \begin{tabular}{l} 
Domain in which an image is represented by a sum of periodic \\
signals with varying frequency.
\end{tabular} \\
\hline inverse transform & \begin{tabular}{l} 
Operation that when performed on a transformed image produces \\
the original image.
\end{tabular} \\
\hline spatial domain & \begin{tabular}{l} 
Domain in which an image is represented by intensities at given \\
points in space. This is the most common representation for image \\
data.
\end{tabular} \\
\hline transform & \begin{tabular}{l} 
Alternative mathematical representation of an image. For example, \\
the Fourier transform is a representation of an image as a sum of \\
complex exponentials of varying magnitudes, frequencies, and \\
phases. Transforms are useful for a wide range of purposes, \\
including convolution, enhancement, feature detection, and \\
compression.
\end{tabular} \\
\hline
\end{tabular}

\section*{Fourier Transform}

The Fourier transform is a representation of an image as a sum of complex exponentials of varying magnitudes, frequencies, and phases. The Fourier transform plays a critical role in a broad range of image processing applications, including enhancement, analysis, restoration, and compression.

This section includes the following subsections:
- "Definition of Fourier Transform"
- "Discrete Fourier Transform" on page 8-8, including a discussion of fast Fourier transform
- "Applications of the Fourier Transform" on page 8-11 (sample applications using Fourier transforms)

\section*{Definition of Fourier Transform}

If \(f(m, n)\) is a function of two discrete spatial variables \(m\) and \(n\), then the two-dimensional Fourier transform of \(f(m, n)\) is defined by the relationship
\[
F\left(\omega_{1}, \omega_{2}\right)=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(m, n) e^{-j \omega_{1} m} e^{-j \omega_{2} n}
\]

The variables \(\omega_{1}\) and \(\omega_{2}\) are frequency variables; their units are radians per sample. \(F\left(\omega_{1}, \omega_{2}\right)\) is often called the frequency-domain representation of \(f(m, n) . F\left(\omega_{1}, \omega_{2}\right)\) is a complex-valued function that is periodic both in \(\omega_{1}\) and \(\omega_{2}\), with period \(2 \pi\). Because of the periodicity, usually only the range \(-\pi \leq \omega_{1}, \omega_{2} \leq \pi\) is displayed. Note that \(F(0,0)\) is the sum of all the values of \(f(m, n)\). For this reason, \(F(0,0)\) is often called the constant component or DC component of the Fourier transform. (DC stands for direct current; it is an electrical engineering term that refers to a constant-voltage power source, as opposed to a power source whose voltage varies sinusoidally.)

The inverse two-dimensional Fourier transform is given by
\[
f(m, n)=\frac{1}{4 \pi^{2}} \int_{\omega_{1}=-\pi}^{\pi} \int_{\omega_{2}=-\pi}^{\pi} F\left(\omega_{1}, \omega_{2}\right) e^{j \omega_{1} m} e^{j \omega_{2} n} d \omega_{1} d \omega_{2}
\]

Roughly speaking, this equation means that \(f(m, n)\) can be represented as a sum of an infinite number of complex exponentials (sinusoids) with different frequencies. The magnitude and phase of the contribution at the frequencies \(\left(\omega_{1}, \omega_{2}\right)\) are given by \(F\left(\omega_{1}, \omega_{2}\right)\).

\section*{Visualizing the Fourier Transform}

To illustrate, consider a function \(f(m, n)\) that equals 1 within a rectangular region and 0 everywhere else. To simplify the diagram, \(f(m, n)\) is shown as a continuous function, even though the variables \(m\) and \(n\) are discrete.


\section*{Rectangular Function}

The following figure shows, as a mesh plot, the magnitude of the Fourier transform, \(\left|F\left(\omega_{1}, \omega_{2}\right)\right|\), of the rectangular function shown in the preceding figure. The mesh plot of the magnitude is a common way to visualize the Fourier transform.


\section*{Magnitude Image of a Rectangular Function}

The peak at the center of the plot is \(F(0,0)\), which is the sum of all the values in \(f(m, n)\). The plot also shows that \(F\left(\omega_{1}, \omega_{2}\right)\) has more energy at high horizontal frequencies than at high vertical frequencies. This reflects the fact that horizontal cross sections of \(f(m, n)\) are narrow pulses, while vertical cross sections are broad pulses. Narrow pulses have more high-frequency content than broad pulses.

Another common way to visualize the Fourier transform is to display \(\log \left|F\left(\omega_{1}, \omega_{2}\right)\right|\) as an image, as shown.


\section*{Log of the Fourier Transform of a Rectangular Function}

Using the logarithm helps to bring out details of the Fourier transform in regions where \(F\left(\omega_{1}, \omega_{2}\right)\) is very close to 0 .

Examples of the Fourier transform for other simple shapes are shown below.


\section*{Fourier Transforms of Some Simple Shapes}

\section*{Discrete Fourier Transform}

Working with the Fourier transform on a computer usually involves a form of the transform known as the discrete Fourier transform (DFT). There are two principal reasons for using this form:
- The input and output of the DFT are both discrete, which makes it convenient for computer manipulations.
- There is a fast algorithm for computing the DFT known as the fast Fourier transform (FFT).

The DFT is usually defined for a discrete function \(f(m, n)\) that is nonzero only over the finite region \(0 \leq m \leq M-1\) and \(0 \leq n \leq N-1\). The two-dimensional \(M\)-by- \(N\) DFT and inverse \(M\)-by- \(N\) DFT relationships are given by
\[
\begin{array}{ll}
F(p, q)=\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m, n) e^{-j(2 \pi / M) p m} e^{-j(2 \pi / N) q n} & \begin{array}{l}
p=0,1, \ldots, M-1 \\
q
\end{array}=0,1, \ldots, N-1 \\
f(m, n)=\frac{1}{M N} \sum_{p=0}^{M-1} \sum_{q=0}^{N-1} F(p, q) e^{j(2 \pi / M) p m} e^{j(2 \pi / N) q n} & m=0,1, \ldots, M-1 \\
& n=0,1, \ldots, N-1
\end{array}
\]

The values \(F(p, q)\) are the DFT coefficients of \(f(m, n)\). The zero-frequency coefficient, \(F(0,0)\), is often called the "DC component." DC is an electrical engineering term that stands for direct current. (Note that matrix indices in MATLAB always start at 1 rather than 0 ; therefore, the matrix elements \(f(1,1)\) and \(F(1,1)\) correspond to the mathematical quantities \(f(0,0)\) and \(F(0,0)\), respectively.)
The MATLAB functions fft, fft2, and fftn implement the fast Fourier transform algorithm for computing the one-dimensional DFT, two-dimensional DFT, and N-dimensional DFT, respectively. The functions ifft, ifft2, and ifftn compute the inverse DFT.

\section*{Relationship to the Fourier Transform}

The DFT coefficients \(F(p, q)\) are samples of the Fourier transform \(F\left(\omega_{1}, \omega_{2}\right)\).
\[
F(p, q)=\left.F\left(\omega_{1}, \omega_{2}\right)\right|_{\left.\right|_{1}=2 \pi p / M} \quad \begin{aligned}
p=0,1, \ldots, M-1 \\
\omega_{2}=2 \pi q / N
\end{aligned} \quad q=0,1, \ldots, N-1 .
\]

\section*{Example}

1 Construct a matrix \(f\) that is similar to the function \(f(m, n)\) in the example in "Definition of Fourier Transform" on page 8-3. Remember that \(f(m, n)\) is equal to 1 within the rectangular region and 0 elsewhere. Use a binary image to represent \(f(m, n)\).
```

f = zeros(30,30);
f(5:24,13:17) = 1;
imshow(f,'notruesize')

```


2 Compute and visualize the 30 -by- 30 DFT of \(f\) with these commands.
```

F = fft2(f);
F2 = log(abs(F));
imshow(F2,[-1 5],'notruesize'); colormap(jet); colorbar

```


\section*{Discrete Fourier Transform Computed Without Padding}

This plot differs from the Fourier transform displayed in "Visualizing the Fourier Transform" on page 8-4. First, the sampling of the Fourier transform is much coarser. Second, the zero-frequency coefficient is displayed in the upper left corner instead of the traditional location in the center.

3 To obtain a finer sampling of the Fourier transform, add zero padding to f when computing its DFT. The zero padding and DFT computation can be performed in a single step with this command.
```

F = fft2(f,256,256);

```

This command zero-pads f to be 256 -by- 256 before computing the DFT.
```

imshow(log(abs(F)),[-1 5]); colormap(jet); colorbar

```


\section*{Discrete Fourier Transform Computed with Padding}

4 The zero-frequency coefficient, however, is still displayed in the upper left corner rather than the center. You can fix this problem by using the function fftshift, which swaps the quadrants of \(F\) so that the zero-frequency coefficient is in the center.
```

F = fft2(f,256,256);
F2 = fftshift(F);
imshow(log(abs(F2)),[-1 5]); colormap(jet); colorbar

```

The resulting plot is identical to the one shown in "Visualizing the Fourier Transform" on page 8-4.

\section*{Applications of the Fourier Transform}

This section presents a few of the many image processing-related applications of the Fourier transform.

\section*{Frequency Response of Linear Filters}

The Fourier transform of the impulse response of a linear filter gives the frequency response of the filter. The function freqz2 computes and displays a filter's frequency response. The frequency response of the Gaussian
convolution kernel shows that this filter passes low frequencies and attenuates high frequencies.
```

h = fspecial('gaussian');
freqz2(h)

```


\section*{Frequency Response of a Gaussian Filter}

See "Linear Filtering and Filter Design" on page 7-1 for more information about linear filtering, filter design, and frequency responses.

\section*{Fast Convolution}

A key property of the Fourier transform is that the multiplication of two Fourier transforms corresponds to the convolution of the associated spatial functions. This property, together with the fast Fourier transform, forms the basis for a fast convolution algorithm.

Note The FFT-based convolution method is most often used for large inputs. For small inputs it is generally faster to use imfilter.

To illustrate, this example performs the convolution of \(A\) and \(B\), where \(A\) is an M-by-N matrix and B is a P-by-Q matrix:

1 Create two matrices.
A = magic (3);
B = ones(3);
2 Zero-pad A and B so that they are at least (M+P-1)-by-(N+Q-1). (Often A and \(B\) are zero-padded to a size that is a power of 2 because fft 2 is fastest for these sizes.) The example pads the matrices to be 8 -by- 8 .
\(\mathrm{A}(8,8)=0\);
\(B(8,8)=0\);
3 Compute the two-dimensional DFT of A and B using fft2.
4 Multiply the two DFTs together.
5 Compute the inverse two-dimensional DFT of the result using ifft2.
The following code performs steps 3,4 , and 5 in the procedure.
C = ifft2(fft2(A).*fft2(B));
6 Extract the nonzero portion of the result and remove the imaginary part caused by roundoff error.
```

C = C(1:5,1:5);
C = real(C)
C =

```
\begin{tabular}{rrrrr}
8.0000 & 9.0000 & 15.0000 & 7.0000 & 6.0000 \\
11.0000 & 17.0000 & 30.0000 & 19.0000 & 13.0000 \\
15.0000 & 30.0000 & 45.0000 & 30.0000 & 15.0000 \\
7.0000 & 21.0000 & 30.0000 & 23.0000 & 9.0000 \\
4.0000 & 13.0000 & 15.0000 & 11.0000 & 2.0000
\end{tabular}

\section*{Locating Image Features}

The Fourier transform can also be used to perform correlation, which is closely related to convolution. Correlation can be used to locate features within an image; in this context correlation is often called template matching.

This example illustrates how to use correlation to locate occurrences of the letter "a" in an image containing text:

1 Read in the sample image.
```

bw = imread('text.png');

```

2 Create a template for matching by extracting the letter "a" from the image. a = bw(32:45,88:98);

You can also create the template image by using the interactive version of imcrop, using the pixval function to determine the coordinates of features in an image.

The following figure shows both the original image and the template.
```

imshow(bw);
figure, imshow(a);

```

]

\section*{Image (left) and the Template to Correlate (right)}

3 Compute the correlation of the template image a with the original image bw by rotating the template image by \(180^{\circ}\) and then using the FFT-based convolution technique described in "Fast Convolution" on page 8-12. (Convolution is equivalent to correlation if you rotate the convolution kernel by \(180^{\circ}\).) To match the template to the image, use the fft2 and ifft2 functions.
```

C = real(ifft2(fft2(bw) .* fft2(rot90(a,2),256,256)));

```

The following image shows the result of the correlation. Bright peaks in the image correspond to occurrences of the letter.
figure, imshow(C,[]) \% Scale image to appropriate display range.


\section*{Correlated Image}

4 To view the locations of the template in the image, find the maximum pixel value and then define a threshold value that is less than this maximum. The locations of these peaks are indicated by the white spots in the thresholded correlation image. (To make the locations easier to see in this figure, the thresholded image has been dilated to enlarge the size of the points.)
\(\max (\mathrm{C}(:))\)
ans =
68.0000
thresh \(=60\); \% Use a threshold that s a little less than max. figure, imshow(C > thresh)\% Display showing pixels over threshold.


\section*{Correlated, Thresholded Image Showing Template Locations}

\section*{Discrete Cosine Transform}

The discrete cosine transform (DCT) represents an image as a sum of sinusoids of varying magnitudes and frequencies. The dct2 function in the Image Processing Toolbox computes the two-dimensional discrete cosine transform (DCT) of an image. The DCT has the property that, for a typical image, most of the visually significant information about the image is concentrated in just a few coefficients of the DCT. For this reason, the DCT is often used in image compression applications. For example, the DCT is at the heart of the international standard lossy image compression algorithm known as JPEG. (The name comes from the working group that developed the standard: the Joint Photographic Experts Group.)
The two-dimensional DCT of an M-by-N matrix A is defined as follows.
\[
\begin{aligned}
& B_{p q}=\alpha_{p} \alpha_{q} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} A_{m n} \cos \frac{\pi(2 m+1) p}{2 M} \cos \frac{\pi(2 n+1) q}{2 N}, \quad \begin{array}{l}
0 \leq p \leq M-1 \\
0 \leq q \leq N-1
\end{array} \\
& \alpha_{p}=\left\{\begin{array}{ll}
1 / \sqrt{M}, & p=0 \\
\sqrt{2 / M}, & 1 \leq p \leq M-1
\end{array} \quad \alpha_{q}= \begin{cases}1 / \sqrt{N}, & q=0 \\
\sqrt{2 / N}, & 1 \leq q \leq N-1\end{cases} \right.
\end{aligned}
\]

The values \(B_{p q}\) are called the \(D C T\) coefficients of A . (Note that matrix indices in MATLAB always start at 1 rather than 0 ; therefore, the MATLAB matrix elements \(\mathrm{A}(1,1)\) and \(\mathrm{B}(1,1)\) correspond to the mathematical quantities \(A_{00}\) and \(B_{00}\), respectively.)

The DCT is an invertible transform, and its inverse is given by
\[
\begin{aligned}
& A_{m n}=\sum_{p=0}^{M-1} \sum_{q=0}^{N-1} \alpha_{p} \alpha_{q} B_{p q} \cos \frac{\pi(2 m+1) p}{2 M} \cos \frac{\pi(2 n+1) q}{2 N}, \quad \begin{array}{l}
0 \leq m \leq M-1 \\
0 \leq n \leq N-1
\end{array} \\
& \alpha_{p}=\left\{\begin{array}{ll}
1 / \sqrt{M}, & p=0 \\
\sqrt{2 / M}, & 1 \leq p \leq M-1
\end{array} \quad \alpha_{q}= \begin{cases}1 / \sqrt{N}, & q=0 \\
\sqrt{2 / N}, & 1 \leq q \leq N-1\end{cases} \right.
\end{aligned}
\]

The inverse DCT equation can be interpreted as meaning that any M-by-N matrix A can be written as a sum of \(M N\) functions of the form
\[
\begin{array}{ll}
\alpha_{p} \alpha_{q} \cos \frac{\pi(2 m+1) p}{2 M} \cos \frac{\pi(2 n+1) q}{2 N}, & 0 \leq p \leq M-1 \\
& 0 \leq q \leq N-1
\end{array}
\]

These functions are called the basis functions of the DCT. The DCT coefficients \(B_{p q}\), then, can be regarded as the weights applied to each basis function. For 8 -by- 8 matrices, the 64 basis functions are illustrated by this image.


The 64 Basis Functions of an 8-by-8 Matrix
Horizontal frequencies increase from left to right, and vertical frequencies increase from top to bottom. The constant-valued basis function at the upper left is often called the \(D C\) basis function, and the corresponding DCT coefficient \(B_{00}\) is often called the DC coefficient.

\section*{The DCT Transform Matrix}

The Image Processing Toolbox offers two different ways to compute the DCT. The first method is to use the function dct2. dct2 uses an FFT-based algorithm for speedy computation with large inputs. The second method is to use the DCT transform matrix, which is returned by the function dctmtx and might be more
efficient for small square inputs, such as 8 -by- 8 or 16 -by- 16 . The M-by-M transform matrix T is given by
\[
T_{p q}= \begin{cases}\frac{1}{\sqrt{M}} & p=0, \quad 0 \leq q \leq M-1 \\ \sqrt{\frac{2}{M}} \cos \frac{\pi(2 q+1) p}{2 M} & 1 \leq p \leq M-1, \quad 0 \leq q \leq M-1\end{cases}
\]

For an M-by-M matrix A, \(T^{*}\) A is an M-by-M matrix whose columns contain the one-dimensional DCT of the columns of A. The two-dimensional DCT of A can be computed as \(B=T * A * T\). Since \(T\) is a real orthonormal matrix, its inverse is the same as its transpose. Therefore, the inverse two-dimensional DCT of \(B\) is given by \(\mathrm{T}^{\prime *} \mathrm{~B}^{*} \mathrm{~T}\).

\section*{DCT and Image Compression}

In the JPEG image compression algorithm, the input image is divided into 8 -by- 8 or 16-by-16 blocks, and the two-dimensional DCT is computed for each block. The DCT coefficients are then quantized, coded, and transmitted. The JPEG receiver (or JPEG file reader) decodes the quantized DCT coefficients, computes the inverse two-dimensional DCT of each block, and then puts the blocks back together into a single image. For typical images, many of the DCT coefficients have values close to zero; these coefficients can be discarded without seriously affecting the quality of the reconstructed image.

The example code below computes the two-dimensional DCT of 8-by-8 blocks in the input image, discards (sets to zero) all but 10 of the 64 DCT coefficients in each block, and then reconstructs the image using the two-dimensional inverse DCT of each block. The transform matrix computation method is used.
```

I = imread('cameraman.tif');
I = im2double(I);
T = dctmtx(8);
B = blkproc(I,[8 8],'P1*x*P2',T,T');
mask = [$$
\begin{array}{llllllllll}{1}&{1}&{1}&{1}&{0}&{0}&{0}&{0}\end{array}
$$]
1
1}1010
1}0
0
0

```
```

 0
 0}00\mp@code{0
 B2 = blkproc(B,[8 8],'P1.*x',mask);
I2 = blkproc(B2,[8 8],'P1*x*P2',T',T);
imshow(I), figure, imshow(I2)

```


Image Courtesy of MIT


Although there is some loss of quality in the reconstructed image, it is clearly recognizable, even though almost \(85 \%\) of the DCT coefficients were discarded. To experiment with discarding more or fewer coefficients, and to apply this technique to other images, try running the demo function dctdemo.

\section*{Radon Transform}

The radon function in the Image Processing Toolbox computes projections of an image matrix along specified directions. A projection of a two-dimensional function \(f(x, y)\) is a set of line integrals. The radon function computes the line integrals from multiple sources along parallel paths, or beams, in a certain direction. The beams are spaced 1 pixel unit apart. To represent an image, the radon function takes multiple, parallel-beam projections of the image from different angles by rotating the source around the center of the image. The following figure shows a single projection at a specified rotation angle.


Parallel-Beam Projection at Rotation Angle Theta

Note For information about creating projection data from line integrals along paths that radiate from a single source, called fan-beam projections, see "Fan-Beam Projection Data" on page 8-35. To convert parallel-beam projection data to fan-beam projection data, use the para2fan function.

For example, the line integral of \(f(x, y)\) in the vertical direction is the projection of \(f(x, y)\) onto the \(x\)-axis; the line integral in the horizontal direction is the projection of \(f(x, y)\) onto the \(y\)-axis. The following figure shows horizontal and vertical projections for a simple two-dimensional function.


\section*{Horizontal and Vertical Projections of a Simple Function}

Projections can be computed along any angle \(\theta\). In general, the Radon transform of \(f(x, y)\) is the line integral of \(f\) parallel to the \(y^{\prime}\)-axis
\[
R_{\theta}\left(x^{\prime}\right)=\int_{-\infty}^{\infty} f\left(x^{\prime} \cos \theta-y^{\prime} \sin \theta, x^{\prime} \sin \theta+y^{\prime} \cos \theta\right) d y^{\prime}
\]
where
\[
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
\]

The following figure illustrates the geometry of the Radon transform.


\section*{Geometry of the Radon Transform}

This command computes the Radon transform of I for the angles specified in the vector theta.
\[
[R, x p]=\operatorname{radon}(I, \text { theta }) ;
\]

The columns of R contain the Radon transform for each angle in theta. The vector xp contains the corresponding coordinates along the \(x^{\prime}\)-axis. The center pixel of I is defined to be floor \(((\operatorname{size}(\mathrm{I})+1) / 2)\); this is the pixel on the \(x^{\prime}\)-axis corresponding to \(x^{\prime}=0\).

The commands below compute and plot the Radon transform at \(0^{\circ}\) and \(45^{\circ}\) of an image containing a single square object.
```

I = zeros(100,100);

```
```

I(25:75, 25:75) = 1;

```
imshow(I)

[R,xp] = radon(I,[0 45]);
figure; plot(xp,R(:,1)); title('R_\{0^o\} (x\prime)')
figure; plot(xp,R(:,2)); title('R_\{45^o\} (x\prime)')


Two Radon Transforms of a Square Function

Note xp is the same for all projection angles.

The Radon transform for a large number of angles is often displayed as an image. In this example, the Radon transform for the square image is computed at angles from \(0^{\circ}\) to \(180^{\circ}\), in \(1^{\circ}\) increments.
```

theta = 0:180;
[R,xp] = radon(I,theta);

```


\section*{Radon Transform Using 180 Projections}

\section*{Using the Radon Transform to Detect Lines}

The Radon transform is closely related to a common computer vision operation known as the Hough transform. You can use the radon function to implement a form of the Hough transform used to detect straight lines. The steps are

1 Compute a binary edge image using the edge function.
```

I = fitsread('solarspectra.fts');
I = mat2gray(I);
BW = edge(I);
imshow(I), figure, imshow(BW)

```


2 Compute the Radon transform of the edge image.
```

theta = 0:179;
[R,xp] = radon(BW,theta);
figure, imagesc(theta, xp, R); colormap(hot);
xlabel('0 (degrees)'); ylabel('x\prime');
title('R_{0} (x\prime)');
colorbar

```


\section*{Radon Transform of an Edge Image}

3 Find the locations of strong peaks in the Radon transform matrix. The locations of these peaks correspond to the locations of straight lines in the original image.

In the following figure, the strongest peaks in R correspond to \(\theta=1^{\circ}\) and \(x^{\prime}=-80\). The line perpendicular to that angle and located at \(x^{\prime}=-80\) is shown below, superimposed in red on the original image. The Radon transform geometry is shown in black. Notice that the other strong lines parallel to the red line also appear as peaks at \(\theta=1^{\circ}\) in the transform. Also, the lines perpendicular to this line appear as peaks at \(\theta=91^{\circ}\).


\section*{Radon Transform Geometry and the Strongest Peak (Red)}

\section*{Inverse Radon Transform}

The iradon function performs the inverse Radon transform, which is commonly used in tomography applications. This transform inverts the Radon transform (which was introduced in the previous section), and can therefore be used to reconstruct images from projection data.

As described in "Radon Transform" on page 8-21, given an image I and a set of angles theta, the radon function can be used to calculate the Radon transform.
\[
R=\operatorname{radon}(I, \text { theta) } ;
\]

The function iradon can then be called to reconstruct the image I.
```

IR = iradon(R,theta);

```

In the example above, projections are calculated from the original image I. In most application areas, there is no original image from which projections are formed. For example, in X-ray absorption tomography, projections are formed by measuring the attenuation of radiation that passes through a physical specimen at different angles. The original image can be thought of as a cross section through the specimen, in which intensity values represent the density of the specimen. Projections are collected using special purpose hardware, and then an internal image of the specimen is reconstructed by iradon. This allows for noninvasive imaging of the inside of a living body or another opaque object.
iradon reconstructs an image from parallel-beam projections. In parallel-beam geometry, each projection is formed by combining a set of line integrals through an image at a specific angle.

The following figure illustrates how parallel-beam geometry is applied in X-ray absorption tomography. Note that there is an equal number of \(n\) emitters and \(n\) sensors. Each sensor measures the radiation emitted from its corresponding emitter, and the attenuation in the radiation gives a measure of the integrated density, or mass, of the object. This corresponds to the line integral that is calculated in the Radon transform.

The parallel-beam geometry used in the figure is the same as the geometry that was described in "Radon Transform" on page 8-21. \(f(x, y)\) denotes the brightness of the image and \(R_{\theta}\left(x^{\prime}\right)\) is the projection at angle theta.


\section*{Parallel-Beam Projections Through an Object}

Another geometry that is commonly used is fan-beam geometry, in which there is one source and \(n\) sensors. For more information, see "Fan-Beam Projection Data" on page 8-35. To convert parallel-beam projection data into fan-beam projection data, use the para2fan function.

\section*{Improving the Results}
iradon uses the filtered backprojection algorithm to compute the inverse Radon transform. This algorithm forms an approximation of the image I based on the projections in the columns of R. A more accurate result can be obtained by using
more projections in the reconstruction. As the number of projections (the length of theta) increases, the reconstructed image IR more accurately approximates the original image I. The vector theta must contain monotonically increasing angular values with a constant incremental angle \(\Delta \theta\). When the scalar \(\Delta \theta\) is known, it can be passed to iradon instead of the array of theta values. Here is an example.
IR = iradon(R,Dtheta);

The filtered backprojection algorithm filters the projections in \(R\) and then reconstructs the image using the filtered projections. In some cases, noise can be present in the projections. To remove high frequency noise, apply a window to the filter to attenuate the noise. Many such windowed filters are available in iradon. The example call to iradon below applies a Hamming window to the filter. See the iradon reference page for more information.
```

IR = iradon(R,theta,'Hamming');

```
iradon also enables you to specify a normalized frequency, D, above which the filter has zero response. D must be a scalar in the range [0,1]. With this option, the frequency axis is rescaled so that the whole filter is compressed to fit into the frequency range [ \(0, \mathrm{D}\) ]. This can be useful in cases where the projections contain little high-frequency information but there is high-frequency noise. In this case, the noise can be completely suppressed without compromising the reconstruction. The following call to iradon sets a normalized frequency value of 0.85 .
```

IR = iradon(R,theta,0.85);

```

\section*{Example: Reconstructing an Image from Parallel Projection Data}

The commands below illustrate how to reconstruct an image from parallel projection data. The test image is the Shepp-Logan head phantom, which can be generated by the Image Processing Toolbox function phantom. The phantom image illustrates many of the qualities that are found in real-world tomographic imaging of human heads. The bright elliptical shell along the exterior is analogous to a skull, and the many ellipses inside are analogous to brain features.

1 Create a Shepp-Logan head phantom image.
```

P = phantom(256);
imshow(P)

```


2 Compute the Radon transform of the phantom brain for three different sets of theta values. R1 has 18 projections, R2 has 36 projections, and R3 has 90 projections.
```

theta1 = 0:10:170; [R1,xp] = radon(P,theta1);
theta2 = 0:5:175; [R2,xp] = radon(P,theta2);
theta3 = 0:2:178; [R3,xp] = radon(P,theta3);

```

3 Display a plot of one of the Radon transforms of the Shepp-Logan head phantom. The following figure shows R3, the transform with 90 projections.
```

figure, imagesc(theta3,xp,R3); colormap(hot); colorbar
xlabel('0'); ylabel('x\prime');

```


\section*{Radon Transform of Head Phantom Using 90 Projections}

Note how some of the features of the input image appear in this image of the transform. The first column in the Radon transform corresponds to a projection at \(0^{\circ}\) that is integrating in the vertical direction. The centermost column corresponds to a projection at \(90^{\circ}\), which is integrating in the horizontal direction. The projection at \(90^{\circ}\) has a wider profile than the projection at \(0^{\circ}\) due to the larger vertical semiaxis of the outermost ellipse of the phantom.

4 Reconstruct the head phantom image from the projection data created in step 2 and display the results.

I1 \(=\) iradon (R1, 10);
\(\mathrm{I} 2=\operatorname{iradon}(\mathrm{R} 2,5)\);
I3 = iradon (R3,2);
imshow(I1)
figure, imshow(I2)
```

figure, imshow(I3)

```

The following figure shows the results of all three reconstructions. Notice how image I1, which was reconstructed from only 18 projections, is the least accurate reconstruction. Image I2, which was reconstructed from 36 projections, is better, but it is still not clear enough to discern clearly the small ellipses in the lower portion of the image. I3, reconstructed using 90 projections, most closely resembles the original image. Notice that when the number of projections is relatively small (as in I1 and I2), the reconstruction can include some artifacts from the back projection.


I1


I2


I3

Inverse Radon Transforms of the Shepp-Logan Head Phantom

\section*{Fan-Beam Projection Data}

The fanbeam function in the Image Processing Toolbox computes projections of an image matrix along specified directions. A projection of a two-dimensional function \(f(x, y)\) is a set of line integrals. The fanbeam function computes the line integrals along paths that radiate from a single source, forming a fan shape. To represent an image, the fanbeam function takes multiple projections of the image from different angles by rotating the source around the center of the image. The following figure shows a single fan-beam projection at a specified rotation angle.


\section*{Fan-Beam Projection at Rotation Angle Theta}

This section
- Describes how to use the fanbeam function to generate fan-beam projection data
- Describes how to reconstruct an image from fan-beam projection data
- Shows an example that creates a fan-beam projection of an image and then reconstructs the image from the fan-beam projection data

Note For information about creating projection data from line integrals along parallel paths, see "Radon Transform" on page 8-21. To convert fan-beam projection data to parallel-beam projection data, use the fan2para function.

\section*{Computing Fan-Beam Projection Data}

To compute fan-beam projection data, use the fanbeam function. You specify as arguments an image and the distance between the vertex of the fan-beam projections and the center of rotation (the center pixel in the image). The fanbeam function determines the number of beams, based on the size of the image and the settings of fanbeam parameters.

By default, fanbeam positions the sensors along an arc at distance \(D\) from the center of rotation, and spaces the sensors at 1 degree intervals. Using the FanSensorSpacing parameter, you can specify a different angle between each beam. Using the FanSensorGeometry parameter, you can optionally specify that fanbeam position sensors along a straight line, rather than an arc. With this geometry, you specify the spacing between sensors in pixels. In this case, only the sensor aligned with the center pixel is distance \(D\) from the center of rotation.
fanbeam takes projections at different angles by rotating the source around the center pixel at 1 degree intervals. Using the FanRotationIncrement parameter you can specify a different rotation angle increment.

The following figures illustrate both these geometries.
The first figure illustrates geometry used by the fanbeam function when FanSensorGeometry is set to 'arc' (the default). Note how you specify the distance between sensors by specifying the angular spacing of the beams.


\section*{Fan-Beam Projection with Arc Geometry}

The following figure illustrates geometry used by the fanbeam function when FanSensorGeometry is set to 'line'. In this figure, note how you specify the position of the sensors by specifying the distance between them in pixels.


\section*{Fan-Beam Projection with Line Geometry}

\section*{Reconstructing an Image from Fan-Beam Projection Data}

To reconstruct an image from fan-beam projection data, use the ifanbeam function. With this function, you specify as arguments the projection data and the distance between the vertex of the fan-beam projections and the center of rotation when the projection data was created. For example, this code recreates the image \(I\) from the projection data \(P\) and distance \(D\).
\[
I=\text { ifanbeam }(P, D) ;
\]

By default, the ifanbeam function assumes that the fan-beam projection data was created using the arc fan sensor geometry, with beams spaced at 1 degree angles and projections taken at 1 degree increments over a full 360 degree range. As with the fanbeam function, you can use ifanbeam parameters to specify other values for these characteristics of the projection data. Use the same values for these parameters that were used when the projection data was created. For more information about these parameters, see "Computing Fan-Beam Projection Data" on page 8-36.

The ifanbeam function converts the fan-beam projection data to parallel-beam projection data with the fan2para function, and then calls the iradon function to perform the image reconstruction. For this reason, the ifanfeam function supports certain iradon parameters, which it passes to the iradon function. See "Inverse Radon Transform" on page 8-28 for more information about the iradon function.

\section*{Working with Fan-Beam Projection Data}

The commands below illustrate how to use fanbeam and ifanbeam to form projections from a sample image and then reconstruct the image from the projections. The test image is the Shepp-Logan head phantom, which can be generated by the Image Processing Toolbox function phantom. The phantom image illustrates many of the qualities that are found in real-world tomographic imaging of human heads.

1 Generate the test image and display it.
```

P = phantom(256);
imshow(P)

```


2 Compute fan-beam projection data of the test image, using the FanSensorSpacing parameter to vary the sensor spacing. The example uses the fanbeam arc geometry, so you specify the spacing between sensors by specifying the angular spacing of the beams. The first call spaces the beams at 2 degrees; the second at 1 degree; and the third at 0.25 degrees. In each call, the distance between the center of rotation and vertex of the projections is constant at 250 pixels. In addition, fanbeam rotates the projection around the center pixel at 1 degree increments.
```

D = 250;
dsensor1 = 2;
F1 = fanbeam(P,D,'FanSensorSpacing',dsensor1);
dsensor2 = 1;
F2 = fanbeam(P,D,'FanSensorSpacing',dsensor2);
dsensor3 = 0.25
[F3, sensor_pos3, fan_rot_angles3] = fanbeam(P,D,...
'FanSensorSpacing',dsensor3);

```

3 Plot the projection data F3. Because fanbeam calculates projection data at rotation angles from 0 to 360 degrees, the same patterns occur at an offset of 180 degrees. The same features are being sampled from both sides. Compare this plot to the plot of the parallel-beam projection data of the head phantom on page 8-33.
```

figure, imagesc(fan_rot_angles3, sensor_pos3, F3)
colormap(hot); colorbar
xlabel('Fan Rotation Angle (degrees)')
ylabel('Fan Sensor Position (degrees)')

```


4 Reconstruct the image from the fan-beam projection data using if anbeam. In each reconstruction, match the fan sensor spacing with the spacing used when the projection data was created in step 2 . The example uses the OutputSize parameter to constrain the output size of each reconstruction to be the same as the size of the original image \(|P|\).
```

output_size = max(size(P));
Ifan1 = ifanbeam(F1,D,
'FanSensorSpacing',dsensor1,'OutputSize',output_size);
figure, imshow(Ifan1)
Ifan2 = ifanbeam(F2,D,
'FanSensorSpacing',dsensor2,'OutputSize',output_size);
figure, imshow(Ifan2)
Ifan3 = ifanbeam(F3,D,
'FanSensorSpacing',dsensor3,'OutputSize',output_size);

```
```

figure, imshow(Ifan3)

```

The following figure shows the result of each transform. Note how the quality of the reconstruction gets better as the number of beams in the projection increases. The first image, Ifan1, was created using 2 degree spacing of the beams; the second image, ifan2, was created using 1 degree spacing of the beams; the third image, ifan3, was created using 0.25 spacing of the beams.


Ifanl


Ifan2


Ifan3

Reconstruction of the Head Phantom Image from Fan-Beam Projections

\section*{Morphological Operations}

Morphology is a technique of image processing based on shapes. The value of each pixel in the output image is based on a comparison of the corresponding pixel in the input image with its neighbors. By choosing the size and shape of the neighborhood, you can construct a morphological operation that is sensitive to specific shapes in the input image.

This chapter describes the Image Processing Toolbox morphological functions. You can use these functions to perform common image processing tasks, such as contrast enhancement, noise removal, thinning, skeletonization, filling, and segmentation.

Terminology (p. 9-2)

Dilation and Erosion (p. 9-4)

Provides definitions of image processing terms used in this section

Defines the two fundamental morphological operations, dilation and erosion, and some of the morphological image processing operations that are based on combinations of these operations
Morphological Reconstruction (p. 9-19) Describes morphological reconstruction and the toolbox functions that use this type of processing

Describes how to use the bwdist function to compute the distance transform of an image

Describes functions that return information about a binary image
Describes functions that perform lookup table operations

\section*{Terminology}

An understanding of the following terms will help you to use this chapter.
\begin{tabular}{l|l}
\hline Term & Definition \\
\hline background & \begin{tabular}{l} 
In a binary image, pixels that are off, i.e., set to the value 0, \\
are considered the background. When you view a binary \\
image, the background pixels appear black.
\end{tabular} \\
\hline connectivity & \begin{tabular}{l} 
Criteria that describe how pixels in an image form a \\
connected group. For example, a connected component is \\
"8-connected" if diagonally adjacent pixels are considered to \\
be touching; otherwise, it is "4-connected." The toolbox \\
supports 2-D as well as multidimensional connectivities. See \\
"Pixel Connectivity" on page 9-23 for more information.
\end{tabular} \\
\hline foreground & \begin{tabular}{l} 
In a binary image, pixels that are on, i.e., set to the value 1, \\
are considered the foreground. When you view a binary image, \\
the foreground pixels appear white.
\end{tabular} \\
\hline global maxima & \begin{tabular}{l} 
Highest regional maxima in the image. See the entry for \\
regional maxima in this table for more information.
\end{tabular} \\
\hline global minima & \begin{tabular}{l} 
Lowest regional minima in the image. See the entry for \\
regional minima in this table for more information.
\end{tabular} \\
\hline morphology & \begin{tabular}{l} 
A broad set of image processing operations that process \\
images based on shapes. Morphological operations apply a \\
structuring element to an input image, creating an output \\
image of the same size. The most basic morphological \\
operations are dilation and erosion.
\end{tabular} \\
\hline neighborhood & \begin{tabular}{l} 
Set of pixels that are defined by their locations relative to the \\
pixel of interest. A neighborhood can be defined by a \\
structuring element or by specifying a connectivity.
\end{tabular} \\
\hline object & \begin{tabular}{l} 
Set of pixels in a binary image that form a connected group. In \\
the context of this chapter, "object" and "connected \\
component" are equivalent.
\end{tabular} \\
\hline &
\end{tabular}
\begin{tabular}{l|l}
\hline Term & Definition \\
\hline packed binary image & \begin{tabular}{l} 
Method of compressing binary images that can speed up the \\
processing of the image.
\end{tabular} \\
\hline regional maxima & \begin{tabular}{l} 
Connected set of pixels of constant intensity from which it is \\
impossible to reach a point with higher intensity without first \\
descending; that is, a connected component of pixels with the \\
same intensity value, \(t\), surrounded by pixels that all have a \\
value less than \(t\).
\end{tabular} \\
\hline structuring element & \begin{tabular}{l} 
Connected set of pixels of constant intensity from which it is \\
impossible to reach a point with lower intensity without first \\
ascending; that is, a connected component of pixels with the \\
same intensity value, \(t\), surrounded by pixels that all have a \\
value greater than \(t\).
\end{tabular} \\
\hline & \begin{tabular}{l} 
Matrix used to define a neighborhood shape and size for \\
morphological operations, including dilation and erosion. It \\
consists of only 0's and 1's and can have an arbitrary shape \\
and size. The pixels with values of 1 define the neighborhood.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dilation and Erosion}

Dilation and erosion are two fundamental morphological operations. Dilation adds pixels to the boundaries of objects in an image, while erosion removes pixels on object boundaries. The number of pixels added or removed from the objects in an image depends on the size and shape of the structuring element used to process the image.

The following sections
- Provide important background information about how the dilation and erosion functions operate
- Describe structuring elements and how to create them
- Describe how to perform a morphological dilation
- Describe how to perform a morphological erosion
- Describe some of the common operations that are based on dilation and erosion
- Describe toolbox functions that are based on dilation and erosion

To view an extended example that uses morphological processing to solve an image processing problem, see the Image Processing Toolbox watershed segmentation demo.

\section*{Understanding Dilation and Erosion}

In the morphological dilation and erosion operations, the state of any given pixel in the output image is determined by applying a rule to the corresponding pixel and its neighbors in the input image. The rule used to process the pixels defines the operation as a dilation or an erosion. This table lists the rules for both dilation and erosion.

Rules for Grayscale Dilation and Erosion
\begin{tabular}{l|l}
\hline Operation & Rule \\
\hline Dilation & \begin{tabular}{l} 
The value of the output pixel is the maximum value of all \\
the pixels in the input pixel's neighborhood. In a binary \\
image, if any of the pixels is set to the value 1, the output \\
pixel is set to 1.
\end{tabular} \\
\hline Erosion & \begin{tabular}{l} 
The value of the output pixel is the minimum value of all \\
the pixels in the input pixel's neighborhood. In a binary \\
image, if any of the pixels is set to 0, the output pixel is \\
set to 0.
\end{tabular}
\end{tabular}

The following figure illustrates the dilation of a binary image. Note how the structuring element defines the neighborhood of the pixel of interest, which is circled. (See "Structuring Elements" on page 9-7 for more information.) The dilation function applies the appropriate rule to the pixels in the neighborhood and assigns a value to the corresponding pixel in the output image. In the figure, the morphological dilation function sets the value of the output pixel to 1 because one of the elements in the neighborhood defined by the structuring element is on.


\section*{Morphological Dilation of a Binary Image}

The following figure illustrates this processing for a grayscale image. The figure shows the processing of a particular pixel in the input image. Note how the function applies the rule to the input pixel's neighborhood and uses the highest value of all the pixels in the neighborhood as the value of the corresponding pixel in the output image.


\section*{Morphological Dilation of a Grayscale Image}

\section*{Processing Pixels at Image Borders}

Morphological functions position the origin of the structuring element, its center element, over the pixel of interest in the input image. For pixels at the edge of an image, parts of the neighborhood defined by the structuring element can extend past the border of the image.

To process border pixels, the morphological functions assign a value to these undefined pixels, as if the functions had padded the image with additional rows and columns. The value of these padding pixels varies for dilation and erosion operations. The following table describes the padding rules for dilation and erosion for both binary and grayscale images.
\begin{tabular}{l|l}
\multicolumn{2}{l}{ Rules for Padding Images } \\
\hline Operation & Rule \\
\hline Dilation & \begin{tabular}{l} 
Pixels beyond the image border are assigned the \\
minimum value afforded by the data type.
\end{tabular} \\
\hline \begin{tabular}{l} 
For binary images, these pixels are assumed to be set to 0. \\
For grayscale images, the minimum value for uint8 \\
images is 0.
\end{tabular} \\
\hline Erosion & \begin{tabular}{l} 
Pixels beyond the image border are assigned the \\
maximum value afforded by the data type.
\end{tabular} \\
\begin{tabular}{l} 
For binary images, these pixels are assumed to be set to 1. \\
For grayscale images, the maximum value for uint8 \\
images is 255.
\end{tabular} \\
\hline
\end{tabular}

Note By using the minimum value for dilation operations and the maximum value for erosion operations, the toolbox avoids border effects, where regions near the borders of the output image do not appear to be homogeneous with the rest of the image. For example, if erosion padded with a minimum value, eroding an image would result in a black border around the edge of the output image.

\section*{Structuring Elements}

An essential part of the dilation and erosion operations is the structuring element used to probe the input image. Two-dimensional, or flat, structuring elements consist of a matrix of 0's and 1's, typically much smaller than the image being processed. The center pixel of the structuring element, called the origin, identifies the pixel of interest - the pixel being processed. The pixels in the structuring element containing 1's define the neighborhood of the structuring element. These pixels are also considered in dilation or erosion processing. Three-dimensional, or nonflat, structuring elements use 0's and 1's to define the extent of the structuring element in the \(x\) - and \(y\)-planes and add height values to define the third dimension.

\section*{The Origin of a Structuring Element}

The morphological functions use this code to get the coordinates of the origin of structuring elements of any size and dimension.
```

origin = floor((size(nhood)+1)/2)

```
(In this code nhood is the neighborhood defining the structuring element. Because structuring elements are MATLAB objects, you cannot use the size of the STREL object itself in this calculation. You must use the STREL getnhood method to retrieve the neighborhood of the structuring element from the STREL object. For information about other STREL object methods, see the strel function reference page.)
For example, the following illustrates a diamond-shaped structuring element.
Structuring Element
\begin{tabular}{|lllllll|}
\hline 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Origin of a Diamond-Shaped Structuring Element}

\section*{Creating a Structuring Element}

The toolbox dilation and erosion functions accept structuring element objects, called STRELs. You use the strel function to create STRELs of any arbitrary size and shape. The strel function also includes built-in support for many common shapes, such as lines, diamonds, disks, periodic lines, and balls.

Note You typically choose a structuring element the same size and shape as the objects you want to process in the input image. For example, to find lines in an image, create a linear structuring element.

For example, this code creates a flat, diamond-shaped structuring element.
```

se = strel('diamond',3)
se =
Flat STREL object containing 25 neighbors.
Decomposition: 3 STREL objects containing a total of 13 neighbors

```
Neighborhood:
\begin{tabular}{lllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0
\end{tabular}

\section*{Structuring Element Decomposition}

To enhance performance, the strel function might break structuring elements into smaller pieces, a technique known as structuring element decomposition.

For example, dilation by an 11-by-11 square structuring element can be accomplished by dilating first with a 1 -by- 11 structuring element, and then with an 11-by- 1 structuring element. This results in a theoretical speed improvement of a factor of 5.5 , although in practice the actual speed improvement is somewhat less.

Structuring element decompositions used for the 'disk' and 'ball' shapes are approximations; all other decompositions are exact. Decomposition is not used with an arbitrary structuring element unless it is a flat structuring element whose neighborhood is all 1's.

To view the sequence of structuring elements used in a decomposition, use the STREL getsequence method. The getsequence function returns an array of the structuring elements that form the decomposition. For example, here are the structuring elements created in the decomposition of a diamond-shaped structuring element.
```

sel = strel('diamond',4)
sel =
Flat STREL object containing 41 neighbors.
Decomposition: 3 STREL objects containing a total of 13 neighbors

```
```

Neighborhood:

0	0	0	0	1	0	0	0	0
0	0	0	1	1	1	0	0	0
0	0	1	1	1	1	1	0	0
0	1	1	1	1	1	1	1	0
1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	0
0	0	1	1	1	1	1	0	0
0	0	0	1	1	1	0	0	0
0	0	0	0	1	0	0	0	0

seq = getsequence(sel)
seq =
3x1 array of STREL objects
seq(1)
ans =
Flat STREL object containing 5 neighbors.
Neighborhood:

0	1	0
1	1	1
0	1	0

seq(2)
ans =
Flat STREL object containing 4 neighbors.
Neighborhood:

0	1	0
1	0	1
0	1	0

seq(3)
ans =
Flat STREL object containing 4 neighbors.
Neighborhood:
0

```
\begin{tabular}{lllll}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{tabular}

\section*{Dilating an Image}

To dilate an image, use the imdilate function. The imdilate function accepts two primary arguments:
- The input image to be processed (grayscale, binary, or packed binary image)
- A structuring element object, returned by the strel function, or a binary matrix defining the neighborhood of a structuring element
imdilate also accepts two optional arguments: PADOPT and PACKOPT. The PADOPT argument affects the size of the output image. The PACKOPT argument identifies the input image as packed binary. (See the bwpack reference page for information about binary image packing.)

This example dilates a simple binary image containing one rectangular object.
```

BW = zeros $(9,10)$;
$\operatorname{BW}(4: 6,4: 7)=1$
$B W=$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

```

To expand all sides of the foreground component, the example uses a 3-by-3 square structuring element object. (For more information about using the strel function, see "Structuring Elements" on page 9-7.)
```

SE = strel('square',3)
SE =
Flat STREL object containing 3 neighbors.

```

Neighborhood:
\begin{tabular}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular}

To dilate the image, pass the image BW and the structuring element SE to the imdilate function. Note how dilation adds a rank of 1's to all sides of the foreground object.
```

BW2 = imdilate(BW,SE)
BW2 =

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

```

\section*{Eroding an Image}

To erode an image, use the imerode function. The imerode function accepts two primary arguments:
- The input image to be processed (grayscale, binary, or packed binary image)
- A structuring element object, returned by the strel function, or a binary matrix defining the neighborhood of a structuring element
imerode also accepts three optional arguments: PADOPT, PACKOPT, and M.
The PADOPT argument affects the size of the output image. The PACKOPT argument identifies the input image as packed binary. If the image is packed binary, M identifies the number of rows in the original image. (See the bwpack reference page for more information about binary image packing.)

The following example erodes the binary image circbw.tif:
1 Read the image into the MATLAB workspace.
BW1 = imread('circbw.tif');
2 Create a structuring element. The following code creates a diagonal structuring element object. (For more information about using the strel function, see "Structuring Elements" on page 9-7.)

SE = strel('arbitrary ,eye(5));
SE=
Flat STREL object containing 5 neighbors.
Neighborhood:
\begin{tabular}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{tabular}

3 Call the imerode function, passing the image BW and the structuring element SE as arguments.

BW2 = imerode(BW1,SE);
Notice the diagonal streaks on the right side of the output image. These are due to the shape of the structuring element.
imshow(BW1)
figure, imshow(BW2)


\section*{Combining Dilation and Erosion}

Dilation and erosion are often used in combination to implement image processing operations. For example, the definition of a morphological opening of an image is an erosion followed by a dilation, using the same structuring element for both operations. The related operation, morphological closing of an image, is the reverse: it consists of dilation followed by an erosion with the same structuring element.

The following section uses imdilate and imerode to illustrate how to implement a morphological opening. Note, however, that the toolbox already includes the imopen function, which performs this processing. The toolbox includes functions that perform many common morphological operations. See "Dilation- and Erosion-Based Functions" on page 9-16 for a complete list.

\section*{Morphological Opening}

You can use morphological opening to remove small objects from an image while preserving the shape and size of larger objects in the image. For example, you can use the imopen function to remove all the circuit lines from the original circuit image, circbw.tif, creating an output image that contains only the rectangular shapes of the microchips.

To morphologically open the image, perform these steps:
1 Read the image into the MATLAB workspace.
BW1 = imread('circbw.tif');
2 Create a structuring element.
```

SE = strel('rectangle ,[40 30]);

```

The structuring element should be large enough to remove the lines when you erode the image, but not large enough to remove the rectangles. It should consist of all 1's, so it removes everything but large contiguous patches of foreground pixels.

3 Erode the image with the structuring element.
```

BW2 = imerode(BW1,SE);
imshow(BW2)

```

This removes all the lines, but also shrinks the rectangles.


4 To restore the rectangles to their original sizes, dilate the eroded image using the same structuring element, SE.
```

BW3 = imdilate(BW2,SE);
imshow(BW3)

```


\section*{Dilation- and Erosion-Based Functions}

This section describes two common image processing operations that are based on dilation and erosion:
- Skeletonization
- Perimeter determination

This table lists other functions in the toolbox that perform common morphological operations that are based on dilation and erosion. For more information about these functions, see their reference pages.

\section*{Dilation- and Erosion-Based Functions}
\begin{tabular}{ll}
\hline Function & Morphological Definition \\
\hline bwhitmiss & \begin{tabular}{l} 
Logical AND of an image, eroded with one structuring \\
element, and the image's complement, eroded with a \\
second structuring element.
\end{tabular} \\
\hline imbothat & \begin{tabular}{l} 
Subtracts the original image from a morphologically \\
closed version of the image. Can be used to find \\
intensity troughs in an image.
\end{tabular} \\
\hline imclose & \begin{tabular}{l} 
Dilates an image and then erodes the dilated image \\
using the same structuring element for both operations.
\end{tabular} \\
\hline
\end{tabular}

Dilation- and Erosion-Based Functions
\begin{tabular}{l|l}
\hline Function & Morphological Definition (Continued) \\
\hline imopen & \begin{tabular}{l} 
Erodes an image and then dilates the eroded image \\
using the same structuring element for both operations.
\end{tabular} \\
\hline imtophat & \begin{tabular}{l} 
Subtracts a morphologically opened image from the \\
original image. Can be used to enhance contrast in an \\
image.
\end{tabular} \\
\hline
\end{tabular}

\section*{Skeletonization}

To reduce all objects in an image to lines, without changing the essential structure of the image, use the bwmorph function. This process is known as skeletonization.
BW1 = imread('circbw.tif');
BW2 = bwmorph(BW1,'skel',Inf);
imshow (BW1)
figure, imshow(BW2)


Original Image


Skeletonization of Image

\section*{Perimeter Determination}

The bwperim function determines the perimeter pixels of the objects in a binary image. A pixel is considered a perimeter pixel if it satisfies both of these criteria:
- The pixel is on.
- One (or more) of the pixels in its neighborhood is off.

For example, this code finds the perimeter pixels in a binary image of a circuit board.
```

BW1 = imread('circbw.tif');
BW2 = bwperim(BW1);
imshow(BW1)
figure, imshow(BW2)

```


\section*{Morphological Reconstruction}

Morphological reconstruction is another major part of morphological image processing. Based on dilation, morphological reconstruction has these unique properties:
- Processing is based on two images, a marker and a mask, rather than one image and a structuring element.
- Processing repeats until stability; i.e., the image no longer changes.
- Processing is based on the concept of connectivity, rather than a structuring element.

\section*{This section}
- Provides background information about morphological reconstruction and describes how to use the imreconstruct function
- Describes how pixel connectivity affects morphological reconstruction
- Describes how to use the imfill function, which is based on morphological reconstruction
- Describes a group of functions, all based on morphological reconstruction, that process image extrema, i.e., the areas of high and low intensity in images

\section*{Marker and Mask}

Morphological reconstruction processes one image, called the marker, based on the characteristics of another image, called the mask. The high points, or peaks, in the marker image specify where processing begins. The processing continues until the image values stop changing.

To illustrate morphological reconstruction, consider this simple image. It contains two primary regions, the blocks of pixels containing the values 14 and 18. The background is primarily all set to 10 , with some pixels set to 11 .
\(A=\left[\begin{array}{llllllllll}10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 ; \\ 10 & 14 & 14 & 14 & 10 & 10 & 11 & 10 & 11 & 10 ; \\ 10 & 14 & 14 & 14 & 10 & 10 & 10 & 11 & 10 & 10 ; \\ 10 & 14 & 14 & 14 & 10 & 10 & 11 & 10 & 11 & 10 ; \\ 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 ; \\ 10 & 11 & 10 & 10 & 10 & 18 & 18 & 18 & 10 & 10 ; \\ 10 & 10 & 10 & 11 & 10 & 18 & 18 & 18 & 10 & 10 ; \\ 10 & 10 & 11 & 10 & 10 & 18 & 18 & 18 & 10 & 10 ; \\ 10 & 11 & 10 & 11 & 10 & 10 & 10 & 10 & 10 & 10 ; \\ 10 & 10 & 10 & 10 & 10 & 10 & 11 & 10 & 10 & 10] ;\end{array}\right.\)

To morphologically reconstruct this image, perform these steps:
1 Create a marker image. As with the structuring element in dilation and erosion, the characteristics of the marker image determine the processing performed in morphological reconstruction. The peaks in the marker image should identify the location of objects in the mask image that you want to emphasize.

One way to create a marker image is to subtract a constant from the mask image, using imsubtract.
```

marker = imsubtract(A,2)
marker =

8	8	8	8	8	8	8	8	8	8
8	12	12	12	8	8	9	8	9	8
8	12	12	12	8	8	8	9	8	8
8	12	12	12	8	8	9	8	9	8
8	8	8	8	8	8	8	8	8	8
8	9	8	8	8	16	16	16	8	8
8	8	8	9	8	16	16	16	8	8
8	8	9	8	8	16	16	16	8	8
8	9	8	9	8	8	8	8	8	8
8	8	8	8	8	8	9	8	8	8

```

2 Call the imreconstruct function to morphologically reconstruct the image. In the output image, note how all the intensity fluctuations except the intensity peak have been removed.
\begin{tabular}{rlllllllll} 
recon \(=\) imreconstruct(marker, mask) \\
recon \(=\) \\
10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 \\
10 & 12 & 12 & 12 & 10 & 10 & 10 & 10 & 10 & 10 \\
10 & 12 & 12 & 12 & 10 & 10 & 10 & 10 & 10 & 10 \\
10 & 12 & 12 & 12 & 10 & 10 & 10 & 10 & 10 & 10 \\
10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 \\
10 & 10 & 10 & 10 & 10 & 16 & 16 & 16 & 10 & 10 \\
10 & 10 & 10 & 10 & 10 & 16 & 16 & 16 & 10 & 10 \\
10 & 10 & 10 & 10 & 10 & 16 & 16 & 16 & 10 & 10 \\
10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 \\
10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10
\end{tabular}

\section*{Understanding Morphological Reconstruction}

Morphological reconstruction can be thought of conceptually as repeated dilations of the marker image until the contour of the marker image fits under the mask image. In this way, the peaks in the marker image "spread out", or dilate.

This figure illustrates this processing in 1-D. Each successive dilation is constrained to lie underneath the mask. When further dilation ceases to change the image, processing stops. The final dilation is the reconstructed image. (Note: the actual implementation of this operation in the toolbox is done much more efficiently. See the imreconstruct reference page for more details.) The figure shows the successive dilations of the marker.


\section*{Repeated Dilations of Marker Image, Constrained by Mask}

\section*{Pixel Connectivity}

Morphological processing starts at the peaks in the marker image and spreads throughout the rest of the image based on the connectivity of the pixels. Connectivity defines which pixels are connected to other pixels.

For example, this binary image contains one foreground object-all the pixels that are set to 1 . If the foreground is 4 -connected, the image has one background object, and all the pixels are set to 0 . However, if the foreground is 8 -connected, the foreground makes a closed loop and the image has two separate background objects: the pixels in the loop and the pixels outside the loop.
\begin{tabular}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}

\section*{Defining Connectivity in an Image}

The following table lists all the standard two- and three-dimensional connectivities supported by the toolbox. See these sections for more information:
- "Choosing a Connectivity"
- "Specifying Custom Connectivities"

\section*{Supported Connectivities}
\begin{tabular}{l|l|l|}
\hline \multicolumn{3}{l}{ Two-Dimensional Connectivities } \\
\hline 4-connected & \begin{tabular}{l} 
Pixels are connected if their edges touch. This \\
means that a pair of adjoining pixels are part of the \\
same object only if they are both on and are \\
connected along the horizontal or vertical direction.
\end{tabular} \\
\hline 8-connected & \begin{tabular}{l} 
Pixels are connected if their edges or corners touch. \\
This means that if two adjoining pixels are on, they \\
are part of the same object, regardless of whether \\
they are connected along the horizontal, vertical, or \\
diagonal direction.
\end{tabular} \\
\hline Three-Dimensional Connectivities & Pixels are connected if their faces touch. \\
\hline 6-connected & & \\
\hline 18-connected & Pixels are connected if their faces or edges touch. \\
\hline 26-connected & \begin{tabular}{l} 
Pixels are connected if their faces, edges, or corners \\
touch.
\end{tabular} \\
\hline
\end{tabular}

\section*{Choosing a Connectivity}

The type of neighborhood you choose affects the number of objects found in an image and the boundaries of those objects. For this reason, the results of many morphology operations often differ depending upon the type of connectivity you specify.

For example, if you specify a 4-connected neighborhood, this binary image contains two objects; if you specify an 8-connected neighborhood, the image has one object.
\begin{tabular}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0
\end{tabular}

\section*{Specifying Custom Connectivities}

You can also define custom neighborhoods by specifying a 3 -by-3-by-...-by-3 array of 0's and 1's. The 1-valued elements define the connectivity of the neighborhood relative to the center element.

For example, this array defines a "North/South" connectivity that has the effect of breaking up an image into independent columns.
```

CONN = [0 1 0; 0 1 0; 0 1 0]
CONN =
0 1 0
0}1
0 1 0

```

Note Connectivity arrays must be symmetric about their center element. Also, you can use a 2-D connectivity array with a 3-D image; the connectivity affects each "page" in the 3-D image.

\section*{Flood-Fill Operations}

The imfill function performs a flood-fill operation on binary and grayscale images. For binary images, imfill changes connected background pixels (0's) to foreground pixels (1's), stopping when it reaches object boundaries. For grayscale images, imfill brings the intensity values of dark areas that are surrounded by lighter areas up to the same intensity level as surrounding pixels. (In effect, imfill removes regional minima that are not connected to the image border. See "Finding Areas of High or Low Intensity" for more information.) This operation can be useful in removing irrelevant artifacts from images.

This section includes information about
- Specifying the connectivity in flood-fill operations
- Specifying the starting point for binary image fill operations
- Filling holes in binary or grayscale images

\section*{Specifying Connectivity}

For both binary and grayscale images, the boundary of the fill operation is determined by the connectivity you specify.

Note imfill differs from the other object-based operations in that it operates on background pixels. When you specify connectivity with imfill, you are specifying the connectivity of the background, not the foreground.

The implications of connectivity can be illustrated with this matrix.
\(B W=\left[\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 ; \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 ; \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 ; \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 ; \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 ; \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 ; \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 ; \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0] ;\end{array}\right.\)

If the background is 4 -connected, this binary image contains two separate background elements (the part inside the loop and the part outside). If the
background is 8 -connected, the pixels connect diagonally, and there is only one background element.

\section*{Specifying the Starting Point}

For binary images, you can specify the starting point of the fill operation by passing in the location subscript or by using imfill in interactive mode, selecting starting pixels with a mouse. See the reference page for imfill for more information about using imfill interactively.

For example, if you call imfill, specifying the pixel BW \((4,3)\) as the starting point, imfill only fills the inside of the loop because, by default, the background is 4-connected.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{ans =} \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
\hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
\hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
\hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
\hline 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

If you specify the same starting point, but use an 8-connected background connectivity, imfill fills the entire image.
\begin{tabular}{llllllll} 
imfill (BW, [4 & \(3], 8)\) \\
ans & \\
\(=\) & & & & & & \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{tabular}

\section*{Filling Holes}

A common use of the flood-fill operation is to fill holes in images. For example, suppose you have an image, binary or grayscale, in which the foreground objects represent spheres. In the image, these objects should appear as disks, but instead are donut shaped because of reflections in the original photograph. Before doing any further processing of the image, you might want to first fill in the "donut holes" using imfill.

Because the use of flood-fill to fill holes is so common, imfill includes special syntax to support it for both binary and grayscale images. In this syntax, you just specify the argument 'holes'; you do not have to specify starting locations in each hole.

To illustrate, this example fills holes in a grayscale image of a spinal column.
```

[X,map] = imread('spine.tif');
I = ind2gray(X,map);
Ifill = imfill(I,'holes');
imshow(I);figure, imshow(Ifill)

```


\section*{Finding Peaks and Valleys}

Grayscale images can be thought of in three dimensions: the \(x\) - and \(y\)-axes represent pixel positions and the \(z\)-axis represents the intensity of each pixel. In this interpretation, the intensity values represent elevations, as in a topographical map. The areas of high intensity and low intensity in an image, peaks and valleys in topographical terms, can be important morphological features because they often mark relevant image objects.

For example, in an image of several spherical objects, points of high intensity could represent the tops of the objects. Using morphological processing, these maxima can be used to identify objects in an image.

This section covers these topics:
- "Understanding the Maxima and Minima Functions"
- "Finding Areas of High or Low Intensity" on page 9-30
- "Suppressing Minima and Maxima" on page 9-31
- "Imposing a Minimum" on page 9-33

\section*{Understanding the Maxima and Minima Functions}

An image can have multiple regional maxima or minima but only a single global maximum or minimum. Determining image peaks or valleys can be used to create marker images that are used in morphological reconstruction.
This figure illustrates the concept in 1-D.


\section*{Finding Areas of High or Low Intensity}

The toolbox includes functions that you can use to find areas of high or low intensity in an image:
- The imregionalmax and imregionalmin functions identify all regional minima or maxima.
- The imextendedmax and imextendedmin functions identify all regional minima or maxima that are greater than or less than a specified threshold.

The functions accept a grayscale image as input and return a binary image as output. In the output binary image, the regional minima or maxima are set to 1 ; all other pixels are set to 0 .

For example, this simple image contains two primary regional maxima, the blocks of pixels containing the value 13 and 18, and several smaller maxima, set to 11 .
\(A=\left[\begin{array}{rlllllllll}10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 ; \\ 10 & 13 & 13 & 13 & 10 & 10 & 11 & 10 & 11 & 10 ; \\ 10 & 13 & 13 & 13 & 10 & 10 & 10 & 11 & 10 & 10 ; \\ 10 & 13 & 13 & 13 & 10 & 10 & 11 & 10 & 11 & 10 ; \\ 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 ; \\ 10 & 11 & 10 & 10 & 10 & 18 & 18 & 18 & 10 & 10 ; \\ 10 & 10 & 10 & 11 & 10 & 18 & 18 & 18 & 10 & 10 ; \\ 10 & 10 & 11 & 10 & 10 & 18 & 18 & 18 & 10 & 10 ; \\ 10 & 11 & 10 & 11 & 10 & 10 & 10 & 10 & 10 & 10 ; \\ 10 & 10 & 10 & 10 & 10 & 10 & 11 & 10 & 10 & 10] ;\end{array}\right.\)

The binary image returned by imregionalmax pinpoints all these regional maxima.


You might want only to identify areas of the image where the change in intensity is extreme; that is, the difference between the pixel and neighboring pixels is greater than (or less than) a certain threshold. For example, to find only those regional maxima in the sample image, \(A\), that are at least two units higher than their neighbors, use imextendedmax.
\begin{tabular}{lllllllllll}
\(\mathrm{B}=\) imextendedmax \((\mathrm{A}, 2)\) \\
\(\mathrm{B}=\) & \\
& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}

\section*{Suppressing Minima and Maxima}

In an image, every small fluctuation in intensity represents a regional minimum or maximum. You might only be interested in significant minima or maxima and not in these smaller minima and maxima caused by background texture.

To remove the less significant minima and maxima but retain the significant minima and maxima, use the imhmax or imhmin function. With these functions,
you can specify a contrast criteria or threshold level, \(h\), that suppresses all maxima whose height is less than \(h\) or whose minima are greater than \(h\).

Note The imregionalmin, imregionalmax, imextendedmin, and imextendedmax functions return a binary image that marks the locations of the regional minima and maxima in an image. The imhmax and imhmin functions produce an altered image.

For example, this simple image contains two primary regional maxima, the blocks of pixels containing the value 14 and 18, and several smaller maxima, set to 11.
\(A=\left[\begin{array}{rlllllllll}10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 ; \\ 10 & 14 & 14 & 14 & 10 & 10 & 11 & 10 & 11 & 10 ; \\ 10 & 14 & 14 & 14 & 10 & 10 & 10 & 11 & 10 & 10 ; \\ 10 & 14 & 14 & 14 & 10 & 10 & 11 & 10 & 11 & 10 ; \\ 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 ; \\ 10 & 11 & 10 & 10 & 10 & 18 & 18 & 18 & 10 & 10 ; \\ 10 & 10 & 10 & 11 & 10 & 18 & 18 & 18 & 10 & 10 ; \\ 10 & 10 & 11 & 10 & 10 & 18 & 18 & 18 & 10 & 10 ; \\ 10 & 11 & 10 & 11 & 10 & 10 & 10 & 10 & 10 & 10 ; \\ 10 & 10 & 10 & 10 & 10 & 10 & 11 & 10 & 10 & 10] ;\end{array}\right.\)

To eliminate all regional maxima except the two significant maxima, use imhmax, specifying a threshold value of 2 . Note that imhmax only affects the maxima; none of the other pixel values are changed. The two significant maxima remain, although their heights are reduced.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{\(B=\operatorname{imhmax}(\mathrm{A}, 2)\)} \\
\hline B \(=10\) & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 \\
\hline 10 & 12 & 12 & 12 & 10 & 10 & 10 & 10 & 10 & 10 \\
\hline 10 & 12 & 12 & 12 & 10 & 10 & 10 & 10 & 10 & 10 \\
\hline 10 & 12 & 12 & 12 & 10 & 10 & 10 & 10 & 10 & 10 \\
\hline 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 \\
\hline 10 & 10 & 10 & 10 & 10 & 16 & 16 & 16 & 10 & 10 \\
\hline 10 & 10 & 10 & 10 & 10 & 16 & 16 & 16 & 10 & 10 \\
\hline 10 & 10 & 10 & 10 & 10 & 16 & 16 & 16 & 10 & 10 \\
\hline 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 \\
\hline 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 \\
\hline
\end{tabular}

This figure takes the second row from the sample image to illustrate in 1-D how imhmax changes the profile of the image.


\section*{Imposing a Minimum}

You can emphasize specific minima (dark objects) in an image using the imimposemin function. The imimposemin function uses morphological reconstruction to eliminate all minima from the image except the minima you specify.

To illustrate the process of imposing a minimum, this code creates a simple image containing two primary regional minima and several other regional minima.
```

mask = uint8(10*ones(10,10));
mask(6:8,6:8) = 2;
mask(2:4,2:4) = 7;

```
```

mask(3,3) = 5;
mask(2,9) = 9
mask(3,8) = 9
mask(9,2) = 9
mask(8,3)=9

mask = 10 | | | | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 10 | 7 | 10 | 7 | 70 | 10 | 10 | 10 | 10 | 10 |
| 10 | 7 | 6 | 7 | 10 | 10 | 10 | 10 | 9 | 10 |
| 10 | 7 | 7 | 7 | 10 | 10 | 10 | 10 | 10 | 10 |
| 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
| 10 | 10 | 10 | 10 | 10 | 2 | 2 | 2 | 10 | 10 |
| 10 | 10 | 10 | 10 | 10 | 2 | 2 | 2 | 10 | 10 |
| 10 | 10 | 9 | 10 | 10 | 2 | 2 | 2 | 10 | 10 |
| 10 | 9 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
| 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |

```

\section*{Creating a Marker Image}

To obtain an image that emphasizes the two deepest minima and removes all others, create a marker image that pinpoints the two minima of interest. You can create the marker image by explicitly setting certain pixels to specific values or by using other morphological functions to extract the features you want to emphasize in the mask image.

This example uses imextendedmin to get a binary image that shows the locations of the two deepest minima.
\begin{tabular}{rlllllllll} 
marker \(=\) \\
marker \(=\) & imextendedmin(mask, 1\()\) \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}

\section*{Applying the Marker Image to the Mask}

Now use imimposemin to create new minima in the mask image at the points specified by the marker image. Note how imimposemin sets the values of pixels specified by the marker image to the lowest value supported by the datatype ( 0 for uint8 values). imimposemin also changes the values of all the other pixels in the image to eliminate the other minima.
\begin{tabular}{rlrrrrrrrr}
\(I=\) \\
\(I=\) & imimposemin(mask, marker) \\
11 & 11 & 11 & 11 & 11 & 11 & 11 & 11 & 11 & 11 \\
11 & 8 & 8 & 8 & 11 & 11 & 11 & 11 & 11 & 11 \\
11 & 8 & 0 & 8 & 11 & 11 & 11 & 11 & 11 & 11 \\
11 & 8 & 8 & 8 & 11 & 11 & 11 & 11 & 11 & 11 \\
11 & 11 & 11 & 11 & 11 & 11 & 11 & 11 & 11 & 11 \\
11 & 11 & 11 & 11 & 11 & 0 & 0 & 0 & 11 & 11 \\
11 & 11 & 11 & 11 & 11 & 0 & 0 & 0 & 11 & 11 \\
11 & 11 & 11 & 11 & 11 & 0 & 0 & 0 & 11 & 11 \\
11 & 11 & 11 & 11 & 11 & 11 & 11 & 11 & 11 & 11 \\
11 & 11 & 11 & 11 & 11 & 11 & 11 & 11 & 11 & 11
\end{tabular}

This figure illustrates in 1-D how imimposemin changes the profile of row 2 of the image.


\section*{Imposing a Minimum}

\section*{Distance Transform}

The distance transform provides a metric or measure of the separation of points in the image. The Image Processing Toolbox provides a function, bwdist, that calculates the distance between each pixel that is set to off \((0)\) and the nearest nonzero pixel for binary images.

The bwdist function supports several distance metrics, listed in the following table.
\begin{tabular}{|c|c|c|c|}
\hline Distance Metric & Description & Illustration & \\
\hline Euclidean & The Euclidean distance is the straight-line distance between two pixels. & \begin{tabular}{l}
\begin{tabular}{|l|l|l|}
\hline 0 & 0 & 0 \\
\hline 0 & 1 & 0 \\
\hline 0 & 0 & 0 \\
\hline
\end{tabular} \begin{tabular}{l} 
Image
\end{tabular} l \\
\hline
\end{tabular} & \begin{tabular}{l}
\begin{tabular}{|l|l|l|}
\hline 1.41 & 1.0 & 1.41 \\
\hline 1.0 & 0.0 & 1.0 \\
\hline 1.41 & 1.0 & 1.41 \\
\hline
\end{tabular} \\
Distance transform
\end{tabular} \\
\hline City Block & The city block distance metric measures the path between the pixels based on a 4-connected neighborhood. Pixels whose edges touch are 1 unit apart; pixels diagonally touching are 2 units apart. & \begin{tabular}{l}
\begin{tabular}{|l|l|l|}
\hline 0 & 9 & 0 \\
\hline 0 & 1 & 0 \\
\hline 0 & 0 & 0 \\
\hline
\end{tabular} \\
Image
\end{tabular} & \begin{tabular}{l}
\begin{tabular}{|l|l|l|}
\hline 2 & 1 & 2 \\
\hline 1 & 0 & 1 \\
\hline 2 & 1 & 2 \\
\hline
\end{tabular} \\
Distance transform
\end{tabular} \\
\hline
\end{tabular}

\section*{Distance Metrics (Continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Distance Metric & Description & \multicolumn{9}{|l|}{Illustration} \\
\hline Chessboard & The chessboard distance metric measures the path between the pixels based on an 8-connected neighborhood. Pixels whose edges or corners touch are 1 unit apart. & \begin{tabular}{|c|}
\hline 0 \\
\hline 0 \\
\hline 0 \\
\hline
\end{tabular} & \[
\begin{array}{|l|}
\hline 1 / \\
\hline \mathrm{e} \\
\hline
\end{array}
\] & \[
\frac{0}{0}
\] & & Dist & tance & \begin{tabular}{l|l|}
1 \\
1 \\
1 \\
\hline
\end{tabular} & \(1{ }_{1}^{1}\) & \\
\hline Quasi-Euclidean & The quasi-Euclidean metric measures the total Euclidean distance along a set of horizontal, vertical, and diagonal line segments. & \begin{tabular}{|c|c|}
\hline 0 & \\
\hline
\end{tabular} & 0 & \begin{tabular}{l|l|l|}
0 & \\
1 & \\
0 & \\
0 & \\
\hline
\end{tabular} & 0
0
0
0
0 & \begin{tabular}{|l|}
\hline 2.8 \\
\hline 2.2 \\
\hline 2.0 \\
\hline 2.2 \\
\hline 2.8 \\
\hline Dista \\
\hline
\end{tabular} & \begin{tabular}{|l|}
\hline 2.2 \\
\hline 1.4 \\
\hline 1.0 \\
\hline 1.4 \\
\hline 2.2 \\
\hline nce \\
\hline
\end{tabular} & \begin{tabular}{|c|c|}
\hline 2.0 \\
\hline 1.0 \\
\hline 0 \\
\hline & 1.0 \\
\hline 2.0 \\
\hline 2.0 \\
\hline trans \\
\hline
\end{tabular} &  & \begin{tabular}{l}
2.8 \\
2.2 \\
2.0 \\
2.2 \\
\hline 2.8 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

This example creates a binary image containing two intersecting circular objects.
```

center1 = -10;
center2 = -center1;
dist = sqrt(2*(2*center1)^2);
radius = dist/2 * 1.4;
lims = [floor(center1-1.2*radius) ceil(center2+1.2*radius)];
[x,y] = meshgrid(lims(1):lims(2));
bw1 = sqrt((x-center1).^2 + (y-center1).^2) <= radius;
bw2 = sqrt((x-center2).^2 + (y-center2).^2) <= radius;
bw = bw1 | bw2;
figure, imshow(bw), title('bw')

```


To compute the distance transform of the complement of the binary image, use the bwdist function. In the image of the distance transform, note how the centers of the two circular areas are white.

D = bwdist(~bw);
figure, imshow(D,[]), title('Distance transform of \(\sim b w ')\)


\section*{Objects, Regions, and Feature Measurement}

The toolbox includes several functions that return information about the features in a binary image, including
- Connected-component labeling, and using the label matrix to get statistics about an image
- Selecting objects in a binary image
- Finding the area of the foreground of a binary image
- Finding the Euler number of a binary image

\section*{Connected-Component Labeling}

The bwlabel and the bwlabeln functions perform connected-component labeling, which is a method for identifying each object in a binary image. The bwlabel function supports 2-D inputs only; the bwlabeln function supports inputs of any dimension.

These functions return a matrix, called a label matrix. A label matrix is an image, the same size as the input image, in which the objects in the input image are distinguished by different integer values in the output matrix. For example, bwlabel can identify the objects in this binary image.
BW = \begin{tabular}{rlllllll}
{\([0\)} & 0 & 0 & 0 & 0 & 0 & 0 & \(0 ;\) \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & \(1 ;\) \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & \(1 ;\) \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & \(0 ;\) \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & \(0 ;\) \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & \(0 ;\) \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & \(0 ;\) \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \(0] ;\)
\end{tabular}
```

X = bwlabel(BW,4)
X =

```
\begin{tabular}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 3 & 3 & 3 \\
0 & 1 & 1 & 0 & 0 & 0 & 3 & 3 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}

In the output matrix, the 1's represent one object, the 2's a second object, and the 3's a third. (If you had used 8-connected neighborhoods (the default), there would be only two objects, because the first and second objects would be a single object, connected along the diagonal.)

\section*{Viewing a Label Matrix}

The label matrix returned by bwlabel or bwlabeln is of class double; it is not a binary image. One way to view it is to display it as a pseudocolor indexed image, using label2rgb. In the pseudocolor image, each number that identifies an object in the label matrix is used as an index value into the associated colormap matrix. When you view a label matrix as an RGB image, the objects in the image are easier to distinguish.

To illustrate this technique, this example uses label2rgb to view the label matrix X. The call to label2rgb specifies one of the standard MATLAB colormaps, jet. The third argument, ' \(k\) ', specifies the background color (black).
```

X = bwlabel(BW1,4);
RGB = label2rgb(X, @jet, 'k');
imshow(RGB,'notruesize')

```


Using Color to Distinguish Objects in a Binary Image

\section*{Selecting Objects in a Binary Image}

You can use the bwselect function to select individual objects in a binary image. You specify pixels in the input image, and bwselect returns a binary image that includes only those objects from the input image that contain one of the specified pixels.

You can specify the pixels either noninteractively or with a mouse. For example, suppose you want to select objects in the image displayed in the current axes. You type
```

BW2 = bwselect;

```

The cursor changes to crosshairs when it is over the image. Click the objects you want to select; bwselect displays a small star over each pixel you click. When you are done, press Return. bwselect returns a binary image consisting of the objects you selected, and removes the stars.

See the reference page for bwselect for more information.

\section*{Finding the Area of the Foreground of a Binary Image}

The bwarea function returns the area of a binary image. The area is a measure of the size of the foreground of the image. Roughly speaking, the area is the number of on pixels in the image.
bwarea does not simply count the number of pixels set to on, however. Rather, bwarea weights different pixel patterns unequally when computing the area. This weighting compensates for the distortion that is inherent in representing a continuous image with discrete pixels. For example, a diagonal line of 50 pixels is longer than a horizontal line of 50 pixels. As a result of the weighting bwarea uses, the horizontal line has area of 50 , but the diagonal line has area of 62.5 .

This example uses bwarea to determine the percentage area increase in circbw.tif that results from a dilation operation.
```

BW = imread('circbw.tif');
SE = ones(5);
BW2 = imdilate(BW,SE);
increase = (bwarea(BW2) - bwarea(BW))/bwarea(BW);
increase =
0.3456

```

See the reference page for bwarea for more information about the weighting pattern.

\section*{Finding the Euler Number of a Binary Image}

The bweuler function returns the Euler number for a binary image. The Euler number is a measure of the topology of an image. It is defined as the total number of objects in the image minus the number of holes in those objects. You can use either 4- or 8-connected neighborhoods.

This example computes the Euler number for the circuit image, using 8 -connected neighborhoods.
```

BW1 = imread('circbw.tif');
eul = bweuler(BW1,8)
eul =
-85

```

In this example, the Euler number is negative, indicating that the number of holes is greater than the number of objects.

\section*{Lookup Table Operations}

Certain binary image operations can be implemented most easily through lookup tables. A lookup table is a column vector in which each element represents the value to return for one possible combination of pixels in a neighborhood.

You can use the makelut function to create lookup tables for various operations. makelut creates lookup tables for 2-by-2 and 3-by-3 neighborhoods. This figure illustrates these types of neighborhoods. Each neighborhood pixel is indicated by an x , and the center pixel is the one with a circle.


2-by-2 neighborhood


3-by-3 neighborhood

For a 2-by-2 neighborhood, there are 16 possible permutations of the pixels in the neighborhood. Therefore, the lookup table for this operation is a 16 -element vector. For a 3-by-3 neighborhood, there are 512 permutations, so the lookup table is a 512 -element vector.

Once you create a lookup table, you can use it to perform the desired operation by using the applylut function.
The example below illustrates using lookup table operations to modify an image containing text. You begin by writing a function that returns 1 if three or more pixels in the 3-by-3 neighborhood are 1; otherwise, it returns 0 . You then call makelut, passing in this function as the first argument, and using the second argument to specify a 3 -by- 3 lookup table.
```

f = inline('sum(x(:)) >= 3');
lut = makelut(f,3);

```
lut is returned as a 512 -element vector of 1's and 0's. Each value is the output from the function for one of the 512 possible permutations.

You then perform the operation using applylut.
```

BW1 = imread('text.png');
BW2 = applylut(BW1,lut);
imshow(BW1)
figure, imshow(BW2)

```


\section*{Image Before and After Applying Lookup Table Operation}

For information about how applylut maps pixel combinations in the image to entries in the lookup table, see the reference page for applylut.

Note You cannot use makelut and applylut for neighborhoods of sizes other than 2 -by- 2 or 3 -by- 3 . These functions support only 2 -by- 2 and 3 -by- 3 neighborhoods, because lookup tables are not practical for neighborhoods larger than 3-by-3. For example, a lookup table for a 4-by-4 neighborhood would have 65,536 entries.

\section*{Analyzing and Enhancing Images}

This chapter describes the Image Processing Toolbox functions that support a range of standard image processing operations for analyzing and enhancing images.

Terminology (p. 10-2)

Pixel Values and Statistics (p. 10-3)

Image Analysis (p. 10-12)

Intensity Adjustment (p. 10-21)

Noise Removal (p. 10-34)

Provides definitions of image processing terms used in this section

Describes the toolbox functions that return information about the data values that make up an image

Describes the toolbox functions that return information about the structure of an image
Describes the toolbox functions used to improve an image by intensity adjustment

Describes the toolbox functions used to improve an image by removing noise

\section*{Terminology}

An understanding of the following terms will help you to use this chapter.
\begin{tabular}{l|l}
\hline Term & Definition \\
\hline adaptive filter & \begin{tabular}{l} 
Filter whose properties vary across an image depending on \\
the local characteristics of the image pixels.
\end{tabular} \\
\hline contour & \begin{tabular}{l} 
Path in an image along which the image intensity values are \\
equal to a constant.
\end{tabular} \\
\hline edge & \begin{tabular}{l} 
Curve that follows a path of rapid change in image intensity. \\
Edges are often associated with the boundaries of objects in a \\
scene. Edge detection is used to identify the edges in an \\
image.
\end{tabular} \\
\hline property & \begin{tabular}{l} 
Quantitative measurement of an image or image region. \\
Examples of image region properties include centroid, \\
bounding box, and area.
\end{tabular} \\
\hline histogram & \begin{tabular}{l} 
Graph used in image analysis that shows the distribution of \\
intensities in an image. You can use the information in a \\
histogram to choose an appropriate enhancement operation. \\
For example, if an image histogram shows that the range of \\
intensity values is small, you can use an intensity adjustment \\
function to spread the values across a wider range.
\end{tabular} \\
\hline noise & \begin{tabular}{l} 
Errors in the image acquisition process that result in pixel \\
values that do not reflect the true intensities of the real scene.
\end{tabular} \\
\hline profile & \begin{tabular}{l} 
Set of intensity values taken from regularly spaced points \\
along a line segment or multiline path in an image. For points \\
that do not fall on the center of a pixel, the intensity values \\
are interpolated.
\end{tabular} \\
\hline quadtree decomposition & \begin{tabular}{l} 
Image analysis technique that partitions an image into \\
homogeneous blocks.
\end{tabular} \\
\hline
\end{tabular}

\section*{Pixel Values and Statistics}

The Image Processing Toolbox provides several functions that return information about the data values that make up an image. These functions return information about image data in various forms, including
- Data values for selected pixels (pixval, impixel)
- Data values along a path in an image (improfile)
- Contour plot of the image data (imcontour)
- Histogram of the image data (imhist)
- Summary statistics for the image data (mean2, std2, corr2)
- Feature measurements for image regions (regionprops)

\section*{Pixel Selection}

The toolbox includes two functions that provide information about the color data values of image pixels you specify:
- The pixval function interactively displays the data values for pixels as you move the cursor over the image. pixval can also display the Euclidean distance between two pixels.
- The impixel function returns the data values for a selected pixel or set of pixels. You can supply the coordinates of the pixels as input arguments, or you can select pixels using a mouse.

Note For indexed images, pixval and impixel both show the RGB values stored in the colormap, not the index values.

To use pixval, you first display an image and then enter the pixval command. pixval installs a black bar at the bottom of the figure, which displays the ( \(\mathrm{x}, \mathrm{y}\) ) coordinates for whatever pixel the cursor is currently over and the color data for that pixel.

If you click the image and hold down the mouse button while you move the cursor, pixval also displays the Euclidean distance between the point you clicked and the current cursor location. pixval draws a line between these
points to indicate the distance being measured. When you release the mouse button, the line and the distance display disappear.
pixval gives you more immediate results than impixel, but impixel has the advantage of returning its results in a variable, and it can be called either interactively or noninteractively. If you call impixel with no input arguments, the cursor changes to crosshairs when it is over the image. You can then click the pixels of interest; impixel displays a small star over each pixel you select. When you are done selecting pixels, press Return. impixel returns the color values for the selected pixels, and the stars disappear.
This example illustrates how to use impixel:
1 Display an image.
imshow canoe.tif
2 Call impixel to select points.
```

vals = impixel

```

Click several points in the image to select pixels. When you are finished selecting points, press Return.


The impixel function returns the pixel values in vals.
\begin{tabular}{lrr} 
vals \(=\) & & \\
0.1294 & 0.1294 & 0.1294 \\
0.5176 & 0 & 0 \\
0.7765 & 0.6118 & 0.4196
\end{tabular}

Notice that the second pixel, which is part of the canoe, is pure red; its green and blue values are both 0 .

\section*{Intensity Profile}

The improfile function calculates and plots the intensity values along a line segment or a multiline path in an image. You can supply the coordinates of the line segments as input arguments, or you can define the desired path using a mouse. In either case, improfile uses interpolation to determine the values of equally spaced points along the path. (By default, improfile uses nearest-neighbor interpolation, but you can specify a different method. For more information, see "Interpolation" on page 4-3.) improfile works best with intensity and RGB images.
For a single line segment, improfile plots the intensity values in a two-dimensional view. For a multiline path, improfile plots the intensity values in a three-dimensional view.

If you call improfile with no arguments, the cursor changes to crosshairs when it is over the image. You can then specify line segments by clicking the endpoints; improfile draws a line between each two consecutive points you select. When you finish specifying the path, press Return. improfile displays the plot in a new figure.

In this example, you call improfile and specify a single line with the mouse. In this figure, the line is shown in red, and is drawn from top to bottom.
```

I = fitsread('solarspectra.fts');
imshow(I,[]);
improfile

```

improfile displays a plot of the data along the line. Notice the peaks and valleys and how they correspond to the light and dark bands in the image.


\section*{Plot Produced by improfile}

The example below shows how improfile works with an RGB image. Use imshow to display the image in a figure window. Call improfile without any arguments and trace a line segment in the image interactively. In the figure,
the black line indicates a line segment drawn from top to bottom. Double-click to end the line segment.
```

imshow peppers.png
improfile

```


\section*{RGB Image with Line Segment Drawn with improfile}

The improfile function displays a plot of the intensity values along the line segment. The plot includes separate lines for the red, green, and blue intensities. In the plot, notice how low the blue values are at the beginning of the plot where the line traverses the orange pepper.


Plot of Intensity Values Along a Line Segment in an RGB Image

\section*{Image Contours}

You can use the toolbox function imcontour to display a contour plot of the data in an intensity image. This function is similar to the contour function in MATLAB, but it automatically sets up the axes so their orientation and aspect ratio match the image.

This example displays an intensity image of grains of rice and a contour plot of the image data:

1 Read an intensity image and display it.
```

I = imread('rice.png');
imshow(I)

```


2 Display a contour plot of the intensity image.
```

figure, imcontour(I,3)

```


You can use the clabel function to label the levels of the contours. See the description of clabel in the MATLAB Function Reference for details.

\section*{Image Histogram}

An image histogram is a chart that shows the distribution of intensities in an indexed or intensity image. The image histogram function imhist creates this plot by making \(n\) equally spaced bins, each representing a range of data values. It then calculates the number of pixels within each range.

The following example displays an image of grains of rice and a histogram based on 64 bins. The histogram shows a peak at around 100, corresponding to the dark gray background in the image. For information about how to modify an image by changing the distribution of its histogram, see "Adjusting Intensity Values to a Specified Range" on page 10-22.

1 Read image and display it.
I = imread('rice.png');
imshow(I)


2 Display histogram of image.
figure, imhist(I)


\section*{Summary Statistics}

You can compute standard statistics of an image using the mean2, std2, and corr2 functions. mean2 and std2 compute the mean and standard deviation of the elements of a matrix. corr2 computes the correlation coefficient between two matrices of the same size.

These functions are two-dimensional versions of the mean, std, and corrcoef functions described in the MATLAB Function Reference.

\section*{Region Property Measurement}

You can use the regionprops function to compute properties for image regions. For example, regionprops can measure such properties as the area, center of mass, and bounding box for a region you specify. See the reference page for regionprops for more information.

\section*{Image Analysis}

Image analysis techniques return information about the structure of an image. This section describes toolbox functions that you can use for these image analysis techniques:
- "Edge Detection"
- "Boundary Tracing" on page 10-13
- "Quadtree Decomposition" on page 10-18

\section*{Edge Detection}

You can use the edge function to detect edges, which are those places in an image that correspond to object boundaries. To find edges, this function looks for places in the image where the intensity changes rapidly, using one of these two criteria:
- Places where the first derivative of the intensity is larger in magnitude than some threshold
- Places where the second derivative of the intensity has a zero crossing
edge provides a number of derivative estimators, each of which implements one of the definitions above. For some of these estimators, you can specify whether the operation should be sensitive to horizontal edges, vertical edges, or both. edge returns a binary image containing 1's where edges are found and 0's elsewhere.

The most powerful edge-detection method that edge provides is the Canny method. The Canny method differs from the other edge-detection methods in that it uses two different thresholds (to detect strong and weak edges), and includes the weak edges in the output only if they are connected to strong edges. This method is therefore less likely than the others to be fooled by noise, and more likely to detect true weak edges.

The following example illustrates the power of the Canny edge detector by showing the results of applying the Sobel and Canny edge detectors to the same image:

1 Read image and display it.
```

I = imread('coins.png');
imshow(I)

```


2 Apply the Sobel and Canny edge detectors to the image and display them.
BW1 = edge(I,'sobel');
BW2 = edge(I,'canny');
imshow(BW1)
figure, imshow(BW2)


Sobel Filter


Canny Filter

For an interactive demonstration of edge detection, try running edgedemo.

\section*{Boundary Tracing}

The toolbox includes two functions you can use to find the boundaries of objects in a binary image:
- bwtraceboundary
- bwboundaries

The bwtraceboundary function returns the row and column coordinates of all the pixels on the border of an object in an image. You must specify the location of a border pixel on the object as the starting point for the trace.

The bwboundaries function returns the row and column coordinates of border pixels of all the objects in an image.

For both functions, nonzero pixels belong to an object and pixels with the value 0 (zero) constitute the background.

The following example uses bwtraceboundary to trace the border of an object in a binary image and then uses bwboundaries to trace the borders of all the objects in the image:

1 Read image and display it.
```

I = imread('coins.png');
imshow(I)

```


2 Convert the image to a binary image. bwtraceboundary and bwboundaries only work with binary images.
```

BW = im2bw(I);
imshow(BW)

```


3 Determine the row and column coordinates of a pixel on the border of the object you want to trace. bwboundary uses this point as the starting location for the boundary tracing.
```

dim = size(BW)
col = round(dim(2)/2)-90;
row = min(find(BW(:,col)))

```

4 Call bwtraceboundary to trace the boundary from the specified point. As required arguments, you must specify a binary image, the row and column coordinates of the starting point, and the direction of the first step. The example specifies north (' \(N\) '). For information about this parameter, see "Choosing the First Step and Direction for Boundary Tracing" on page 10-17.
boundary = bwtraceboundary(BW,[row, col],'N');
5 Display the original grayscale image and use the coordinates returned by bwtraceboundary to plot the border on the image.
imshow(I)
hold on;
plot(boundary(:,2), boundary(:,1), 'g', 'LineWidth', 3);


6 To trace the boundaries of all the coins in the image, use the bwboundaries function. By default, bwboundaries finds the boundaries of all objects in an image, including objects inside other objects. In the binary image used in this example, some of the coins contain black areas that bwboundaries interprets as separate objects. To ensure that bwboundaries only traces the coins, use imfill to fill the area inside each coin.
```

BW_filled = imfill(BW,'holes');
boundaries = bwboundaries(BW_filled);

```
bwboundaries returns a cell array, where each cell contains the row/column coordinates for an object in the image.

7 Plot the borders of all the coins on the original grayscale image using the coordinates returned by bwboundaries.
```

for k=1:10
b = boundaries{k};
plot(b(:,2),b(:,1),'g','LineWidth',3);
end

```


\section*{Choosing the First Step and Direction for Boundary Tracing}

For certain objects, you must take care when selecting the border pixel you choose as the starting point and the direction you choose for the first step parameter (north, south, etc.).

For example, if an object contains a hole and you select a pixel on a thin part of the object as the starting pixel, you can trace the outside border of the object or the inside border of the hole, depending on the direction you choose for the first step. For filled objects, the direction you select for the first step parameter is not as important.

To illustrate, this figure shows the pixels traced when the starting pixel is on a thin part of the object and the first step is set to north and south. The connectivity is set to 8 (the default).

\[
\text { FirstStep }=\text { South } \quad \text { Direction }=\text { Clockwise }
\]

Impact of First Step and Direction Parameters on Boundary Tracing

\section*{Quadtree Decomposition}

Quadtree decomposition is an analysis technique that involves subdividing an image into blocks that are more homogeneous than the image itself. This technique reveals information about the structure of the image. It is also useful as the first step in adaptive compression algorithms.

You can perform quadtree decomposition using the qtdecomp function. This function works by dividing a square image into four equal-sized square blocks, and then testing each block to see if it meets some criterion of homogeneity (e.g., if all the pixels in the block are within a specific dynamic range). If a block meets the criterion, it is not divided any further. If it does not meet the criterion, it is subdivided again into four blocks, and the test criterion is applied to those blocks. This process is repeated iteratively until each block meets the criterion. The result might have blocks of several different sizes.

For example, suppose you want to perform quadtree decomposition on a 128-by-128 intensity image. The first step is to divide the image into four 64 -by- 64 blocks. You then apply the test criterion to each block; for example, the criterion might be this threshold calculation.
```

max(block(:)) min(block(:)) <= 0.2

```

If one of the blocks meets this criterion, it is not divided any further; it is 64-by-64 in the final decomposition. If a block does not meet the criterion, it is then divided into four 32-by- 32 blocks, and the test is then applied to each of these blocks. The blocks that fail to meet the criterion are then divided into four 16 -by- 16 blocks, and so on, until all blocks pass. Some of the blocks can be as small as 1-by-1, unless you specify otherwise.

To perform this quadtree decomposition, call the qtdecomp function, specifying the image and the threshold value as arguments.
```

S = qtdecomp(I,0.27)

```

You specify the threshold as a value between 0 and 1, regardless of the class of I. If I is uint8, qtdecomp multiplies the threshold value by 255 to determine the actual threshold to use. If I is uint16, qtdecomp multiplies the threshold value by 65535 .

S is returned as a sparse matrix, the same size as I. The nonzero elements of S represent the upper left corners of the blocks; the value of each nonzero element indicates the block size.

The example below shows an image and a representation of its quadtree decomposition. (To see how this representation was created, see the example on the qtdecomp reference page.) Each black square represents a homogeneous block, and the white lines represent the boundaries between blocks. Notice how the blocks are smaller in areas corresponding to large changes in intensity in the image.


\section*{Image and a Representation of Its Quadtree Decomposition}

You can also supply qtdecomp with a function (rather than a threshold value) for deciding whether to split blocks; for example, you might base the decision on the variance of the block. See the reference page for qtdecomp for more information. For an interactive demonstration of quadtree decomposition, try running qtdemo.

\section*{Intensity Adjustment}

Image enhancement techniques are used to improve an image, where "improve" is sometimes defined objectively (e.g., increase the signal-to-noise ratio), and sometimes subjectively (e.g., make certain features easier to see by modifying the colors or intensities).

Intensity adjustment is an image enhancement technique that maps an image's intensity values to a new range. To illustrate, this figure shows a low-contrast image with its histogram. Notice in the histogram of the image how all the values gather in the center of the range.
```

I = imread('pout.tif');
imshow(I)
figure, imhist(I,64)

```


If you remap the data values to fill the entire intensity range [ 0,255 ], you can increase the contrast of the image. The following sections describe several intensity adjustment techniques, including
- "Adjusting Intensity Values to a Specified Range" on page 10-22
- "Histogram Equalization" on page 10-26
- "Contrast-Limited Adaptive Histogram Equalization" on page 10-28
- "Decorrelation Stretching" on page 10-29

The functions described in this section apply primarily to intensity images. However, some of these functions can be applied to color images as well. For information about how these functions work with color images, see the reference pages for the individual functions.

\section*{Adjusting Intensity Values to a Specified Range}

You can adjust the intensity values in an image using the imadjust function, where you specify the range of intensity values in the output image.

For example, this code increases the contrast in a low-contrast intensity image by remapping the data values to fill the entire intensity range [ 0,255 ].
```

I = imread('pout.tif');
J = imadjust(I);
imshow(J)
figure, imhist(J,64)

```

This figure displays the adjusted image and its histogram. Notice the increased contrast in the image, and that the histogram now fills the entire range.



\section*{Adjusted Image and Its Histogram}

\section*{Specifying the Adjustment Limits}

You can optionally specify the range of the input values and the output values using imadjust. You specify these ranges in two vectors that you pass to imadjust as arguments. The first vector specifies the low- and high-intensity
values that you want to map. The second vector specifies the scale over which you want to map them.

Note Note that you must specify the intensities as values between 0 and 1 regardless of the class of I. If I is uint8, the values you supply are multiplied by 255 to determine the actual values to use; if I is uint16, the values are multiplied by 65535 . To learn about an alternative way to set these limits automatically, see "Setting the Adjustment Limits Automatically" on page 10-24.

For example, you can decrease the contrast of an image by narrowing the range of the data. In the example below, the man's coat is too dark to reveal any detail. imadjust maps the range \([0,51]\) in the uint8 input image to \([128,255]\) in the output image. This brightens the image considerably, and also widens the dynamic range of the dark portions of the original image, making it much easier to see the details in the coat. Note, however, that because all values above 51 in the original image are mapped to 255 (white) in the adjusted image, the adjusted image appears washed out.
```

I = imread('cameraman.tif');
J = imadjust(I,[0 0.2],[0.5 1]);
imshow(I)
figure, imshow(J)

```


Image Courtesy of MIT


Image After Remapping and Widening the Dynamic Range

\section*{Setting the Adjustment Limits Automatically}

To use imadjust, you must typically perform two steps:
1 View the histogram of the image to determine the intensity value limits.
2 Specify these limits as a fraction between 0.0 and 1.0 so that you can pass them to imadjust in the [low_in high_in] vector.

For a more convenient way to specify these limits, use the stretchlim function. (The imadjust function uses stretchlim for its simplest syntax, imadjust (I).)
This function calculates the histogram of the image and determines the adjustment limits automatically. The stretchlim function returns these values as fractions in a vector that you can pass as the [low_in high_in] argument to imadjust; for example:
```

I = imread('rice.png');
J = imadjust(I,stretchlim(I),[0 1]);

```

By default, stretchlim uses the intensity values that represent the bottom \(1 \%\) ( 0.01 ) and the top \(1 \%\) ( 0.99 ) of the range as the adjustment limits. By trimming the extremes at both ends of the intensity range, stretchlim makes more room in the adjusted dynamic range for the remaining intensities. But you can specify other range limits as an argument to stretchlim. See the stretchlim reference page for more information.

\section*{Gamma Correction}
imadjust maps low to bottom, and high to top. By default, the values between low and high are mapped linearly to values between bottom and top. For example, the value halfway between low and high corresponds to the value halfway between bottom and top.
imadjust can accept an additional argument that specifies the gamma correction factor. Depending on the value of gamma, the mapping between values in the input and output images might be nonlinear. For example, the value halfway between low and high might map to a value either greater than or less than the value halfway between bottom and top.

Gamma can be any value between 0 and infinity. If gamma is 1 (the default), the mapping is linear. If gamma is less than 1 , the mapping is weighted toward
higher (brighter) output values. If gamma is greater than 1 , the mapping is weighted toward lower (darker) output values.

The figure below illustrates this relationship. The three transformation curves show how values are mapped when gamma is less than, equal to, and greater than 1. (In each graph, the \(x\)-axis represents the intensity values in the input image, and the \(y\)-axis represents the intensity values in the output image.)


\section*{Plots Showing Three Different Gamma Correction Settings}

The example below illustrates gamma correction. Notice that in the call to imadjust, the data ranges of the input and output images are specified as empty matrices. When you specify an empty matrix, imadjust uses the default range of \([0,1]\). In the example, both ranges are left empty; this means that gamma correction is applied without any other adjustment of the data.
```

[X,map] = imread('forest.tif')
I = ind2gray(X,map);
J = imadjust(I,[],[],0.5);
imshow(I)
figure, imshow(J)

```

lor

\section*{Image Before and After Applying Gamma Correction}

\section*{Histogram Equalization}

The process of adjusting intensity values can be done automatically by the histeq function. histeq performs histogram equalization, which involves transforming the intensity values so that the histogram of the output image approximately matches a specified histogram. (By default, histeq tries to match a flat histogram with 64 bins, but you can specify a different histogram instead; see the reference page for histeq.)

This example illustrates using histeq to adjust an intensity image. The original image has low contrast, with most values in the middle of the intensity range. histeq produces an output image having values evenly distributed throughout the range.
```

I = imread('pout.tif');
J = histeq(I);
imshow(J)
figure, imhist(J,64)

```



\section*{Image After Histogram Equalization with Its Histogram}
histeq can return a 1-by-256 vector that shows, for each possible input value, the resulting output value. (The values in this vector are in the range \([0,1]\), regardless of the class of the input image.) You can plot this data to get the transformation curve. For example:
```

I = imread('pout.tif');
[J,T] = histeq(I);
figure,plot((0:255)/255,T);

```


Notice how this curve reflects the histograms in the previous figure, with the input values mostly between 0.3 and 0.6 , while the output values are distributed evenly between 0 and 1.

For an interactive demonstration of intensity adjustment, try running imadjdemo.

\section*{Contrast-Limited Adaptive Histogram Equalization}

As an alternative to using histeq, you can perform contrast-limited adaptive histogram equalization (CLAHE) using the adapthisteq function. While histeq works on the entire image, adapthisteq operates on small regions in the image, called tiles. Each tile's contrast is enhanced, so that the histogram of the output region approximately matches a specified histogram. After performing the equalization, adapthisteq combines neighboring tiles using bilinear interpolation to eliminate artificially induced boundaries.

To avoid amplifying any noise that might be present in the image, you can use adapthisteq optional parameters to limit the contrast, especially in homogeneous areas.

To illustrate, this example uses adapthisteq to adjust the contrast in an intensity image. The original image has low contrast, with most values in the middle of the intensity range. adapthisteq produces an output image having values evenly distributed throughout the range.
```

I = imread('pout.tif');
J = adapthisteq(I);
imshow(I)
figure, imshow(J)

```



Image After CLAHE Equalization with Its Histogram

\section*{Decorrelation Stretching}

Decorrelation stretching enhances the color separation of an image with significant band-band correlation. The exaggerated colors improve visual interpretation and make feature discrimination easier. You apply decorrelation stretching with the decorrstretch function. See "Adding a Linear Contrast Stretch" on page 10-32 on how to add an optional linear contrast stretch to the decorrelation stretch.

The number of color bands, NBANDS, in the image is usually three. But you can apply decorrelation stretching regardless of the number of color bands.

The original color values of the image are mapped to a new set of color values with a wider range. The color intensities of each pixel are transformed into the
color eigenspace of the NBANDS-by-NBANDS covariance or correlation matrix, stretched to equalize the band variances, then transformed back to the original color bands.

To define the bandwise statistics, you can use the entire original image or, with the subset option, any selected subset of it. See the decorrstretch reference page.

\section*{Simple Decorrelation Stretching}

You can apply decorrelation and stretching operations on the library of images available in the imdemos directory. The library includes a LANDSAT image of the Little Colorado River. In this example, you perform a simple decorrelation stretch on this image:

1 The image has seven bands, but just read in the three visible colors:
```

A = multibandread('littlecoriver.lan', [512, 512, 7], ...
'uint8=>uint8', 128, 'bil', 'ieee-le', ...
{'Band','Direct',[3 2 1]});

```

2 Then perform the decorrelation stretch:
```

B = decorrstretch(A);

```

3 Now view the results:
```

imshow(A); figure; imshow(B)

```

Compare the two images. The original has a strong violet (red-bluish) tint, while the transformed image has a somewhat expanded color range.


\section*{Little Colorado River Before (left) and After (right) Decorrelation Stretch}

A color band scatterplot of the images shows how the bands are decorrelated and equalized:
```

rA = A(:,:,1); gA = A(:,:,2); bA = A(:,:,3);
figure, plot3(rA(:),gA(:),bA(:),'.'); grid('on')
xlabel('Red (Band 3)'); ylabel('Green (Band 2)'); ...
zlabel('Blue (Band 1)')
rB = B(:,:,1); gB = B(:,:,2); bB = B(:,:,3);
figure, plot3(rB(:),gB(:),bB(:),'.'); grid('on')
xlabel('Red (Band 3)'); ylabel('Green (Band 2)'); ...
zlabel('Blue (Band 1)')

```


\section*{Color Scatterplot Before (left) and After (right) Decorrelation Stretch}

\section*{Adding a Linear Contrast Stretch}

Now try the same transformation, but with a linear contrast stretch applied after the decorrelation stretch:
```

imshow(A); C = decorrstretch(A,'Tol',0.01); figure; imshow(C)

```

Compare the transformed image to the original.


\section*{Little Colorado River After Decorrelation Stretch Followed by Linear Contrast Stretch}

Adding the linear contrast stretch enhances the resulting image by further expanding the color range. In this case, the transformed color range is mapped within each band to a normalized interval between 0.01 and 0.99 , saturating \(2 \%\).

See the stretchlim function reference page for more about Tol. Without the Tol option, decorrstretch applies no linear contrast stretch.

Note You can apply a linear contrast stretch as a separate operation after performing a decorrelation stretch, using stretchlim and imadjust. This alternative, however, often gives inferior results for uint8 and uint16 images, because the pixel values must be clamped to [0 255] (or [0 65535]). The Tol option in decorrstretch circumvents this limitation.

\section*{Noise Removal}

Digital images are prone to a variety of types of noise. There are several ways that noise can be introduced into an image, depending on how the image is created. For example:
- If the image is scanned from a photograph made on film, the film grain is a source of noise. Noise can also be the result of damage to the film, or be introduced by the scanner itself.
- If the image is acquired directly in a digital format, the mechanism for gathering the data (such as a CCD detector) can introduce noise.
- Electronic transmission of image data can introduce noise.

The toolbox provides a number of different ways to remove or reduce noise in an image. Different methods are better for different kinds of noise. The methods available include
- "Using Linear Filtering"
- "Using Median Filtering"
- "Using Adaptive Filtering" on page 10-37

To simulate the effects of some of the problems listed above, the toolbox provides the imnoise function, which you can use to add various types of noise to an image. The examples in this section use this function.

\section*{Using Linear Filtering}

You can use linear filtering to remove certain types of noise. Certain filters, such as averaging or Gaussian filters, are appropriate for this purpose. For example, an averaging filter is useful for removing grain noise from a photograph. Because each pixel gets set to the average of the pixels in its neighborhood, local variations caused by grain are reduced.

See "Linear Filtering" on page 7-4 for more information.

\section*{Using Median Filtering}

Median filtering is similar to using an averaging filter, in that each output pixel is set to an average of the pixel values in the neighborhood of the corresponding input pixel. However, with median filtering, the value of an output pixel is determined by the median of the neighborhood pixels, rather
than the mean. The median is much less sensitive than the mean to extreme values (called outliers). Median filtering is therefore better able to remove these outliers without reducing the sharpness of the image. The medfilt2 function implements median filtering.

Note Median filtering is a specific case of order-statistic filtering, also known as rank filtering. For information about order-statistic filtering, see the reference page for the ordfilt2 function.

The following example compares using an averaging filter and medfilt2 to remove salt and pepper noise. This type of noise consists of random pixels' being set to black or white (the extremes of the data range). In both cases the size of the neighborhood used for filtering is 3-by-3.

1 Read in the image and display it.
I = imread('eight.tif');
imshow(I)


2 Add noise to it.
```

J = imnoise(I,'salt \& pepper',0.02);
figure, imshow(J)

```


3 Filter the noisy image with an averaging filter and display the results. K = filter2(fspecial('average', 3 ), J)/255; figure, imshow(K)


4 Now use a median filter to filter the noisy image and display the results.
Notice that medfilt2 does a better job of removing noise, with less blurring of edges.
```

L = medfilt2(J,[3 3]);
figure, imshow(K)
figure, imshow(L)

```


\section*{Using Adaptive Filtering}

The wiener2 function applies a Wiener filter (a type of linear filter) to an image adaptively, tailoring itself to the local image variance. Where the variance is large, wiener2 performs little smoothing. Where the variance is small, wiener2 performs more smoothing.

This approach often produces better results than linear filtering. The adaptive filter is more selective than a comparable linear filter, preserving edges and other high-frequency parts of an image. In addition, there are no design tasks; the wiener2 function handles all preliminary computations and implements the filter for an input image. wiener2, however, does require more computation time than linear filtering.
wiener2 works best when the noise is constant-power ("white") additive noise, such as Gaussian noise. The example below applies wiener2 to an image of Saturn that has had Gaussian noise added. For an interactive demonstration of filtering to remove noise, try running nrfiltdemo.
```

RGB = imread('saturn.png');
I = rgb2gray(RGB);
J = imnoise(I,'gaussian',0,0.005);
K = wiener2(J,[5 5]);
imshow(J)
figure, imshow(K)

```


Noisy Version (left) and Filtered Version (right)

\section*{Region-Based Processing}

This chapter describes operations that you can perform on a selected region of an image.

Terminology (p. 11-2)

Specifying a Region of Interest (p. 11-3) Describes how to specify a region of interest using the

Filtering a Region (p. 11-6)

Filling a Region (p. 11-9)
roipoly function
Provides definitions of image processing terms used in this section

Describes how to apply a filter to a region using the roifilt2 function

Describes how to fill a region of interest using the roifill function

\section*{Terminology}

An understanding of the following terms will help you to use this section.
\begin{tabular}{l|l}
\hline Term & Definition \\
\hline binary mask & \begin{tabular}{l} 
Binary image with the same size as the image you want to process. \\
The mask contains 1's for all pixels that are part of the region of \\
interest, and 0's everywhere else.
\end{tabular} \\
\hline filling a region & \begin{tabular}{l} 
Process that fills a region of interest by interpolating the pixel \\
values from the borders of the region. This process can be used to \\
make objects in an image seem to disappear as they are replaced \\
with values that blend in with the background area.
\end{tabular} \\
\hline filtering a region & \begin{tabular}{l} 
Process of applying a filter to a region of interest. For example, \\
you can apply an intensity adjustment filter to certain regions of \\
an image.
\end{tabular} \\
\hline maskerpolation filtering & \begin{tabular}{l} 
Method used to estimate an image value at a location in between \\
image pixels.
\end{tabular} \\
\hline Operation that applies filtering only to the regions of interest in \\
an image that are identified by a binary mask. Filtered values are \\
returned for pixels where the binary mask contains 1's; unfiltered \\
values are returned for pixels where the binary mask contains 0's.
\end{tabular}

\section*{Specifying a Region of Interest}

A region of interest is a portion of an image that you want to filter or perform some other operation on. You define a region of interest by creating a binary mask, which is a binary image with the same size as the image you want to process. The mask contains 1's for all pixels that are part of the region of interest, and 0's everywhere else.

The following subsections discuss methods for creating binary masks:
- "Selecting a Polygon" on page 11-3
- "Other Selection Methods" on page 11-4 (using any binary mask or the roicolor function)

For an interactive demonstration of region-based processing, try running roidemo.

\section*{Selecting a Polygon}

You can use the roipoly function to specify a polygonal region of interest. If you call roipoly with no input arguments, the cursor changes to crosshairs when it is over the image displayed in the current axes. You can then specify the vertices of the polygon by clicking points in the image with the mouse. When you are done selecting vertices, press Return; roipoly returns a binary image of the same size as the input image, containing 1's inside the specified polygon, and 0's everywhere else.

The example below illustrates using the interactive syntax of roipoly to create a binary mask. In the figure, the border of the selected region that was created using a mouse is shown in red.
```

I = imread('pout.tif');
imshow(I)
BW = roipoly;

```


Polygonal Region of Interest Selected Using roipoly
imshow(BW)


Binary Mask Created for the Region Shown in the Preceding Figure
You can also use roipoly noninteractively. See the reference page for roipoly for more information.

\section*{Other Selection Methods}
roipoly provides an easy way to create a binary mask. However, you can use any binary image as a mask, provided that the binary image is the same size as the image being filtered.

For example, suppose you want to filter the intensity image I, filtering only those pixels whose values are greater than 0.5 . You can create the appropriate mask with this command.
```

BW = (I > 0.5);

```

You can also use the poly2mask function to create a binary mask. Unlike the roipoly function, poly2mask does not require an input image. For more information, see the poly2mask reference page.

You can also use the roicolor function to define the region of interest based on a color or intensity range. For more information, see the reference page for roicolor.

\section*{Filtering a Region}

You can use the roifilt2 function to process a region of interest. When you call roifilt2, you specify an intensity image, a binary mask, and a filter. roifilt2 filters the input image and returns an image that consists of filtered values for pixels where the binary mask contains 1's and unfiltered values for pixels where the binary mask contains 0 's. This type of operation is called masked filtering.

Note roifilt2 is best suited to operations that return data in the same range as in the original image, because the output image takes some of its data directly from the input image. Certain filtering operations can result in values outside the normal image data range (i.e., \([0,1]\) for images of class double, \([0,255]\) for images of class uint8, and \([0,65535]\) for images of class uint16). For more information, see the reference page for roifilt2.

\section*{Example: Filtering a Region in an Image}

This example uses masked filtering to increase the contrast of a specific region of an image:

1 Read in the image.
```

I = imread('pout.tif');

```

2 Create the mask.
This example uses the mask BW created in "Selecting a Polygon" on page 11-3. The region of interest specified by the mask is the logo on the girl's jacket.

3 Create the filter.
```

h = fspecial('unsharp');

```

4 Call roifilt2, specifying the image to be filtered, the mask, and the filter.
```

I2 = roifilt2(h,I,BW);

```
imshow(I)
figure, imshow(I2)


\section*{Image Before and After Using an Unsharp Filter on the Region of Interest}

\section*{Specifying the Filtering Operation}
roifilt2 also enables you to specify your own function to operate on the region of interest. This example uses the imadjust function to lighten parts of an image:

1 Read in the image.
I = imread('cameraman.tif');
2 Create the mask. In this example, the mask is a binary image containing text. The mask image must be cropped to be the same size as the image to be filtered.

BW = imread('text.png');
mask \(=\operatorname{BW}(1: 256,1: 256)\);
3 Create the filter.
f = inline('imadjust(x,[],[],0.3)');
4 Call roifilt2, specifying the image to be filtered, the mask, and the filter. The resulting image, \(I 2\), has the text imprinted on it.
```

I2 = roifilt2(I,mask,f);

```
imshow(I2)


Image Brightened Using a Binary Mask Containing Text

\section*{Filling a Region}

You can use the roifill function to fill a region of interest, interpolating from the borders of the region. This function is useful for image editing, including removal of extraneous details or artifacts.
roifill performs the fill operation using an interpolation method based on Laplace's equation. This method results in the smoothest possible fill, given the values on the boundary of the region.

As with roipoly, you select the region of interest with the mouse. When you complete the selection, roifill returns an image with the selected region filled in.

This example uses roifill to modify the trees image. The border of the selected region is shown in red on the original image.
```

load trees

```
I = ind2gray (X,map);
imshow(I)
I2 = roifill;


\section*{Region of Interest Selected for Filling}
imshow(I2)


Region of Interest Shown in the Preceding Figure Has Been Filled

\section*{Image Deblurring}

This chapter describes how to deblur an image using the toolbox deblurring functions.

Terminology (p. 12-2)

Understanding Deblurring (p. 12-3)
Using the Deblurring Functions (p. 12-6)

Avoiding Ringing in Deblurred Images (p. 12-23)

Provides definitions of image processing terms used in this section

Defines deblurring and deconvolution
Provides step-by-step examples of using deconvwnr, deconvreg, deconvlucy, and deconvblind functions

Describes how to use the edgetaper function to avoid "ringing" in deblurred images

\section*{Terminology}

An understanding of the following terms will help you to use this chapter.
\begin{tabular}{l|l}
\hline Term & MATLAB Definition \\
\hline deconvolution & Process of reversing the effect of convolution. \\
\hline distortion operator & \begin{tabular}{l} 
Operator that describes a process causing \\
the acquired image to be different from the \\
original scene. Distortion caused by a point \\
spread function (see below) is just one type of \\
distortion.
\end{tabular} \\
\hline optical transfer function & \begin{tabular}{l} 
In the frequency domain, the OTF describes \\
the response of a linear, position-invariant \\
system to an impulse. The OTF is the \\
Fourier transform of the point spread \\
function (PSF).
\end{tabular} \\
\hline point spread function & \begin{tabular}{l} 
In the spatial domain, the PSF describes the \\
degree to which an optical system blurs \\
(spreads) a point of light. The PSF is the \\
(PSF)
\end{tabular} \\
\hline
\end{tabular}

\section*{Understanding Deblurring}

This section provides some background on deblurring techniques. The section includes these topics:
- "Causes of Blurring"
- "Deblurring Model"

\section*{Causes of Blurring}

The blurring, or degradation, of an image can be caused by many factors:
- Movement during the image capture process, by the camera or, when long exposure times are used, by the subject
- Out-of-focus optics, use of a wide-angle lens, atmospheric turbulence, or a short exposure time, which reduces the number of photons captured
- Scattered light distortion in confocal microscopy

\section*{Deblurring Model}

A blurred or degraded image can be approximately described by this equation \(\mathbf{g}=\mathbf{H f}+\mathbf{n}\), where
g The blurred image
H The distortion operator, also called the point spread function (PSF). This function, when convolved with the image, creates the distortion.
f The original true image
n Additive noise, introduced during image acquisition, that corrupts the image

Note The image \(\mathbf{f}\) really doesn't exist. This image represents what you would have if you had perfect image acquisition conditions.

\section*{Importance of the PSF}

Based on this model, the fundamental task of deblurring is to deconvolve the blurred image with the PSF that exactly describes the distortion.

Note The quality of the deblurred image is mainly determined by knowledge of the PSF.

To illustrate, this example takes a clear image and deliberately blurs it by convolving it with a PSF. The example uses the fspecial function to create a PSF that simulates a motion blur, specifying the length of the blur in pixels, (LEN=31), and the angle of the blur in degrees (THETA=11). Once the PSF is created, the example uses the imfilter function to convolve the PSF with the original image, I, to create the blurred image, Blurred. (To see how deblurring is the reverse of this process, using the same images, see "Deblurring with the Wiener Filter" on page 12-7.)
```

I = imread('peppers.png');
I = I(60+[1:256],222+[1:256],:); % crop the image
figure; imshow(I); title('Original Image');

```

```

LEN = 31;
THETA = 11;
PSF = fspecial('motion',LEN,THETA); % create PSF
Blurred = imfilter(I,PSF,'circular','conv');
figure; imshow(Blurred); title('Blurred Image');

```


\section*{Using the Deblurring Functions}

The toolbox includes four deblurring functions, listed here in order of complexity:
deconvwnr Implements deblurring using the Wiener filter
deconvreg Implements deblurring using a regularized filter
deconvlucy Implements deblurring using the Lucy-Richardson algorithm
deconvblind Implements deblurring using the blind deconvolution algorithm

All the functions accept a PSF and the blurred image as their primary arguments. The deconvwnr function implements a least squares solution. The deconvreg function implements a constrained least squares solution, where you can place constraints on the output image (the smoothness requirement is the default). With either of these functions, you should provide some information about the noise to reduce possible noise amplification during deblurring.
The deconvlucy function implements an accelerated, damped Lucy-Richardson algorithm. This function performs multiple iterations, using optimization techniques and Poisson statistics. With this function, you do not need to provide information about the additive noise in the corrupted image.
The deconvblind function implements the blind deconvolution algorithm, which performs deblurring without knowledge of the PSF. When you call deconvblind, you pass as an argument your initial guess at the PSF. The deconvblind function returns a restored PSF in addition to the restored image. The implementation uses the same damping and iterative model as the deconvlucy function.

Note You might need to perform many iterations of the deblurring process, varying the parameters you specify to the deblurring functions with each iteration, until you achieve an image that, based on the limits of your information, is the best approximation of the original scene. Along the way, you must make numerous judgments about whether newly uncovered features in the image are features of the original scene or simply artifacts of the deblurring process.

For information about creating your own deblurring functions, see "Creating Your Own Deblurring Functions" on page 12-22. To avoid "ringing" in a deblurred image, you can use the edgetaper function to preprocess your image before passing it to the deblurring functions. See "Avoiding Ringing in Deblurred Images" on page 12-23 for more information.

\section*{Deblurring with the Wiener Filter}

Use the deconvwnr function to deblur an image using the Wiener filter. Wiener deconvolution can be used effectively when the frequency characteristics of the image and additive noise are known, to at least some degree. In the absence of noise, the Wiener filter reduces to the ideal inverse filter.

This example deblurs the blurred image created in "Deblurring Model" on page 12-3, specifying the same PSF function that was used to create the blur. This example illustrates the importance of knowing the PSF, the function that caused the blur. When you know the exact PSF, the results of deblurring can be quite effective.

1 Read an image into the MATLAB workspace. (To speed the deblurring operation, the example also crops the image.)
```

I = imread('peppers.png');
I = I(10+[1:256],222+[1:256],:);
figure;imshow(I);title('Original Image');

```


2 Create a PSF.
LEN = 31;
THETA = 11;
PSF = fspecial('motion',LEN,THETA);
3 Create a simulated blur in the image.
Blurred = imfilter(I,PSF,'circular','conv'); figure; imshow(Blurred);title('Blurred Image');


4 Deblur the image.
```

wnr1 = deconvwnr(Blurred,PSF);
figure;imshow(wnr1);
title('Restored, True PSF');

```


\section*{Refining the Result}

You can affect the deconvolution results by providing values for the optional arguments supported by the deconvwnr function. Using these arguments you can specify the noise-to-signal power value and/or provide autocorrelation functions to help refine the result of deblurring. To see the impact of these optional arguments, view the Image Processing Toolbox deblurring demos.

\section*{Deblurring with a Regularized Filter}

Use the deconvreg function to deblur an image using a regularized filter. A regularized filter can be used effectively when limited information is known about the additive noise.

To illustrate, this example simulates a blurred image by convolving a Gaussian filter PSF with an image (using imfilter). Additive noise in the image is simulated by adding Gaussian noise of variance \(V\) to the blurred image (using imnoise):

1 Read an image into the MATLAB workspace. The example uses cropping to reduce the size of the image to be deblurred. This is not a required step in deblurring operations.
```

I = imread('tissue.png');
I = I(125+[1:256],1:256,:);
figure; imshow(I); title('Original Image');

```


2 Create the PSF.
```

PSF = fspecial('gaussian',11,5);

```

3 Create a simulated blur in the image and add noise.
Blurred = imfilter(I, PSF,'conv');
V = . 02;
BlurredNoisy = imnoise(Blurred,'gaussian',0,V);
figure;imshow(BlurredNoisy);title('Blurred and Noisy Image');


4 Use deconvreg to deblur the image, specifying the PSF used to create the blur and the noise power, NP.
NP = V*prod(size(I));
```

[reg1 LAGRA] = deconvreg(BlurredNoisy,PSF,NP);
figure,imshow(reg1),title('Restored Image');

```


\section*{Refining the Result}

You can affect the deconvolution results by providing values for the optional arguments supported by the deconvreg function. Using these arguments you can specify the noise power value, the range over which deconvreg should iterate as it converges on the optimal solution, and the regularization operator to constrain the deconvolution. To see the impact of these optional arguments, view the Image Processing Toolbox deblurring demos.

\section*{Deblurring with the Lucy-Richardson Algorithm}

Use the deconvlucy function to deblur an image using the accelerated, damped, Lucy-Richardson algorithm. The algorithm maximizes the likelihood that the resulting image, when convolved with the PSF, is an instance of the blurred image, assuming Poisson noise statistics. This function can be effective when you know the PSF but know little about the additive noise in the image.

The deconvlucy function implements several adaptations to the original Lucy-Richardson maximum likelihood algorithm that address complex image restoration tasks. Using these adaptations, you can
- Reduce the effect of noise amplification on image restoration
- Account for nonuniform image quality (e.g., bad pixels, flat-field variation)
- Handle camera read-out and background noise
- Improve the restored image resolution by subsampling

The following sections provide more information about each of these adaptations.

\section*{Reducing the Effect of Noise Amplification}

Noise amplification is a common problem of maximum likelihood methods that attempt to fit data as closely as possible. After many iterations, the restored image can have a speckled appearance, especially for a smooth object observed at low signal-to-noise ratios. These speckles do not represent any real structure in the image, but are artifacts of fitting the noise in the image too closely.

To control noise amplification, the deconvlucy function uses a damping parameter, DAMPAR. This parameter specifies the threshold level for the deviation of the resulting image from the original image, below which damping occurs. For pixels that deviate in the vicinity of their original values, iterations are suppressed.

Damping is also used to reduce ringing, the appearance of high-frequency structures in a restored image. Ringing is not necessarily the result of noise amplification. See "Avoiding Ringing in Deblurred Images" on page 12-23 for more information.

\section*{Accounting for Nonuniform Image Quality}

Another complication of real-life image restoration is that the data might include bad pixels, or that the quality of the receiving pixels might vary with time and position. By specifying the WEIGHT array parameter with the deconvlucy function, you can specify that certain pixels in the image be ignored. To ignore a pixel, assign a weight of zero to the element in the WEIGHT array that corresponds to the pixel in the image.
The algorithm converges on predicted values for the bad pixels based on the information from neighborhood pixels. The variation in the detector response from pixel to pixel (the so-called flat-field correction) can also be accommodated by the WEIGHT array. Instead of assigning a weight of 1.0 to the good pixels, you can specify fractional values and weight the pixels according to the amount of the flat-field correction.

\section*{Handling Camera Read-Out Noise}

Noise in charge coupled device (CCD) detectors has two primary components:
- Photon counting noise with a Poisson distribution
- Read-out noise with a Gaussian distribution

The Lucy-Richardson iterations intrinsically account for the first type of noise. You must account for the second type of noise; otherwise, it can cause pixels with low levels of incident photons to have negative values.

The deconvlucy function uses the READOUT input parameter to handle camera read-out noise. The value of this parameter is typically the sum of the read-out noise variance and the background noise (e.g., number of counts from the background radiation). The value of the READOUT parameter specifies an offset that ensures that all values are positive.

\section*{Handling Undersampled Images}

The restoration of undersampled data can be improved significantly if it is done on a finer grid. The deconvlucy function uses the SUBSMPL parameter to specify the subsampling rate, if the PSF is known to have a higher resolution.

If the undersampled data is the result of camera pixel binning during image acquisition, the PSF observed at each pixel rate can serve as a finer grid PSF. Otherwise, the PSF can be obtained via observations taken at subpixel offsets or via optical modeling techniques. This method is especially effective for images of stars (high signal-to-noise ratio), because the stars are effectively forced to be in the center of a pixel. If a star is centered between pixels, it is restored as a combination of the neighboring pixels. A finer grid redirects the consequent spreading of the star flux back to the center of the star's image.

\section*{Example: Using the deconvlucy Function to Deblur an Image}

To illustrate a simple use of deconvlucy, this example simulates a blurred, noisy image by convolving a Gaussian filter PSF with an image (using imfilter) and then adding Gaussian noise of variance \(V\) to the blurred image (using imnoise):

1 Read an image into the MATLAB workspace. (The example uses cropping to reduce the size of the image to be deblurred. This is not a required step in deblurring operations.)
```

I = imread('board.tif');
I = I(50+[1:256],2+[1:256],:);
figure;imshow(I);title('Original Image');

```


2 Create the PSF.
```

PSF = fspecial('gaussian',5,5);

```

3 Create a simulated blur in the image and add noise.
```

Blurred = imfilter(I,PSF,'symmetric','conv');

```
V = . 002;
BlurredNoisy = imnoise(Blurred,'gaussian', \(0, \mathrm{~V}\) );
figure;imshow(BlurredNoisy);title('Blurred and Noisy Image');


4 Use deconvlucy to restore the blurred and noisy image, specifying the PSF used to create the blur, and limiting the number of iterations to 5 (the default is 10 ).

Note The deconvlucy function can return values in the output image that are beyond the range of the input image.
```

luc1 = deconvlucy(BlurredNoisy,PSF,5);
figure; imshow(luc1);
title('Restored Image');

```


\section*{Refining the Result}

The deconvlucy function, by default, performs multiple iterations of the deblurring process. You can stop the processing after a certain number of iterations to check the result, and then restart the iterations from the point where processing stopped. To do this, pass in the input image as a cell array, for example, \{BlurredNoisy\}. The deconvlucy function returns the output image as a cell array that you can then pass as an input argument to deconvlucy to restart the deconvolution.

The output cell array contains these four elements:
\begin{tabular}{l|l}
\hline Element & Description \\
\hline output \(\{1\}\) & Original input image \\
\hline output \(\{2\}\) & Image produced by the last iteration \\
\hline output \(\{3\}\) & Image produced by the next to last iteration \\
\hline output \(\{4\}\) & \begin{tabular}{l} 
Internal information used by deconvlucy to know \\
where to restart the process
\end{tabular} \\
\hline
\end{tabular}

The deconvlucy function supports several other optional arguments you can use to achieve the best possible result, such as specifying a damping parameter to handle additive noise in the blurred image. To see the impact of these optional arguments, view the Image Processing Toolbox deblurring demos.

\section*{Deblurring with the Blind Deconvolution Algorithm}

Use the deconvblind function to deblur an image using the blind deconvolution algorithm. The algorithm maximizes the likelihood that the resulting image, when convolved with the resulting PSF, is an instance of the blurred image, assuming Poisson noise statistics. The blind deconvolution algorithm can be used effectively when no information about the distortion (blurring and noise) is known. The deconvblind function restores the image and the PSF simultaneously, using an iterative process similar to the accelerated, damped Lucy-Richardson algorithm.

The deconvblind function, just like the deconvlucy function, implements several adaptations to the original Lucy-Richardson maximum likelihood algorithm that address complex image restoration tasks. Using these adaptations, you can
- Reduce the effect of noise on the restoration
- Account for nonuniform image quality (e.g., bad pixels)
- Handle camera read-out noise

For more information about these adaptations, see "Deblurring with the Lucy-Richardson Algorithm" on page 12-11. In addition, the deconvblind
function supports PSF constraints that can be passed in through a user-specified function.

\section*{Example: Using the deconvblind Function to Deblur an Image}

To illustrate blind deconvolution, this example creates a simulated blurred image and then uses deconvblind to deblur it. The example makes two passes at deblurring the image to show the effect of certain optional parameters on the deblurring operation:

1 Read an image into the MATLAB workspace.
```

I = imread('cameraman.tif');
figure; imshow(I); title('Original Image');

```


Image Courtesy of MIT

2 Create the PSF.
```

PSF = fspecial('motion',13,45);
figure; imshow(PSF,[],'notruesize'); title('Original PSF');

```


Original PSF
3 Create a simulated blur in the image.
```

Blurred = imfilter(I,PSF,'circ','conv');
figure; imshow(Blurred); title('Blurred Image');

```


4 Deblur the image, making an initial guess at the size of the PSF.
To determine the size of the PSF, examine the blurred image and measure the width of a blur (in pixels) around an obviously sharp object. In the sample blurred image, you can measure the blur near the contour of the man's sleeve. Because the size of the PSF is more important than the values it contains, you can typically specify an array of 1's as the initial PSF.

The following figure shows a restoration where the initial guess at the PSF is the same size as the PSF that caused the blur. In a real application, you
might need to rerun deconvblind, experimenting with PSFs of different sizes, until you achieve a satisfactory result. The restored PSF returned by each deconvolution can also provide valuable hints at the optimal PSF size. See the Image Processing Toolbox deblurring demos for an example.
```

INITPSF = ones(size(PSF));
[J P]= deconvblind(Blurred,INITPSF,30);
figure; imshow(J); title('Restored Image');
figure; imshow(P,[],'notruesize');
title('Restored PSF');

```


Restored Image


Restored PSF

Although deconvblind was able to deblur the image to a great extent, the ringing around the sharp intensity contrast areas in the restored image is unsatisfactory. (The example eliminated edge-related ringing by using the 'circular' option with imfilter when creating the simulated blurred image in step 3.)

The next steps in the example repeat the deblurring process, attempting to achieve a better result by
- Eliminating high-contrast areas from the processing
- Specifying a better PSF

5 Create a WEIGHT array to exclude areas of high contrast from the deblurring operation. This can reduce contrast-related ringing in the result.

To exclude a pixel from processing, you create an array of the same size as the original image, and assign the value 0 to the pixels in the array that correspond to pixels in the original image that you want to exclude from processing. (See "Accounting for Nonuniform Image Quality" on page 12-12 for information about WEIGHT arrays.)

To create a WEIGHT array, the example uses a combination of edge detection and morphological processing to detect high-contrast areas in the image. Because the blur in the image is linear, the example dilates the image twice. (For more information about using these functions, see Chapter 9, "Morphological Operations.") To exclude the image boundary pixels (a high-contrast area) from processing, the example uses padarray to assign the value 0 to all border pixels.
```

WEIGHT = edge(I,'sobel',.28);
se1 = strel('disk',1);
se2 = strel('line',13,45);
WEIGHT = ~imdilate(WEIGHT,[se1 se2]);
WEIGHT = padarray(WEIGHT(2:end-1,2:end-1),[2 2]);
figure; imshow(WEIGHT); title('Weight Array');

```


Weight Array
6 Refine the guess at the PSF. The reconstructed PSF P returned by the first pass at deconvolution shows a clear linearity, as shown in the figure in step
4. For the second pass, the example uses a new PSF, P1, which is the same as the restored PSF but with the small amplitude pixels set to 0 .
```

P1 = P;
P1(find(P1 < 0.01))=0;

```

7 Rerun the deconvolution, specifying the WEIGHT array and the modified PSF. Note how the restored image has much less ringing around the sharp intensity contrast areas than the result of the first pass (step 4).
```

[J2 P2] = deconvblind(Blurred,P1,50,[],WEIGHT);
figure; imshow(J2);
title('Newly Deblurred Image');
figure; imshow(P2,[],'notruesize');
title('Newly Reconstructed PSF');

```


Newly Deblurred Image


Newly Reconstructed PSF

\section*{Refining the Result}

The deconvblind function, by default, performs multiple iterations of the deblurring process. You can stop the processing after a certain number of iterations to check the result, and then restart the iterations from the point where processing stopped. To use this feature, you must pass in both the blurred image and the PSF as cell arrays, for example, \{Blurred\} and \{INITPSF\}.

The deconvblind function returns the output image and the restored PSF as cell arrays. The output image cell array contains these four elements:
\begin{tabular}{ll}
\hline Element & Description \\
\hline output \(\{1\}\) & Original input image \\
\hline output \(\{2\}\) & Image produced by the last iteration \\
\hline output \(\{3\}\) & Image produced by the next to last iteration \\
\hline output \(\{4\}\) & \begin{tabular}{l} 
Internal information used by deconvlucy to know \\
where to restart the process
\end{tabular} \\
\hline
\end{tabular}

The PSF output cell array contains similar elements.
The deconvblind function supports several other optional arguments you can use to achieve the best possible result, such as specifying a damping parameter to handle additive noise in the blurred image. To see the impact of these optional arguments, as well as the functional option that allows you to place additional constraints on the PSF reconstruction, see the Image Processing Toolbox deblurring demos.

\section*{Creating Your Own Deblurring Functions}

All the toolbox deblurring functions perform deconvolution in the frequency domain, where the process becomes a simple matrix multiplication. To work in the frequency domain, the deblurring functions must convert the PSF you provide into an optical transfer function (OTF), using the psf2otf function. The toolbox also provides a function to convert an OTF into a PSF, otf2psf. The toolbox makes these functions available in case you want to create your own deblurring functions. (In addition, to aid this conversion between PSFs and OTFs, the toolbox also makes the padding function padarray available.)

\section*{Avoiding Ringing in Deblurred Images}

The discrete Fourier transform (DFT), used by the deblurring functions, assumes that the frequency pattern of an image is periodic. This assumption creates a high-frequency drop-off at the edges of images. In the figure, the shaded area represents the actual extent of the image; the unshaded area represents the assumed periodicity.


This high-frequency drop-off can create an effect called boundary related ringing in deblurred images. In this figure, note the horizontal and vertical patterns in the image.


To avoid ringing, use the edgetaper function to preprocess your images before passing them to the deblurring functions. The edgetaper function removes the high-frequency drop-off at the edge of an image by blurring the entire image and then replacing the center pixels of the blurred image with the original image. In this way, the edges of the image taper off to a lower frequency.

\section*{Color}

This chapter describes the toolbox functions that help you work with color image data. Note that "color" includes shades of gray; therefore much of the discussion in this chapter applies to grayscale images as well as color images.

Terminology (p. 13-2)

Working with Different Screen Bit Depths (p. 13-3)

Reducing the Number of Colors in an Image (p. 13-6)

Converting Color Data Between Color Spaces (p. 13-15)

Provides definitions of image processing terms used in this section

Describes how to determine the screen bit depth of your system and provides recommendations if you can change the bit depth
Describes how to use imapprox and rgb2ind to reduce the number of colors in an image, including information about dithering

Defines the concept of image color space and describes how to convert images between color spaces

\section*{Terminology}

An understanding of the following terms will help you to use this chapter.
\begin{tabular}{ll}
\hline Term & Definition \\
\hline approximation & \begin{tabular}{l} 
Method by which the software chooses replacement colors in the \\
event that direct matches cannot be found. The methods of \\
approximation discussed in this chapter are colormap mapping, \\
uniform quantization, and minimum variance quantization.
\end{tabular} \\
\hline indexed image & \begin{tabular}{l} 
Image whose pixel values are direct indices into an RGB colormap. \\
In MATLAB, an indexed image is represented by an array of class \\
uint8, uint16, or double. The colormap is always an m-by-3 array \\
of class double. This documentation often uses the variable name \(X\) \\
to represent an indexed image in memory, and map to represent the \\
colormap.
\end{tabular} \\
\hline intensity image & \begin{tabular}{l} 
Image consisting of intensity (grayscale) values. In MATLAB, \\
intensity images are represented by an array of class uint8, uint16, \\
or double. While intensity images are not stored with colormaps, \\
MATLAB uses a system colormap to display them. This \\
documentation often uses the variable name I to represent an \\
intensity image in memory. This term is synonymous with the term \\
grayscale.
\end{tabular} \\
\hline RGB image & \begin{tabular}{l} 
Image in which each pixel is specified by three values - one each \\
for the red, blue, and green components of the pixel's color. In \\
MATLAB, an RGB image is represented by an m-by-n-by-3 array of \\
class uint8, uint16, or double. This documentation often uses the \\
variable name RGB to represent an RGB image in memory.
\end{tabular} \\
\hline screen bit depth & \begin{tabular}{l} 
Number of bits per screen pixel.
\end{tabular} \\
\hline screen color resolution & \begin{tabular}{l} 
Number of distinct colors that can be produced by the screen.
\end{tabular} \\
\hline
\end{tabular}

\section*{Working with Different Screen Bit Depths}

Most computer displays use 8,16 , or 24 bits per screen pixel. The number of bits per screen pixel determines the display's screen bit depth. The screen bit depth determines the screen color resolution, which is how many distinct colors the display can produce.

Regardless of the number of colors your system can display, MATLAB can store and process images with very high bit depths: \(2^{24}\) colors for uint8 RGB images, \(2^{48}\) colors for uint16 RGB images, and \(2^{159}\) for double RGB images. These images are displayed best on systems with 24 -bit color, but usually look fine on 16 -bit systems as well. (For additional information about how MATLAB handles color, see the MATLAB graphics documentation.)
This section
- Describes how to determine your system's screen bit depth
- Provides guidelines for choosing a screen bit depth

\section*{Determining Screen Bit Depth}

To determine the bit depth of your system's screen, enter this command at the MATLAB prompt.
```

get(0,'ScreenDepth')
ans =

```

The integer MATLAB returns represents the number of bits per screen pixel:
\begin{tabular}{l|l}
\hline Value & Screen Bit Depth \\
\hline 8 & \begin{tabular}{l} 
8-bit displays support 256 colors. An 8-bit display can produce \\
any of the colors available on a 24-bit display, but only 256 \\
distinct colors can appear at one time. (There are 256 shades of \\
gray available, but if all 256 shades of gray are used, they take \\
up all the available color slots.)
\end{tabular} \\
\hline 16 & \begin{tabular}{l}
16 -bit displays usually use 5 bits for each color component, \\
resulting in 32 (i.e., \(2^{5}\) ) levels each of red, green, and blue. This \\
supports 32,768 (i.e., \(2^{15}\) ) distinct colors (of which 32 are shades \\
of gray). Some systems use the extra bit to increase the number \\
of levels of green that can be displayed. In this case, the number \\
of different colors supported by a 16-bit display is actually \\
64,536 (i.e. \(2^{16}\) ).
\end{tabular} \\
\hline 24 & \begin{tabular}{l}
24 -bit displays use 8 bits for each of the three color components, \\
resulting in 256 (i.e., \(2^{8}\) ) levels each of red, green, and blue. This \\
supports \(16,777,216\) (i.e., \(2^{24}\) ) different colors. (Of these colors, \\
256 are shades of gray. Shades of gray occur where R=G=B.) The \\
16 million possible colors supported by 24 -bit display can render \\
a lifelike image.
\end{tabular} \\
\hline 32 & \begin{tabular}{l}
32 -bit displays use 24 bits to store color information and use the \\
remaining 8 bits to store transparency data (alpha channel). For \\
information about how MATLAB supports the alpha channel,
\end{tabular} \\
see the section "Transparency" in the MATLAB graphics \\
documentation.
\end{tabular}

\section*{Choosing a Screen Bit Depth}

Depending on your system, you might be able to choose the screen bit depth you want to use. (There might be tradeoffs between screen bit depth and screen color resolution.) In general, 24 -bit display mode produces the best results. If you need to use a lower screen bit depth, 16 -bit is generally preferable to 8 -bit. However, keep in mind that a 16 -bit display has certain limitations, such as
- An image might have finer gradations of color than a 16 -bit display can represent. If a color is unavailable, MATLAB uses the closest approximation.
- There are only 32 shades of gray available. If you are working primarily with grayscale images, you might get better display results using 8 -bit display mode, which provides up to 256 shades of gray.

For information about reducing the number of colors used by an image, see "Reducing the Number of Colors in an Image" on page 13-6.

\section*{Reducing the Number of Colors in an Image}

This section describes how to reduce the number of colors in an indexed or RGB image. A discussion is also included about dithering, which is used by the toolbox's color-reduction functions (see below). Dithering is used to increase the apparent number of colors in an image.

The table below summarizes the Image Processing Toolbox functions for color reduction.
\begin{tabular}{ll}
\hline Function & Purpose \\
\hline imapprox & \begin{tabular}{l} 
Reduces the number of colors used by an indexed image, \\
enabling you specify the number of colors in the new \\
colormap.
\end{tabular} \\
\hline rgb2ind & \begin{tabular}{l} 
Converts an RGB image to an indexed image, enabling \\
you to specify the number of colors to store in the new \\
colormap.
\end{tabular} \\
\hline
\end{tabular}

On systems with 24 -bit color displays, RGB (true-color) images can display up to \(16,777,216\) (i.e., \(2^{24}\) ) colors. On systems with lower screen bit depths, RGB images are still displayed reasonably well, because MATLAB automatically uses color approximation and dithering if needed.
Indexed images, however, might cause problems if they have a large number of colors. In general, you should limit indexed images to 256 colors for the following reasons:
- On systems with 8-bit display, indexed images with more than 256 colors will need to be dithered or mapped and, therefore, might not display well.
- On some platforms, colormaps cannot exceed 256 entries.
- If an indexed image has more than 256 colors, MATLAB cannot store the image data in a uint8 array, but generally uses an array of class double instead, making the storage size of the image much larger (each pixel uses 64 bits).
- Most image file formats limit indexed images to 256 colors. If you write an indexed image with more than 256 colors (using imwrite) to a format that does not support more than 256 colors, you will receive an error.

\section*{Using rgb2ind}
rgb2ind converts an RGB image to an indexed image, reducing the number of colors in the process. This function provides the following methods for approximating the colors in the original image:
- Quantization
- Uniform quantization
- Minimum variance quantization
- Colormap mapping

The quality of the resulting image depends on the approximation method you use, the range of colors in the input image, and whether or not you use dithering. Note that different methods work better for different images. See "Dithering" on page 13-13 for a description of dithering and how to enable or disable it.

\section*{Quantization}

Reducing the number of colors in an image involves quantization. The function rgb2ind uses quantization as part of its color reduction algorithm. rgb2ind supports two quantization methods: uniform quantization and minimum variance quantization.
An important term in discussions of image quantization is \(R G B\) color cube, which is used frequently throughout this section. The RGB color cube is a three-dimensional array of all of the colors that are defined for a particular data type. Since RGB images in MATLAB can be of type uint8, uint16, or double, three possible color cube definitions exist. For example, if an RGB image is of class uint8, 256 values are defined for each color plane (red, blue, and green), and, in total, there will be \(2^{24}\) (or \(16,777,216\) ) colors defined by the color cube. This color cube is the same for all uint8 RGB images, regardless of which colors they actually use.

The uint8, uint16, and double color cubes all have the same range of colors. In other words, the brightest red in a uint8 RGB image appears the same as the brightest red in a double RGB image. The difference is that the double RGB color cube has many more shades of red (and many more shades of all colors). The following figure shows an RGB color cube for a uint8 image.


\section*{RGB Color Cube for uint8 Images}

Quantization involves dividing the RGB color cube into a number of smaller boxes, and then mapping all colors that fall within each box to the color value at the center of that box.

Uniform quantization and minimum variance quantization differ in the approach used to divide up the RGB color cube. With uniform quantization, the color cube is cut up into equal-sized boxes (smaller cubes). With minimum variance quantization, the color cube is cut up into boxes (not necessarily cubes) of different sizes; the sizes of the boxes depend on how the colors are distributed in the image.

Uniform Quantization. To perform uniform quantization, call rgb2ind and specify a tolerance. The tolerance determines the size of the cube-shaped boxes into which the RGB color cube is divided. The allowable range for a tolerance setting is \([0,1]\). For example, if you specify a tolerance of 0.1 , the edges of the boxes are one-tenth the length of the RGB color cube and the maximum total number of boxes is
```

n = (floor(1/tol)+1)^3

```

The commands below perform uniform quantization with a tolerance of 0.1.
```

RGB = imread('peppers.png');
[x,map] = rgb2ind(RGB, 0.1);

```

The following figure illustrates uniform quantization of a uint8 image. For clarity, the figure shows a two-dimensional slice (or color plane) from the color cube where red \(=0\) and green and blue range from 0 to 255 . The actual pixel values are denoted by the centers of the x's.


\section*{Uniform Quantization on a Slice of the RGB Color Cube}

After the color cube has been divided, all empty boxes are thrown out. Therefore, only one of the boxes is used to produce a color for the colormap. As shown earlier, the maximum length of a colormap created by uniform quantization can be predicted, but the colormap can be smaller than the prediction because rgb2ind removes any colors that do not appear in the input image.

Minimum Variance Quantization. To perform minimum variance quantization, call rgb2ind and specify the maximum number of colors in the output image's colormap. The number you specify determines the number of boxes into which
the RGB color cube is divided. These commands use minimum variance quantization to create an indexed image with 185 colors.
```

RGB = imread('peppers.png');
[X,map] = rgb2ind(RGB,185);

```

Minimum variance quantization works by associating pixels into groups based on the variance between their pixel values. For example, a set of blue pixels might be grouped together because they have a small variance from the center pixel of the group.

In minimum variance quantization, the boxes that divide the color cube vary in size, and do not necessarily fill the color cube. If some areas of the color cube do not have pixels, there are no boxes in these areas.

While you set the number of boxes, \(n\), to be used by rgb2ind, the placement is determined by the algorithm as it analyzes the color data in your image. Once the image is divided into n optimally located boxes, the pixels within each box are mapped to the pixel value at the center of the box, as in uniform quantization.

The resulting colormap usually has the number of entries you specify. This is because the color cube is divided so that each region contains at least one color that appears in the input image. If the input image uses fewer colors than the number you specify, the output colormap will have fewer than \(n\) colors, and the output image will contain all of the colors of the input image.

The following figure shows the same two-dimensional slice of the color cube as shown in the preceding figure (demonstrating uniform quantization). Eleven boxes have been created using minimum variance quantization.


\section*{Minimum Variance Quantization on a Slice of the RGB Color Cube}

For a given number of colors, minimum variance quantization produces better results than uniform quantization, because it takes into account the actual data. Minimum variance quantization allocates more of the colormap entries to colors that appear frequently in the input image. It allocates fewer entries to colors that appear infrequently. As a result, the accuracy of the colors is higher than with uniform quantization. For example, if the input image has many shades of green and few shades of red, there will be more greens than reds in the output colormap. Note that the computation for minimum variance quantization takes longer than that for uniform quantization.

\section*{Colormap Mapping}

If you specify an actual colormap to use, rgb2ind uses colormap mapping (instead of quantization) to find the colors in the specified colormap that best match the colors in the RGB image. This method is useful if you need to create images that use a fixed colormap. For example, if you want to display multiple indexed images on an 8-bit display, you can avoid color problems by mapping them all to the same colormap. Colormap mapping produces a good approximation if the specified colormap has similar colors to those in the RGB image. If the colormap does not have similar colors to those in the RGB image, this method produces poor results.

This example illustrates mapping two images to the same colormap. The colormap used for the two images is created on the fly using the MATLAB function colorcube, which creates an RGB colormap containing the number of colors that you specify. (colorcube always creates the same colormap for a given number of colors.) Because the colormap includes colors all throughout the RGB color cube, the output images can reasonably approximate the input images.
```

RGB1 = imread('autumn.tif');
RGB2 = imread('peppers.png');
X1 = rgb2ind(RGB1,colorcube(128));
X2 = rgb2ind(RGB2,colorcube(128));

```

Note The function subimage is also helpful for displaying multiple indexed images. For more information, see "Displaying Multiple Images in the Same Figure" on page 3-20 or the reference page for subimage.

\section*{Reducing Colors in an Indexed Image}

Use imapprox when you need to reduce the number of colors in an indexed image. imapprox is based on rgb2ind and uses the same approximation methods. Essentially, imapprox first calls ind2rgb to convert the image to RGB format, and then calls rgb2ind to return a new indexed image with fewer colors.

For example, these commands create a version of the trees image with 64 colors, rather than the original 128.
```

load trees
[Y,newmap] = imapprox(X,map,64);
imshow(Y, newmap);

```

The quality of the resulting image depends on the approximation method you use, the range of colors in the input image, and whether or not you use dithering. Note that different methods work better for different images. See "Dithering" on page 13-13 for a description of dithering and how to enable or disable it.

\section*{Dithering}

When you use rgb2ind or imapprox to reduce the number of colors in an image, the resulting image might look inferior to the original, because some of the colors are lost. rgb2ind and imapprox both perform dithering to increase the apparent number of colors in the output image. Dithering changes the colors of pixels in a neighborhood so that the average color in each neighborhood approximates the original RGB color.

For an example of how dithering works, consider an image that contains a number of dark orange pixels for which there is no exact match in the colormap. To create the appearance of this shade of orange, the Image Processing Toolbox selects a combination of colors from the colormap, that, taken together as a six-pixel group, approximate the desired shade of pink. From a distance, the pixels appear to be the correct shade, but if you look up close at the image, you can see a blend of other shades. This example loads a 24 -bit image, and then use rgb2ind to create two indexed images with just eight colors each:

1 Read image and display it.
```

rgb=imread('onion.png');
imshow(rgb);

```


2 Create an indexed image with eight colors and without dithering.
```

[X_no_dither,map]=rgb2ind(rgb,8,'nodither');

```
figure, imshow(X_no_dither,map);


3 Create an indexed image using eight colors with dithering.
```

[X_dither,map]=rgb2ind(rgb,8,'dither');
figure, imshow(X_dither,map);

```


Notice that the dithered image has a larger number of apparent colors but is somewhat fuzzy-looking. The image produced without dithering has fewer apparent colors, but an improved spatial resolution when compared to the dithered image. One risk in doing color reduction without dithering is that the new image can contain false contours.

\section*{Converting Color Data Between Color Spaces}

The Image Processing Toolbox represents colors as RGB values, either directly (in an RGB image) or indirectly (in an indexed image, where the colormap is stored in RGB format). However, there are other models besides RGB for representing colors numerically. The various models are referred to as color spaces because most of them can be mapped into a \(2-\mathrm{D}, 3\)-D, or \(4-\mathrm{D}\) coordinate system; thus, a color specification is made up of coordinates in a \(2-\mathrm{D}, 3-\mathrm{D}\), or 4 -D space.

The various color spaces exist because they present color information in ways that make certain calculations more convenient or because they provide a way to identify colors that is more intuitive. For example, the RGB color space defines a color as the percentages of red, green, and blue hues mixed together. Other color models describe colors by their hue (green), saturation (dark green), and luminance, or intensity.

The toolbox supports these color spaces by providing a means for converting color data from one color space to another through a mathematical transformation.

This section
- Describes how to convert color data between these color spaces
- Describes how to perform color space conversions using ICC profiles
- Describes some toolbox functions for converting between the RGB color space and three commonly used color spaces: YIQ, HSV, and YCbCr

\section*{Converting Between Device-Independent Color Spaces}

The standard terms used to describe colors, such as hue, brightness, and intensity, are subjective and make comparisons difficult.
In 1931, the International Commission on Illumination, known by the acronym CIE, for Commission Internationale de l'Éclairage, studied human color perception and developed a standard, called the CIE XYZ. This standard defined a three-dimensional space where three values, called tristimulus values, define a color. This standard is still widely used today.

In the decades since that initial specification, the CIE has developed several additional color space specifications that attempt to provide alternative color
representations that are better suited to some purposes than XYZ. For example, in 1976, in an effort to get a perceptually uniform color space that could be correlated with the visual appearance of colors, the CIE created the \(L^{*} a * b^{*}\) color space.

The toolbox supports conversions between members of the CIE family of device-independent color spaces. In addition, the toolbox also supports conversions between these CIE color spaces and the sRGB color space. This color space was defined by an industry group to describe the characteristics of a typical PC monitor.

This section
- Lists the supported device-independent color spaces
- Provides an example of how to perform a conversion
- Provides guidelines about data type support of the various conversions

\section*{Supported Conversions}

This table lists all the device-independent color spaces that the toolbox supports.
\begin{tabular}{l|l|l}
\hline \begin{tabular}{l} 
Color \\
Space
\end{tabular} & Description & \begin{tabular}{l} 
Supported \\
Conversions
\end{tabular} \\
\hline\(X Y Z\) & \begin{tabular}{l} 
The original, 1931 CIE color space \\
specification.
\end{tabular} & \begin{tabular}{l}
\(x y Y, u v l, u^{\prime} v^{\prime} L\), \\
and \(L^{*} a^{*} b^{*}\)
\end{tabular} \\
\hline\(x y Y\) & \begin{tabular}{l} 
CIE specification that provides \\
normalized chromaticity values. The \\
capital Y value represents luminance \\
and is the same as in XYZ.
\end{tabular} & \(X Y Z\) \\
\hline\(u v L\) & \begin{tabular}{l} 
CIE specification that attempts to \\
make the chromaticity plane more \\
visually uniform. \(l\) is luminance and is \\
the same as \(Y\) in XYZ.
\end{tabular} & \(X Y Z\) \\
\hline\(u^{\prime} v^{\prime} L\) & \begin{tabular}{l} 
CIE specification in which \(u\) and \(v\) are \\
rescaled to improve uniformity.
\end{tabular} & \(X Y Z\) \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline \begin{tabular}{l} 
Color \\
Space
\end{tabular} & Description & \begin{tabular}{l} 
Supported \\
Conversions
\end{tabular} \\
\hline\(L^{*} a^{*} b^{*}\) & \begin{tabular}{l} 
CIE specification that attempts to \\
make the luminance scale more \\
perceptually uniform. \(L^{*}\) is a \\
nonlinear scaling of \(L\), normalized to a \\
reference white point.
\end{tabular} & \(X Y Z\) \\
\hline\(L^{*} c h\) & \begin{tabular}{l} 
CIE specification where \(c\) is chroma \\
and \(h\) is hue. These values are a polar \\
coordinate conversion of \(a^{*}\) and \(b^{*}\) in
\end{tabular} & \(L^{*} a^{*} b^{*}\) \\
\hline\(s R G B\) & \begin{tabular}{l}
\(L^{*} a^{*} b^{*}\).
\end{tabular} & \begin{tabular}{l} 
Standard adopted by major \\
manufacturers that characterizes the \\
average PC monitor.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example: Performing a Color Space Conversion}

To illustrate a conversion between two device-independent color spaces, this example reads an RGB color image into the MATLAB workspace and converts the color data to the XYZ color space:

1 Import color space data. This example reads an RGB color image into the MATLAB workspace.
I_rgb = imread('peppers.png');
2 Create a color transformation structure. A color transformation structure defines the conversion between two color spaces. You use the makecform function to create the structure, specifying a transformation type string as an argument.

This example creates a color transformation structure that defines a conversion from RGB color data to \(X Y Z\) color data.

C = makecform('srgb2xyz');
3 Perform the conversion. You use the applycform function to perform the conversion, specifying as arguments the color data you want to convert and
the color transformation structure that defines the conversion. The applycform function returns the converted data.
I_xyz = applycform \(\left(I_{-}\right.\)rgb, C);
whos
Name

C
I_xyz

\section*{Color Space Data Encodings}

When you convert between two device-independent color spaces, the data type used to encode the color data can sometimes change, depending on what encodings the color spaces support. In the preceding example, the original image is uint 8 data. The XYZ conversion is uint16 data. The XYZ color space does not define a uint8 encoding. The following table lists the data types that can be used to represent values in all the device-independent color spaces.
\begin{tabular}{l|l}
\hline Color Space & Encodings \\
\hline XYZ & uint16 or double \\
\hline xyY & double \\
\hline uvL & double \\
\hline u'v'L \(^{\prime}\) & double \\
\hline L*a*b* \(^{\text {L*Ch }}\) & uint8, uint16, or double \\
\hline SRGB & double \\
\hline
\end{tabular}

As the table indicates, certain color spaces have data type limitations. For example, the XYZ color space does not define a uint8 encoding. If you convert 8 -bit CIE LAB data into the XYZ color space, the data is returned in uint16 format. If you want the returned XYZ data to be in the same format as the input LAB data, you can use one of the following toolbox color space format conversion functions.
- lab2double
- lab2uint8
- lab2uint16
- xyz2double
- xyz2uint16

\section*{Performing Profile-Based Conversions}

If two colors have the same CIE colorimetry, they will match if viewed under the same conditions. However, because color images are typically produced for a wide variety of viewing environments, it is necessary to go beyond simple application of the CIE system.

For this reason, the International Color Consortium (ICC) has defined a Color Management System (CMS) that provides a means for communicating color data among input, output, and display devices. The CMS uses device profiles that contain color information specific to a particular device. Vendors that support CMS provide profiles that characterize the color reproduction of their devices, and methods, called Color Management Modules (CMM), that interpret the contents of each profile and perform the necessary image processing.

Device profiles contain the information that color management systems need to translate color data between devices. Any conversion between color spaces is a mathematical transformation from some domain space to a range space. With profile-based conversions, the domain space is often called the source space and the range space is called the destination space. In the ICC color management model, profiles are used to represent the source and destination spaces.
The Image Processing Toolbox can read ICC profiles and perform the transformations and image processing they specify. This section includes the following topics:
- Reading a profile into MATLAB
- Using ICC profiles with a color transformation structure
- Specifying the rendering intent

For more information about color management systems, go to the International Color Consortium Web site, www. color.org. There you can download the ICC profile specification (ICC.1:2001-04).

\section*{Reading ICC Profiles}

To read an ICC profile into the MATLAB workspace, use the iccread function. In this example, the function reads in the profile for the color space that describes color monitors.
```

prof = iccread('sRGB.icm');

```
iccread returns the contents of the profile in a structure. All profiles contain a header, a tag table, and a series of tagged elements. The header contains general information about the profile, such as the device class, the device color space, and the file size. The tagged elements, or tags, are the data constructs that contain the information used by the CMM.

For more information about the contents of a profile, see the iccread function reference page and the ICC specification.

\section*{Example: Performing a Profile-Based Conversion}

To illustrate a profile-based color space conversion, this section presents an example that converts color data from the RGB space of a monitor to the CMYK space of a printer. This conversion requires two profiles: a monitor profile and a printer profile. The source color space in this example is monitor RGB and the destination color space is printer CMYK:

1 Import RGB color space data. This example imports an RGB color image into the MATLAB workspace.

I_rgb = imread('peppers.png');
2 Read ICC profiles. Read the source and destination profiles into the MATLAB workspace. This example uses the sRGB profile as the source profile. The sRGB profile is an industry-standard color space that describes a color monitor.
```

inprof = iccread('sRGB.icm');

```

For the destination profile, the example uses a profile that describes a particular color printer. The printer vendor supplies this profile. (The following profile and several other useful profiles can be obtained as downloads from www. adobe.com.)
```

outprof = iccread('USSheetfedCoated.icc');

```

3 Create a color transformation structure. You must create a color transformation structure to define the conversion between the color spaces in the profiles. You use the makecform function to create the structure, specifying a transformation type string as an argument.

Note The color space conversion might involve an intermediate conversion into a device-independent color space, called the Profile Connection Space (PCS), but this is transparent to the user.

This example creates a color transformation structure that defines a conversion from RGB color data to CMYK color data.

C = makecform('icc',inprof,outprof);
4 Perform the conversion. You use the applycform function to perform the conversion, specifying as arguments the color data you want to convert and the color transformation structure that defines the conversion. The function returns the converted data.
```

I_cmyk = applycform(I_rgb,C);

```

\section*{Specifying the Rendering Intent}

For most devices, the range of reproducible colors is much smaller than the range of colors represented by the PCS. It is for this reason that four rendering intents (or gamut mapping techniques) are defined in the profile format. Each one has distinct aesthetic and color-accuracy tradeoffs.

When you create a profile-based color transformation structure, you can specify the rendering intent for the source as well as the destination profiles. For more information, see the makecform reference information.

\section*{Converting Between Device-Dependent Color Spaces}

The toolbox includes functions that you can use to convert RGB data to several common device-dependent color spaces, and vice versa:
- YIQ
- YCbCr
- Hue, saturation, value (HSV)

\section*{YIQ Color Space}

The National Television Systems Committee (NTSC) defines a color space known as YIQ. This color space is used in televisions in the United States. One of the main advantages of this format is that grayscale information is separated from color data, so the same signal can be used for both color and black and white sets.

In the NTSC color space, image data consists of three components: luminance (Y), hue (I), and saturation (Q). The first component, luminance, represents grayscale information, while the last two components make up chrominance (color information).

The function rgb2ntsc converts colormaps or RGB images to the NTSC color space. ntsc2rgb performs the reverse operation.

For example, these commands convert an RGB image to NTSC format.
```

RGB = imread('peppers.png');
YIQ = rgb2ntsc(RGB);

```

Because luminance is one of the components of the NTSC format, the RGB to NTSC conversion is also useful for isolating the gray level information in an image. In fact, the toolbox functions rgb2gray and ind2gray use the rgb2ntsc function to extract the grayscale information from a color image.

For example, these commands are equivalent to calling rgb2gray.
```

YIQ = rgb2ntsc(RGB);
I = YIQ(:,:,1);

```

Note In the YIQ color space, I is one of the two color components, not the grayscale component.

\section*{YCbCr Color Space}

The YCbCr color space is widely used for digital video. In this format, luminance information is stored as a single component ( Y ), and chrominance information is stored as two color-difference components ( Cb and Cr ). Cb
represents the difference between the blue component and a reference value. Cr represents the difference between the red component and a reference value.

YCbCr data can be double precision, but the color space is particularly well suited to uint8 data. For uint8 images, the data range for \(Y\) is [16, 235], and the range for Cb and Cr is [16, 240]. YCbCr leaves room at the top and bottom of the full uint8 range so that additional (nonimage) information can be included in a video stream.

The function rgb2ycber converts colormaps or RGB images to the YCbCr color space. ycbcr2rgb performs the reverse operation.

For example, these commands convert an RGB image to YCbCr format.
```

RGB = imread('peppers.png');
YCBCR = rgb2ycbcr(RGB);

```

\section*{HSV Color Space}

The HSV color space (hue, saturation, value) is often used by people who are selecting colors (e.g., of paints or inks) from a color wheel or palette, because it corresponds better to how people experience color than the RGB color space does. The functions rgb2hsv and hsv2rgb convert images between the RGB and HSV color spaces.
As hue varies from 0 to 1.0 , the corresponding colors vary from red through yellow, green, cyan, blue, magenta, and back to red, so that there are actually red values both at 0 and 1.0. As saturation varies from 0 to 1.0, the corresponding colors (hues) vary from unsaturated (shades of gray) to fully saturated (no white component). As value, or brightness, varies from 0 to 1.0, the corresponding colors become increasingly brighter.

The following figure illustrates the HSV color space.


\section*{Illustration of the HSV Color Space}

The rgb2hsv function converts colormaps or RGB images to the HSV color space. hsv2rgb performs the reverse operation. These commands convert an RGB image to the HSV color space.
```

RGB = imread('peppers.png');
HSV = rgb2hsv(RGB);

```

For closer inspection of the HSV color space, the next block of code displays the separate color planes (hue, saturation, and value) of an HSV image.
```

RGB=reshape(ones(64,1)*reshape(jet(64),1,192),[64,64,3]);
HSV=rgb2hsv(RGB);
H=HSV(:,:,1);
S=HSV(:,:,2);
V=HSV(:,:,3);
imshow(H)
figure, imshow(S);
figure, imshow(V);
figure, imshow(RGB);

```


\section*{The Separated Color Planes of an HSV Image}

As the hue plane image in the preceding figure illustrates, hue values make a linear transition from high to low. If you compare the hue plane image against the original image, you can see that shades of deep blue have the highest values, and shades of deep red have the lowest values. (As stated previously, there are values of red on both ends of the hue scale. To avoid confusion, the sample image uses only the red values from the beginning of the hue range.)

Saturation can be thought of as the purity of a color. As the saturation plane image shows, the colors with the highest saturation have the highest values and are represented as white. In the center of the saturation image, notice the various shades of gray. These correspond to a mixture of colors; the cyans, greens, and yellow shades are mixtures of true colors. Value is roughly equivalent to brightness, and you will notice that the brightest areas of the value plane correspond to the brightest colors in the original image.

13 Color

\section*{Function Reference}

This section describes the Image Processing Toolbox functions.
\begin{tabular}{ll} 
Functions - By Category (p. 14-2) & \begin{tabular}{l} 
Contains a group of tables that organize the toolbox \\
functions into category groups
\end{tabular} \\
\begin{tabular}{ll} 
Functions - Alphabetical List & Contains separate reference pages for each toolbox \\
(p. 14-15) & function
\end{tabular}
\end{tabular}

\section*{Functions - By Category}

This section provides brief descriptions of all the functions in the Image Processing Toolbox. The functions are listed in tables in the following broad categories.

If you know the name of a function, use "Functions - Alphabetical List" to find the reference page.

Image Input, Output, and Display (p. 14-2)

Spatial Transformation and Registration (p. 14-4)

Image Analysis and Statistics (p. 14-5)

Image Enhancement and Restoration (p. 14-6)

Linear Filtering and
Transforms (p. 14-7)
Morphological Operations (p. 14-9)

Region-Based, Neighborhood, and Block Processing (p. 14-11)
Colormap and Color Space Functions (p. 14-12)
Miscellaneous Functions (p. 14-13)

Functions for importing, exporting, and displaying images and converting between image formats

Functions for performing spatial transformations and image registration
Functions for performing image analysis and getting pixel values and statistics

Functions for image enhancement and restoration, such as deblurring

Functions for creating and using linear filters and transforms

Functions for performing morphological image processing

Functions to define regions of interest and operate on these regions

Functions for working with image color

Functions that perform image arithmetic, array operations, and set and get Image Processing Toolbox preferences

\section*{Image Input, Output, and Display}
- Image Display (p. 14-3)
- Image File I/O (p. 14-3)
- Image Types and Type Conversions (p. 14-3)

\section*{Image Display}
\begin{tabular}{ll} 
colorbar & Display color bar (MATLAB function) \\
getimage & Get image data from axes \\
image & Create and display image object (MATLAB function) \\
imagesc & Scale data and display as image (MATLAB function) \\
immovie & Make movie from multiframe indexed image \\
imshow & Display image in a MATLAB figure window \\
imview & Display image in the Image Viewer \\
montage & Display multiple image frames as rectangular montage \\
subimage & Display multiple images in single figure \\
truesize & Adjust display size of image \\
warp & Display image as texture-mapped surface \\
zoom & Zoom in and out of image or 2-D plot (MATLAB function)
\end{tabular}

\section*{Image File I/O}
\begin{tabular}{ll} 
dicominfo & Read metadata from a DICOM message \\
dicomread & Read a DICOM image \\
dicomuid & Generate DICOM unique identifier \\
dicomwrite & Write a DICOM image \\
imfinfo & Return information about image file (MATLAB function) \\
imread & Read image file (MATLAB function) \\
imwrite & Write image file (MATLAB function)
\end{tabular}

\section*{Image Types and Type Conversions}
dither Convert image using dithering
double Convert data to double precision (MATLAB function)
gray2ind Convert intensity image to indexed image
\begin{tabular}{ll} 
grayslice & \begin{tabular}{l} 
Create indexed image from intensity image by \\
thresholding
\end{tabular} \\
graythresh & Compute global image threshold using Otsu's method \\
im2bw & Convert image to binary image by thresholding \\
im2double & \begin{tabular}{l} 
Convert image array to double precision \\
Convert image to instance of Java image object \\
(MATLAB function)
\end{tabular} \\
im2java & Convert image to instance of Java buffered image object \\
im2java2d & Convert image array to 16-bit unsigned integers \\
im2uint16 & Convert image array to 8-bit unsigned integers \\
im2uint8 & \begin{tabular}{l} 
Convert indexed image to intensity image
\end{tabular} \\
ind2gray & Return true for binary image \\
ind2rgb & Return true for intensity image \\
isbw & Return true for indexed image \\
isgray & \begin{tabular}{l} 
Return true for RGB image \\
isind \\
isrgb
\end{tabular} \\
\hline Convert a label matrix to an RGB image \\
mat2gray & \begin{tabular}{l} 
Convert matrix to intensity image
\end{tabular} \\
rgb2gray & Convert RGB image or colormap to grayscale \\
rgb2ind & Convert RGB image to indexed image \\
uint16 & \begin{tabular}{l} 
Convert data to unsigned 16-bit integers (MATLAB \\
function)
\end{tabular} \\
uint8 & \begin{tabular}{l} 
Convert data to unsigned 8-bit integers (MATLAB \\
function)
\end{tabular} \\
&
\end{tabular}

\section*{Spatial Transformation and Registration}
- Spatial Transformations (p. 14-5)
- Image Registration (p. 14-5)
\begin{tabular}{ll} 
Spatial Transformations \\
checkerboard & Create checkerboard image \\
findbounds & Find output bounds for spatial transformation \\
fliptform & Flip the input and output roles of a TFORM structure \\
imcrop & Crop image \\
imresize & Resize image \\
imrotate & Rotate image \\
interp2 & 2-D data interpolation (MATLAB function) \\
imtransform & Apply 2-D spatial transformation to image \\
makeresampler & Create resampling structure \\
maketform & Create geometric transformation structure \\
tformarray & Geometric transformation of a multidimensional array \\
tformfwd & Apply forward geometric transformation \\
tforminv & Apply inverse geometric transformation \\
& \\
Image Registration \\
cp2tform & Infer geometric transformation from control point pairs \\
cpcorr & Tune control point locations using cross-correlation \\
cpselect & Control point selection tool \\
cpstruct2pairs & Convert CPSTRUCT to valid pairs of control points \\
normxcorr2 & Normalized two-dimensional cross-correlation \\
Image Analysis and Statistics \\
- Image Analysis (p. 14-6) \\
- Pixel Values and Statistics (p. 14-6)
\end{tabular}

\section*{Image Analysis}
\begin{tabular}{ll} 
edge & Find edges in intensity image \\
qtdecomp & Perform quadtree decomposition
\end{tabular}
qtgetblk Get block values in quadtree decomposition
qtsetblk Set block values in quadtree decomposition

\section*{Pixel Values and Statistics}
corr2 Compute 2-D correlation coefficient
imcontour Create contour plot of image data
imhist Display histogram of image data
impixel Determine pixel color values
improfile Compute pixel-value cross-sections along line segments
mean2 Compute mean of matrix elements
pixval Display information about image pixels
regionprops Measure properties of image regions
std2 Compute standard deviation of matrix elements

\section*{Image Enhancement and Restoration}
- Image Enhancement (p. 14-7)
- Image Restoration (Deblurring) (p. 14-7)

\section*{Image Enhancement}
\begin{tabular}{ll} 
adapthisteq & Perform adaptive histogram equalization using CLAHE \\
decorrstretch & Apply a decorrelation stretch to a multichannel image \\
histeq & Enhance contrast using histogram equalization
\end{tabular}

\section*{Linear Filtering and Transforms}
- Linear Filtering (p. 14-8)
- Linear 2-D Filter Design (p. 14-8)
- Image Transforms (p. 14-8)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Linear Filtering} \\
\hline conv2 & Perform 2-D convolution (MATLAB function) \\
\hline convmtx2 & Compute 2-D convolution matrix \\
\hline convn & Perform N-D convolution (MATLAB function) \\
\hline filter2 & Perform 2-D filtering (MATLAB function) \\
\hline fspecial & Create predefined filters \\
\hline imfilter & Multidimensional image filtering \\
\hline \multicolumn{2}{|l|}{Linear 2-D Filter Design} \\
\hline freqspace & Determine 2-D frequency response spacing (MATLAB function.) \\
\hline freqz2 & Compute 2-D frequency response \\
\hline fsamp2 & Design 2-D FIR filter using frequency sampling \\
\hline ftrans2 & Design 2-D FIR filter using frequency transformation \\
\hline fwind1 & Design 2-D FIR filter using 1-D window method \\
\hline fwind2 & Design 2-D FIR filter using 2-D window method \\
\hline \multicolumn{2}{|l|}{Image Transforms} \\
\hline dct2 & Compute 2-D discrete cosine transform \\
\hline dctmtx & Compute discrete cosine transform matrix \\
\hline fan2para & Convert fan-beam projection data to parallel-beam \\
\hline fanbeam & Compute fan-beam transform \\
\hline fft2 & Compute 2-D fast Fourier transform (MATLAB function) \\
\hline \(f f t n\) & Compute N-D fast Fourier transform (MATLAB function) \\
\hline fftshift & Reverse quadrants of output of FFT (MATLAB function) \\
\hline idct2 & Compute 2-D inverse discrete cosine transform \\
\hline ifft2 & Compute 2-D inverse fast Fourier transform (MATLAB function) \\
\hline
\end{tabular}
\begin{tabular}{ll} 
ifftn & \begin{tabular}{l} 
Compute N-D inverse fast Fourier transform (MATLAB \\
function)
\end{tabular} \\
ifanbeam & Compute inverse fan-beam transform \\
iradon & Compute inverse Radon transform \\
para2fan & Convert parallel-beam projections to fan-beam \\
phantom & Generate a head phantom image \\
radon & Compute Radon transform
\end{tabular}

\section*{Morphological Operations}
- Intensity and Binary Images (p. 14-9)
- Binary Images (p. 14-10)
- Structuring Element (STREL) Creation and Manipulation (p. 14-11)

Intensity and Binary Images
\begin{tabular}{ll} 
conndef & Default connectivity array \\
imbothat & Perform bottom-hat filtering \\
imclearborder & Suppress light structures connected to image border \\
imclose & Close image \\
imdilate & Dilate image \\
imerode & Erode image \\
imextendedmax & Find extended-maxima transform \\
imextendedmin & Find extended-minima transform \\
imfill & Fill image regions \\
imhmax & Calculate H-maxima transform \\
imhmin & Calculate H-minima transform \\
imimposemin & Impose minima \\
imopen & Open image
\end{tabular}
\begin{tabular}{ll} 
imreconstruct & Perform morphological reconstruction \\
imregionalmax & Find regional maxima of image \\
imregionalmin & Find regional minima of image \\
imtophat & Perform tophat filtering \\
watershed & Find image watershed regions
\end{tabular}

\section*{Binary Images}
applylut Perform neighborhood operations using lookup tables
bwarea
bwareaopen
bwdist
bweuler
bwhitmiss
bwlabel
bwlabeln
bwmorph
bwpack
bwperim
bwselect
bwulterode
bwunpac
imregionalmin
imtophat
makelut

Area of objects in binary image
Binary area open; remove small objects
Distance transform
Euler number of binary image
Binary hit-and-miss operation
Label connected components in 2-D binary image
Label connected components in N-D binary image
Perform morphological operations on binary image
Pack binary image
Find perimeter of objects in binary image
Select objects in binary image
Ultimate erosion
Unpack a packed binary image
Regional minima of image
Perform tophat filtering
Construct lookup table for use with applylut

\section*{Structuring Element (STREL) Creation and Manipulation}
\begin{tabular}{ll} 
getheight & Get the height of a structuring element \\
getneighbors & Get structuring element neighbor locations and heights \\
getnhood & Get structuring element neighborhood \\
getsequence & Extract sequence of decomposed structuring elements \\
isflat & Return true for flat structuring element \\
reflect & Reflect structuring element \\
strel & Create morphological structuring element \\
translate & Translate structuring element
\end{tabular}

\section*{Region-Based, Neighborhood, and Block Processing}
- Region-Based Processing (p. 14-11)
- Neighborhood and Block Processing (p. 14-12)

\section*{Region-Based Processing}
\begin{tabular}{ll} 
bwboundaries & Trace region boundaries in binary image \\
bwtraceboundary & Trace object in binary image \\
poly2mask & Convert region-of-interest polygon to mask \\
roicolor & Select region of interest, based on color \\
roifill & Smoothly interpolate within arbitrary region \\
roifilt2 & Filter a region of interest \\
roipoly & Select polygonal region of interest
\end{tabular}

\section*{Neighborhood and Block Processing}
\begin{tabular}{ll} 
bestblk & Choose block size for block processing \\
blkproc & Implement distinct block processing for image \\
col2im & Rearrange matrix columns into blocks \\
colfilt & \begin{tabular}{l} 
Perform neighborhood operations using columnwise \\
functions
\end{tabular} \\
im2col & Rearrange image blocks into columns \\
nlfilter & Perform general sliding-neighborhood operations
\end{tabular}

\section*{Colormap and Color Space Functions}
- Colormap Manipulation (p. 14-12)
- Color Space Conversions (p. 14-13)

\section*{Colormap Manipulation}
brighten Brighten or darken colormap (MATLAB function)
cmpermute Rearrange colors in colormap
cmunique Find unique colormap colors and corresponding image
colormap Set or get color lookup table (MATLAB function)
imapprox Approximate indexed image by one with fewer colors
rgbplot Plot RGB colormap components (MATLAB function)

\section*{Color Space Conversions}
applycform Apply device-independent color space transformation hsv2rgb Convert HSV values to RGB color space (MATLAB function)
iccread Read ICC color profile
lab2double Convert \(L^{*} a^{*} b^{*}\) color values to double
lab2uint16 Convert \(L^{*} a^{*} b^{*}\) color values to uint16
lab2uint8 Convert \(L^{*} a^{*} b^{*}\) color values to uint8
makecform Create device-independent color space transform structure
ntsc2rgb Convert NTSC values to RGB color space
rgb2hsv Convert RGB values to HSV color space (MATLAB function)
rgb2ntsc Convert RGB values to NTSC color space
rgb2ycber Convert RGB values to YCbCr color space
whitepoint Returns XYZ values of standard illuminants
xyz2double Convert XYZ color values to double
xyz2uint16 Convert XYZ color values to uint16
ycber2rgb Convert YCbCr values to RGB color space

\section*{Miscellaneous Functions}
- Image Arithmetic (p. 14-14)
- Toolbox Preferences (p. 14-14)
- Interactive Mouse Utility Functions (p. 14-14)
- Array Operations (p. 14-14)
- Demos (p. 14-14)

\section*{Image Arithmetic}
\begin{tabular}{ll} 
imabsdiff & Compute absolute difference of two images \\
imadd & Add two images, or add constant to image \\
imcomplement & Complement image \\
imdivide & Divide two images, or divide image by constant \\
imlincomb & Compute linear combination of images \\
immultiply & Multiply two images, or multiply image by constant \\
imsubtract & Subtract two images, or subtract constant from image \\
ippl & \begin{tabular}{l} 
Check for presence of Intel Performance Primitives \\
Library (IPPL)
\end{tabular}
\end{tabular}

\section*{Toolbox Preferences}
iptgetpref Get value of Image Processing Toolbox preference iptsetpref Set value of Image Processing Toolbox preference

\section*{Interactive Mouse Utility Functions}
getline Select polyline with mouse
getpts Select points with mouse
getrect Select rectangle with mouse

\section*{Array Operations}
circshift Shift array circularly (MATLAB function)
padarray Pad an array

\section*{Demos}
iptdemos Display index of Image Processing Toolbox demos

\section*{Functions - Alphabetical List}

This section contains detailed descriptions of all toolbox functions. Each function reference page contains some or all of this information:
- The function name
- The purpose of the function
- The function syntax

All valid input argument and output argument combinations are shown. In some cases, an ellipsis (. . .) is used for the input arguments. This means that all preceding input argument combinations are valid for the specified output argument(s).
- A description of each argument
- A description of the function
- Additional remarks about usage
- An example of usage
- Related functions

Purpose
Perform contrast-limited adaptive histogram equalization (CLAHE)

\author{
Syntax \\ Description
}
```

J = adapthisteq(I)
J = adapthisteq(I,param1,val1,param2,val2...)

```
\(J=\) adapthisteq(I) enhances the contrast of the intensity image I by transforming the values using contrast-limited adaptive histogram equalization (CLAHE).

CLAHE operates on small regions in the image, called tiles, rather than the entire image. Each tile's contrast is enhanced, so that the histogram of the output region approximately matches the histogram specified by the 'Distribution ' parameter. The neighboring tiles are then combined using bilinear interpolation to eliminate artificially induced boundaries. The contrast, especially in homogeneous areas, can be limited to avoid amplifying any noise that might be present in the image.
\(J=\) adapthisteq(I, param1, val1, param2,val2...) specifies any of the additional parameter/value pairs listed in the following table. Parameter names can be abbreviated, and case does not matter.
\begin{tabular}{l|l}
\hline Parameter & Value \\
\hline 'NumTiles' & \begin{tabular}{l} 
Two-element vector of positive integers specifying \\
the number of tiles by row and column, [M N]. Both \\
M and N must be at least 2. The total number of tiles \\
is equal to \(\mathrm{M} * \mathrm{~N}\).
\end{tabular} \\
\hline Default: \(\left[\begin{array}{ll}8 & 8\end{array}\right]\)
\end{tabular}\(\quad\)\begin{tabular}{l} 
Real scalar in the range [0 1] that specifies a contrast \\
enhancement limit. Higher numbers result in more \\
contrast.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Parameter & Value \\
\hline 'NBins \({ }^{\text {' }}\) & \begin{tabular}{l}
Positive integer scalar specifying the number of bins for the histogram used in building a contrast enhancing transformation. Higher values result in greater dynamic range at the cost of slower processing speed. \\
Default: 256
\end{tabular} \\
\hline 'Range ' & \begin{tabular}{l}
String specifying the range of the output image data. 'original' - Range is limited to the range of the original image, \([\min (I(:)) \max (I(:))]\). \\
'full' - Full range of the output image class is used. For example, for uint8 data, range is [0 255]. \\
Default: 'full'
\end{tabular} \\
\hline 'Distribution' & \begin{tabular}{l}
String specifying the desired histogram shape for the image tiles. \\
'uniform' - Flat histogram \\
'rayleigh' — Bell-shaped histogram \\
'exponential' - Curved histogram \\
Default: 'uniform'
\end{tabular} \\
\hline 'Alpha' & \begin{tabular}{l}
Nonnegative real scalar specifying a distribution parameter. \\
Default: 0.4 \\
Note: Only used when 'Distribution' is set to either 'rayleigh' or 'exponential'.
\end{tabular} \\
\hline
\end{tabular}

Class Support Intensity image I can be of class uint8, uint16, or double. The output image \(J\) has the same class as I.

\section*{Example 1}

Apply Contrast-Limited Adaptive Histogram Equalization to an image and display the results.
```

I = imread('tire.tif');
A = adapthisteq(I,'clipLimit',0.02,'Distribution','rayleigh');
imview(I);
imview(A);

```

\section*{Example 2}

Apply Contrast-Limited Adaptive Histogram Equalization to a color photograph.
```

[I MAP] = imread('shadow.tif');
RGB = ind2rgb(I,MAP);
YIQ = rgb2ntsc(RGB); %convert to YIQ image
Y = YIQ(:,:,1);
YIQ(:,:,1) = adapthisteq(Y,'Divisions',[8 8],'ClipLimit',0.005);
J = ntsc2rgb(YIQ); %convert back to RGB
imview(RGB); %display the results

```

See Also histeq

\section*{Purpose \\ Apply color space transformation}

\section*{Syntax \\ out = applycform(I,C)}

Description

Class Support
out = applycform( \(\mathrm{I}, \mathrm{C}\) ) converts the color values in I to the color space specified in the color transformation structure C. The color transformation structure specifies various parameters of the transformation. See makecform for details.

If I is two-dimensional, each row is interpreted as a color. I typically has either three or four columns, depending on the input color space. out has the same number of rows and either three or four columns, depending on the output color space.

If I is three-dimensional, each row-column location is interpreted as a color, and size ( \(\mathrm{I}, 3\) ) is typically either three or four, depending on the input color space. out has the same number of rows and columns as I, and size (out,3) is either three or four, depending on the output color space.

I must be a real, nonsparse, finite array of class uint8, uint16, or double. The output array out has the same class and size as the input array, unless the output color space is \(X Y Z\). If the input is \(X Y Z\) data of class uint8, the output is of class uint16, because there is no standard 8-bit encoding defined for \(X Y Z\) color values.

\section*{Example}

Read in a color image that uses the RGB color space.
```

I = imread('peppers.png');

```

Create a color transformation structure that defines an RGB to \(X Y Z\) conversion.
```

C = makecform('srgb2xyz');

```

Perform the transformation with applycform.
```

I_xyz = applycform(I,C);

```

See Also makecform

\section*{applylut}

Purpose
Syntax \(\quad A=\) applylut (BW,LUT)
Description

\section*{Class Support}

Algorithm cases, \(A\) is double.

Perform neighborhood operations on binary images using lookup tables

A = applylut (BW, LUT) performs a 2-by-2 or 3-by-3 neighborhood operation on binary image BW by using a lookup table (LUT). LUT is either a 16 -element or 512 -element vector returned by makelut. The vector consists of the output values for all possible 2 -by-2 or 3-by-3 neighborhoods.

BW can be numeric or logical, and it must be real, two-dimensional, and nonsparse. LUT can be numeric or logical, and it must be a real vector with 16 or 512 elements. If all the elements of LUT are 0 or 1 , then \(A\) is logical. If all the elements of LUT are integers between 0 and 255 , then \(A\) is uint8. For all other
applylut performs a neighborhood operation on a binary image by producing a matrix of indices into lut, and then replacing the indices with the actual values in lut. The specific algorithm used depends on whether you use 2 -by- 2 or 3-by-3 neighborhoods.

\section*{2-by-2 Neighborhoods}

For 2-by-2 neighborhoods, length(lut) is 16 . There are four pixels in each neighborhood, and two possible states for each pixel, so the total number of permutations is \(2^{4}=16\).

To produce the matrix of indices, applylut convolves the binary image BW with this matrix.
\(\begin{array}{ll}8 & 2 \\ 4 & 1\end{array}\)
The resulting convolution contains integer values in the range [0,15]. applylut uses the central part of the convolution, of the same size as BW, and adds 1 to each value to shift the range to \([1,16]\). It then constructs A by replacing the values in the cells of the index matrix with the values in lut that the indices point to.

\section*{3-by-3 Neighborhoods}

For 3-by-3 neighborhoods, length (lut) is 512 . There are nine pixels in each neighborhood, and two possible states for each pixel, so the total number of permutations is \(2^{9}=512\).

To produce the matrix of indices, applylut convolves the binary image BW with this matrix.
\begin{tabular}{rrr}
256 & 32 & 4 \\
128 & 16 & 2 \\
64 & 8 & 1
\end{tabular}

The resulting convolution contains integer values in the range [0,511]. applylut uses the central part of the convolution, of the same size as BW, and adds 1 to each value to shift the range to [1,512]. It then constructs A by replacing the values in the cells of the index matrix with the values in lut that the indices point to.

\section*{Example}

In this example, you perform erosion using a 2-by-2 neighborhood. An output pixel is on only if all four of the input pixel's neighborhood pixels are on.
```

lut = makelut('sum(x(:)) == 4',2);
BW = imread('text.png');
BW2 = applylut(BW,lut);
imview(BW), imview(BW2)

```


\footnotetext{
See Also makelut
}

Purpose
Determine block size for block processing
\begin{tabular}{ll} 
Syntax & siz \(=\) bestblk \(([m \mathrm{n}], \mathrm{k})\) \\
& {\([\mathrm{mb}, \mathrm{nb}]=\operatorname{bestblk}([\mathrm{m} n], k)\)}
\end{tabular}
bestblk returns the optimal block size given \(m\), \(n\), and \(k\). The algorithm for determining siz is
- If \(m\) is less than or equal to \(k\), return \(m\).
- If \(m\) is greater than \(k\), consider all values between \(\min (m / 10, k / 2)\) and \(k\). Return the value that minimizes the padding required.

The same algorithm is then repeated for \(n\).

\section*{Example}
siz \(=\) bestblk([640 800],72)
siz =

6450

\section*{See Also \\ blkproc}

\section*{Purpose \\ Implement distinct block processing for an image}

\author{
Syntax \\ Description
}

Class Support
\(B=\operatorname{blkproc}(A,[m n], f u n)\)
\(B=\operatorname{blkproc}(A,[m n], f u n, P 1, P 2, \ldots)\)
\(B=b l k p r o c(A,[m n],[m b o r d e r ~ n b o r d e r], f u n, \ldots)\)
B = blkproc(A,'indexed',...)
\(B=b l k p r o c(A,[m n]\), fun \()\) processes the image \(A\) by applying the function fun to each distinct m-by-n block of A, padding A with 0's if necessary. fun is a function that accepts an m-by-n matrix, \(x\), and returns a matrix, vector, or scalar \(y\).
\[
y=\operatorname{fun}(x)
\]
blkproc does not require that \(y\) be the same size as \(x\). However, \(B\) is the same size as \(A\) only if \(y\) is the same size as \(x\).
\(B=b l k p r o c(A,[m n], f u n, P 1, P 2, \ldots)\) passes the additional parameters P1, P2, ... to fun.
\(B=\operatorname{blkproc}(A,[m n],[m b o r d e r\) nborder],fun,...) defines an overlapping border around the blocks. blkproc extends the original m-by-n blocks by mborder on the top and bottom, and nborder on the left and right, resulting in blocks of size ( \(m+2 *\) mborder )-by-( \(n+2 *\) nborder ). The blkproc function pads the border with 0's, if necessary, on the edges of A. The function fun should operate on the extended block.

The line below processes an image matrix as 4-by-6 blocks, each having a row border of 2 and a column border of 3 . Because each 4 -by- 6 block has this 2 -by- 3 border, fun actually operates on blocks of size 8-by-12.
\[
B=\operatorname{blkproc}\left(A,\left[\begin{array}{ll}
4 & \left.6],\left[\begin{array}{ll}
2 & 3
\end{array}\right], f u n, \ldots\right)
\end{array}\right.\right.
\]

B = blkproc (A,'indexed',...) processes A as an indexed image, padding with 0 's if the class of \(A\) is uint 8 or uint16, or 1's if the class of \(A\) is double.

The input image A can be of any class supported by fun. The class of B depends on the class of the output from fun.

\section*{blkproc}

\section*{Example}

This example uses blkproc to compute the 2-D DCT of each 8-by-8 block to the standard deviation of the elements in that block. In this example, fun is specified as a function_handle created using @.
```

I = imread('cameraman.tif');
fun = @dct2;
J = blkproc(I,[8 8],fun);
imagesc(J), colormap(hot)

```


This example uses blkproc to set the pixels in each 16-by-16 block to the standard deviation of the elements in that block. In this example, fun is specified as an inline object.
```

I = imread('liftingbody.png');
fun = inline('std2(x)*ones(size(x))');
I2 = blkproc(I,[16 16],fun);
imview(I), imview(I2,[])

```


Image Courtesy of NASA

\section*{See Also}
colfilt, nlfilter, inline

\section*{brighten}

\section*{Purpose}

Brighten or darken a colormap
brighten is a MATLAB function. To get help for this function, select MATLAB
Help from the Help menu and view the online function reference page.

\section*{Purpose \\ Compute the area of the objects in a binary image}

\section*{Syntax total = bwarea(BW)}

Description total = bwarea \((B W)\) estimates the area of the objects in binary image \(B W\). total is a scalar whose value corresponds roughly to the total number of on pixels in the image, but might not be exactly the same because different patterns of pixels are weighted differently.

\section*{Class Support}

\section*{Algorithm}

BW can be numeric or logical. For numeric input, any nonzero pixels are considered to be on. The return value total is of class double.
bwarea estimates the area of all of the on pixels in an image by summing the areas of each pixel in the image. The area of an individual pixel is determined by looking at its 2 -by- 2 neighborhood. There are six different patterns, each representing a different area:
- Patterns with zero on pixels (area \(=0\) )
- Patterns with one on pixel (area \(=1 / 4\) )
- Patterns with two adjacent on pixels (area = 1/2)
- Patterns with two diagonal on pixels (area \(=3 / 4\) )
- Patterns with three on pixels (area \(=7 / 8\) )
- Patterns with all four on pixels \((\) area \(=1)\)

Keep in mind that each pixel is part of four different 2-by-2 neighborhoods. This means, for example, that a single on pixel surrounded by off pixels has a total area of 1 .

\section*{Example This example computes the area in the objects of a 256 -by- 256 binary image.}
```

BW = imread('circles.png');
imview(BW);

```

bwarea (BW)
ans =
\(1.4187 e+004\)

See Also bweuler, bwperim
References Pratt, William K., Digital Image Processing, New York, John Wiley \& Sons, Inc., 1991, p. 634.

\section*{bwareaopen}
\begin{tabular}{|c|c|}
\hline Purpose & Binary area open; remove small objects \\
\hline Syntax & \[
\begin{aligned}
& \text { BW2 = bwareaopen (BW,P) } \\
& \text { BW2 }=\text { bwareaopen (BW,P,CONN) }
\end{aligned}
\] \\
\hline \multirow[t]{10}{*}{Description} & \begin{tabular}{l}
BW2 = bwareaopen (BW, P) removes from a binary image all connected components (objects) that have fewer than \(P\) pixels, producing another binary image, BW2. The default connectivity is 8 for two dimensions, 26 for three dimensions, and conndef(ndims(BW), 'maximal') for higher dimensions. \\
BW2 = bwareaopen(BW, P,CONN) specifies the desired connectivity. CONN can have any of the following scalar values.
\end{tabular} \\
\hline & Value Meaning \\
\hline & Two-dimensional connectivities \\
\hline & 4 4-connected neighborhood \\
\hline & 8 8-connected neighborhood \\
\hline & Three-dimensional connectivities \\
\hline & 6 6-connected neighborhood \\
\hline & 18 18-connected neighborhood \\
\hline & 26 26-connected neighborhood \\
\hline & Connectivity can be defined in a more general way for any dimension by using for CONN a 3-by-3-by-...-by-3 matrix of 0's and 1's. The 1 -valued elements define neighborhood locations relative to the center element of CONN. Note that CONN must be symmetric about its center element. \\
\hline Class Support & BW can be a logical or numeric array of any dimension, and it must be nonsparse. The return value BW2 is of class logical. \\
\hline \multirow[t]{2}{*}{Algorithm} & The basic steps are \\
\hline & 1 Determine the connected components. L = bwlabeln(BW, CONN); \\
\hline
\end{tabular}

\section*{bwareaopen}

2 Compute the area of each component.
S = regionprops(L, 'Area');
3 Remove small objects.
```

bw2 = ismember(L, find([S.Area] >= P));

```

\section*{Example}

Remove all objects smaller than 50 pixels. Note the missing letters.
```

bwAreaOpenBW = bwareaopen(originalBW,50);
imview(bwAreaOpenBW)

```


See Also
bwlabel, bwlabeln, conndef, regionprops

\section*{bwboundaries}

\section*{Purpose}
```

Syntax B = bwboundaries(BW)

```
B = bwboundaries(BW,CONN)
```

B = bwboundaries(BW,CONN)
B = bwboundaries(BW,CONN,options)
B = bwboundaries(BW,CONN,options)
[B L] = bwboundaries(...)
[B L] = bwboundaries(...)
[B L N A] = bwboundaries()

```
```

[B L N A] = bwboundaries()

```
```


Description

Trace region boundaries in a binary image
$B=$ bwboundaries $(B W)$ traces the exterior boundaries of objects, as well as boundaries of holes inside these objects, in the binary image BW. bwboundaries also descends into the outermost objects (parents) and traces their children (objects completely enclosed by the parents). BW must be a binary image where nonzero pixels belong to an object and 0 pixels constitute the background. The following figure illustrates these components.

bwboundaries returns B, a P-by- 1 cell array, where P is the number of objects and holes. Each cell in the cell array contains a Q-by-2 matrix. Each row in the matrix contains the row and column coordinates of a boundary pixel. Q is the number of boundary pixels for the corresponding region.

bwboundaries

$B=$ bwboundaries(BW,CONN) specifies the connectivity to use when tracing parent and child boundaries. CONN can have either of the following scalar values.

Value	Meaning
4	4-connected neighborhood
8	8-connected neighborhood. This is the default.

$B=$ bwboundaries(BW,CONN,options) specifies an optional argument, where options can have either of the following values:

Value	Meaning
'holes'	Search for both object and hole boundaries. This is the default.
'noholes '	Search only for object (parent and child) boundaries. This can provide better performance.

$[B, L]=$ bwboundaries (...) returns the label matrix L as the second output argument. Objects and holes are labeled. L is a two-dimensional array of nonnegative integers that represent contiguous regions. The kth region includes all elements in L that have value k. The number of objects and holes represented by L is equal to $\max (L(:))$. The zero-valued elements of L make up the background.
$[B, L, N, A]=$ bwboundaries(...) returns N, the number of objects found, and A, an adjacency matrix. The first N cells in B are object boundaries. A represents the parent-child-hole dependencies. A is a square, sparse, logical matrix with side of length $\max (\mathrm{L}(:))$, whose rows and columns correspond to the positions of boundaries stored in B.

The boundaries enclosed by a $B\{m\}$ as well as the boundary enclosing $B\{m\}$ can both be found using A as follows:

```
enclosing_boundary = find(A(m,:));
enclosed_boundaries = find(A(:,m));
```


bwboundaries

Class Support

BW can be logical or numeric and it must be real, 2-D, and nonsparse. L and N are double. A is sparse logical.

Examples

Example 1

Read in and threshold an intensity image. Display the labeled objects using the jet colormap, on a gray background, with region boundaries outlined in white.

```
I = imread('rice.png');
BW = im2bw(I, graythresh(I));
[B,L] = bwboundaries(BW,'noholes');
imshow(label2rgb(L, @jet, [.5 .5 .5]))
hold on
for k = 1:length(B)
    boundary = B{k};
    plot(boundary(:,2), boundary(:,1), 'w', 'LineWidth', 2)
end
```


Example 2

Read in and display a binary image. Overlay the region boundaries on the image. Display text showing the region number (based on the label matrix) next to every boundary. Additionally, display the adjacency matrix using the MATLAB spy function.

After the image is displayed, use the zoom tool to read individual labels.

```
BW = imread('blobs.png');
[B,L,N,A] = bwboundaries(BW);
imshow(BW); hold on;
colors=['b' 'g' 'r' 'c' 'm' 'y'];
for k=1:length(B),
    boundary = B{k};
    cidx = mod(k,length(colors))+1;
    plot(boundary(:,2), boundary(:,1), colors(cidx),'LineWidth',2);
    %randomize text position for better visibility
    rndRow = ceil(length(boundary)/(mod(rand*k,7)+1));
    col = boundary(rndRow,2); row = boundary(rndRow,1);
    h = text(col+1, row-1, num2str(L(row,col)));
    set(h,'Color', colors(cidx),'FontSize',14,'FontWeight','bold');
end
figure; spy(A);
```


bwboundaries

Example 3

Display object boundaries in red and hole boundaries in green.

```
BW = imread('blobs.png');
[B,L,N] = bwboundaries(BW);
imshow(BW); hold on;
for k=1:length(B),
    boundary = B{k};
    if(k > N)
        plot(boundary(:,2), boundary(:,1), 'g','LineWidth',2);
    else
        plot(boundary(:,2), boundary(:,1), 'r','LineWidth',2);
    end
end
```


Example 4

Display parent boundaries in red (any empty row of the adjacency matrix belongs to a parent) and their holes in green.

```
BW = imread('blobs.png');
[B,L,N,A] = bwboundaries(BW);
imshow(BW); hold on;
for k=1:length(B),
    if(~sum(A(k,:)))
        boundary = B{k};
        plot(boundary(:,2), boundary(:,1), 'r','LineWidth',2);
        for l=find(A(:,k))
            boundary = B{l};
            plot(boundary(:,2), boundary(:,1), 'g','LineWidth',2);
        end
        end
end
```

See Also
bwtraceboundary, bwlabel, bwlabeln

Purpose
 Distance transform

Syntax $\quad D=$ bwdist $(B W)$

[D,L] = bwdist(BW)
[D,L] = bwdist(BW,METHOD)
Description $\quad \mathrm{D}=$ bwdist (BW) computes the Euclidean distance transform of the binary image BW. For each pixel in BW, the distance transform assigns a number that is the distance between that pixel and the nearest nonzero pixel of BW. bwdist uses the Euclidean distance metric by default. BW can have any dimension. D is the same size as BW.
[D,L] = bwdist(BW) also computes the nearest-neighbor transform and returns it as label matrix L, which has the same size as BW and D. Each element of L contains the linear index of the nearest nonzero pixel of $B W$.
[D,L] = bwdist(BW,METHOD) computes the distance transform, where METHOD specifies an alternate distance metric. METHOD can take any of these values:

'chessboard'	In 2-D, the chessboard distance between $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is $\max \left(\left\|x_{1}-x_{2}\right\|,\left\|y_{1}-y_{2}\right\|\right)$
'cityblock'	In 2-D, the cityblock distance between $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is $\left\|x_{1}-x_{2}\right\|+\left\|y_{1}-y_{2}\right\|$

'euclidean'	In 2-D, the Euclidean distance between $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is
$\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}$	
This is the default method.	

The METHOD string can be abbreviated.

Note bwdist uses fast algorithms to compute the true Euclidean distance transform, especially in the 2-D case. The other methods are provided primarily for pedagogical reasons. However, the alternative distance transforms are sometimes significantly faster for multidimensional input images, particularly those that have many nonzero elements.

Class Support

Example
$B W$ can be numeric or logical, and it must be nonsparse. D and L are double matrices with the same size as BW.

Here is a simple example of the Euclidean distance transform.

```
bw = zeros(5,5); bw(2,2) = 1; bw(4,4) = 1
bw =
\begin{tabular}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{tabular}
[D,L] = bwdist(bw)
```

```
D =
\begin{tabular}{rrrrr}
1.4142 & 1.0000 & 1.4142 & 2.2361 & 3.1623 \\
1.0000 & 0 & 1.0000 & 2.0000 & 2.2361 \\
1.4142 & 1.0000 & 1.4142 & 1.0000 & 1.4142 \\
2.2361 & 2.0000 & 1.0000 & 0 & 1.0000 \\
3.1623 & 2.2361 & 1.4142 & 1.0000 & 1.4142
\end{tabular}
L =
\begin{tabular}{rrrrr}
7 & 7 & 7 & 7 & 7 \\
7 & 7 & 7 & 7 & 19 \\
7 & 7 & 7 & 19 & 19 \\
7 & 7 & 19 & 19 & 19 \\
7 & 19 & 19 & 19 & 19
\end{tabular}
```

In the nearest-neighbor matrix L the values 7 and 19 represent the position of the nonzero elements using linear matrix indexing. If a pixel contains a 7 , its closest nonzero neighbor is at linear position 7.

This example compares the 2-D distance transforms for each of the supported distance methods. In the figure, note how the quasi-Euclidean distance transform best approximates the circular shape achieved by the Euclidean distance method.

```
bw = zeros(200,200); bw(50,50) = 1; bw(50,150) = 1;
bw(150,100) = 1;
D1 = bwdist(bw,'euclidean');
D2 = bwdist(bw,'cityblock');
D3 = bwdist(bw,'chessboard');
D4 = bwdist(bw,'quasi-euclidean');
figure
subplot(2,2,1), subimage(mat2gray(D1)), title('Euclidean')
hold on, imcontour(D1)
subplot(2,2,2), subimage(mat2gray(D2)), title('City block')
hold on, imcontour(D2)
subplot(2,2,3), subimage(mat2gray(D3)), title('Chessboard')
hold on, imcontour(D3)
subplot(2,2,4), subimage(mat2gray(D4)), title('Quasi-Euclidean')
hold on, imcontour(D4)
```


This example compares isosurface plots for the distance transforms of a 3-D image containing a single nonzero pixel in the center.

```
bw = zeros(50,50,50); bw(25,25,25) = 1;
D1 = bwdist(bw);
D2 = bwdist(bw,'cityblock');
D3 = bwdist(bw,'chessboard');
D4 = bwdist(bw,'quasi-euclidean');
figure
subplot(2,2,1), isosurface(D1,15), axis equal, view(3)
camlight, lighting gouraud, title('Euclidean')
subplot(2,2,2), isosurface(D2,15), axis equal, view(3)
camlight, lighting gouraud, title('City block')
subplot(2,2,3), isosurface(D3,15), axis equal, view(3)
camlight, lighting gouraud, title('Chessboard')
subplot(2,2,4), isosurface(D4,15), axis equal, view(3)
camlight, lighting gouraud, title('Quasi-Euclidean')
```


For two-dimensional Euclidean distance transforms, bwdist uses the second algorithm described in

Breu, Heinz, Joseph Gil, David Kirkpatrick, and Michael Werman, "Linear Time Euclidean Distance Transform Algorithms," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 17, No. 5, May 1995, pp. 529-533.

For higher dimensional Euclidean distance transforms, bwdist uses a nearest-neighbor search on an optimized kd-tree, as described in

Friedman, Jerome H., Jon Louis Bentley, and Raphael Ari Finkel, "An Algorithm for Finding Best Matches in Logarithmic Expected Time," ACM Transactions on Mathematics Software, Vol. 3, No. 3, September 1997, pp. 209-226.

For cityblock, chessboard, and quasi-Euclidean distance transforms, bwdist uses the two-pass, sequential scanning algorithm described in

Rosenfeld, A. and J. Pfaltz, "Sequential operations in digital picture processing," Journal of the Association for Computing Machinery, Vol. 13, No. 4, 1966, pp. 471-494.

The different distance measures are achieved by using different sets of weights in the scans, as described in

Paglieroni, David, "Distance Transforms: Properties and Machine Vision Applications," Computer Vision, Graphics, and Image Processing: Graphical Models and Image Processing, Vol. 54, No. 1, January 1992, pp. 57-58.

See Also watershed

Purpose

Syntax
Description

Class Support
BW can be numeric or logical and it must be real, nonsparse, and two-dimensional. The return value eul is of class double.

Example

 BW = imread('circles.png');
 imview(BW);

bweuler (BW)
ans $=$

3

[^0]
bweuler

References [1] Horn, Berthold P. K., Robot Vision, New York, McGraw-Hill, 1986, pp. 73-77.
[2] Pratt, William K., Digital Image Processing, New York, John Wiley \& Sons, Inc., 1991, p. 633.

Purpose

$\begin{array}{ll}\text { Syntax } & \text { BW2 }=\text { bwhitmiss }(B W 1, \text { SE1, SE2 }) \\ \text { BW2 } & =\text { bwhitmiss }(B W 1, \text { INTERVAL })\end{array}$
Description

Class Support

Example
Binary hit-and-miss operation imerode(BW1,SE1) \& imerode(\sim BW1, SE2). to bwhitmiss(BW1, INTERVAL == 1, INTERVAL == -1).

BW2 = bwhitmiss(BW1, SE1,SE2) performs the hit-and-miss operation defined by the structuring elements SE1 and SE2. The hit-and-miss operation preserves pixels whose neighborhoods match the shape of SE1 and don't match the shape of SE2. SE1 and SE2 can be flat structuring element objects, created by strel, or neighborhood arrays. The neighborhoods of SE1 and SE2 should not have any overlapping elements. The syntax bwhitmiss (BW1, SE1, SE2) is equivalent to

BW2 = bwhitmiss(BW1,INTERVAL) performs the hit-and-miss operation defined in terms of a single array, called an interval. An interval is an array whose elements can contain 1,0 , or -1 . The 1 -valued elements make up the domain of SE1, the - 1 -valued elements make up the domain of SE2, and the 0 -valued elements are ignored. The syntax bwhitmiss (INTERVAL) is equivalent

BW1 can be a logical or numeric array of any dimension, and it must be nonsparse. BW2 is always a logical array with the same size as BW1. SE1 and SE2 must be flat STREL objects or they must be logical or numeric arrays containing 1's and 0's. INTERVAL must be an array containing $1 \mathrm{~s}, 0 \mathrm{~s}$, and -1 s .

This example performs the hit-and-miss operation on a binary image using an interval.

```
bw = [lllllll
    0 0 1 1 0 0
    0}1111111%
    0 1 1 1 1 0
    0 0 1 1 0 0
    0 0 1 0 0 0]
interval = [0 -1 -1
    1 1 -1
    0 1 0];
```


bwhitmiss

$$
\begin{aligned}
& \text { bw2 = bwhitmiss(bw,interval) } \\
& \text { bw2 = }
\end{aligned}
$$

See Also imdilate, imerode, strel

Purpose
 Label connected components in a binary image

Syntax	$L=$ bwlabel $(B W, n)$
	$[L$, num $]=$ bwlabel $(B W, n)$

Description

Remarks

Class Support
BW can be logical or numeric, and it must be real, 2-D, and nonsparse. L is of class double.

Remarks

You can use the MATLAB find function in conjunction with bwlabel to return vectors of indices for the pixels that make up a specific object. For example, to return the coordinates for the pixels in object 2 ,

$$
[r, c]=\text { find }(b w l a b e l(B W)==2)
$$

You can display the output matrix as a pseudocolor indexed image. Each object appears in a different color, so the objects are easier to distinguish than in the original image. See label2rgb for more information.

[^1]
bwlabel

```
BW = [1 \(\begin{array}{rrrrrrrr}1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0] ;\end{array}\)
L = bwlabel(BW,4)
L =
\begin{tabular}{llllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 3 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 3 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 3 & 0 \\
1 & 1 & 1 & 0 & 0 & 3 & 3 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0
\end{tabular}
[ \(\mathrm{r}, \mathrm{c}\) ] = find(L==2);
\(r c=[r c]\)
rc =
25
35
26
36
```

Algorithm bwlabel uses the general procedure outlined in reference [1], pp. 40-48:
1 Run-length encode the input image.
2 Scan the runs, assigning preliminary labels and recording label equivalences in a local equivalence table.
3 Resolve the equivalence classes.
4 Relabel the runs based on the resolved equivalence classes.

See Also bweuler, bwlabeln, bwselect, label2rgb
Reference
[1] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision, Volume I, Addison-Wesley, 1992, pp. 28-48.

bwlabeln

Purpose
Syntax

Description

Label connected components in N-D binary image
L = bwlabeln(BW)
[L,NUM] = bwlabeln(BW)
[L,NUM] = bwlabeln(BW,CONN)
$L=b w l a b e l n(B W)$ returns a label matrix L containing labels for the connected components in BW. BW can have any dimension; L is the same size as $B W$. The elements of L are integer values greater than or equal to 0 . The pixels labeled 0 are the background. The pixels labeled 1 make up one object, the pixels labeled 2 make up a second object, and so on. The default connectivity is 8 for two dimensions, 26 for three dimensions, and conndef (ndims (BW), 'maximal') for higher dimensions.
[L,NUM] = bwlabeln(BW) returns in NUM the number of connected objects found in BW.
[L,NUM] = bwlabeln(BW,CONN) specifies the desired connectivity. CONN can have any of the following scalar values.

Value Meaning

Two-dimensional connectivities
4 4-connected neighborhood
8 8-connected neighborhood

Three-dimensional connectivities

6	6 -connected neighborhood
18	18 -connected neighborhood
26	26 -connected neighborhood

Connectivity can also be defined in a more general way for any dimension by using for CONN a 3-by-3-by- ...-by-3 matrix of 0's and 1's. The 1 -valued elements define neighborhood locations relative to the center element of CONN. Note that CONN must be symmetric about its center element.
Remarks bwlabel supports 2-D inputs only; bwlabeln supports inputs of any dimension. In some cases, you might prefer to use bwlabeln even for 2-D problems because it can be faster. If you have a 2-D input whose objects are relatively thick in the vertical direction, bwlabel is probably faster; otherwise bwlabeln is probably faster.

Class Support
 BW can be numeric or logical, and it must be real and nonsparse. L is of class double.

Example

```
\(\mathrm{BW}=\operatorname{cat}(3,[110 ; 000 ; 100], \ldots\)
[0 1 0; 0 0 0; 0 1 0],...
[0 1 1; 000 ; 001\(]\) )
bwlabeln(BW)
ans(:,:,1) =
        \(1 \quad 1 \quad 0\)
        \(0 \quad 0 \quad 0\)
        200
ans(:,:,2) =
        \(0 \quad 1 \quad 0\)
        \(0 \quad 0 \quad 0\)
        \(0 \quad 20\)
    ans(:,:,3) =
        \(\begin{array}{lll}0 & 1 & 1\end{array}\)
        \(0 \quad 0 \quad 0\)
        \(0 \quad 0 \quad 2\)
```


Algorithm

bwlabeln uses the following general procedure:
1 Scan all image pixels, assigning preliminary labels to nonzero pixels and recording label equivalences in a union-find table.

bwlabeln

2 Resolve the equivalence classes using the union-find algorithm [1].
3 Relabel the pixels based on the resolved equivalence classes.

See Also

Reference
bwlabel, label2rgb
[1] Sedgewick, Robert, Algorithms in C, 3rd Ed., Addison-Wesley, 1998, pp. 11-20.

Purpose
Syntax $\quad \begin{aligned} \text { BW2 } & =\text { bwmorph }(B W, \text { operation }) \\ B W 2 & =\text { bwmorph }(B W, \text { operation }, n)\end{aligned}$
Perform morphological operations on binary images

Description

BW2 = bwmorph(BW,operation) applies a specific morphological operation to the binary image BW .

BW2 = bwmorph (BW, operation, n) applies the operation n times. n can be Inf, in which case the operation is repeated until the image no longer changes.
operation is a string that can have one of the values listed below.

'bothat'	'erode'	'shrink'
'bridge'	'fill'	'skel'
'clean'	'hbreak'	'spur'
'close'	'majority'	'thicken'
'diag'	'open'	'thin'
'dilate'	'remove'	'tophat'

'bothat' ("bottom hat") performs morphological closing (dilation followed by erosion) and subtracts the original image.
'bridge' bridges unconnected pixels, that is, sets 0 -valued pixels to 1 if they have two nonzero neighbors that are not connected. For example:

1	0	0		1	1
1	0	1	0		
0	0	1	becomes		1
1	1				
0	1	1			

'clean ' removes isolated pixels (individual 1's that are surrounded by 0's), such as the center pixel in this pattern.

0	0	0
0	1	0
0	0	0

'close ' performs morphological closing (dilation followed by erosion).
'diag' uses diagonal fill to eliminate 8-connectivity of the background. For example:

0	1	0		0	1	0
1	0	0	becomes	1	1	0
0	0	0		0	0	0

'dilate' performs dilation using the structuring element ones(3).
'erode' performs erosion using the structuring element ones(3).
'fill' fills isolated interior pixels (individual 0's that are surrounded by 1's), such as the center pixel in this pattern.
$1 \quad 1 \quad 1$
$1 \quad 0 \quad 1$
$1 \quad 1 \quad 1$
' hbreak ' removes H-connected pixels. For example:

1	1	1		1	1
0	1	0	1		
1	1	1	becomes		0
0	0				
1	1	1			

'majority ' sets a pixel to 1 if five or more pixels in its 3-by-3 neighborhood are 1 's; otherwise, it sets the pixel to 0 .
' open ' implements morphological opening (erosion followed by dilation).
'remove' removes interior pixels. This option sets a pixel to 0 if all its
4 -connected neighbors are 1, thus leaving only the boundary pixels on.
'shrink', with $\mathrm{n}=\mathrm{Inf}$, shrinks objects to points. It removes pixels so that objects without holes shrink to a point, and objects with holes shrink to a connected ring halfway between each hole and the outer boundary. This option preserves the Euler number.
'skel', with $n=$ Inf, removes pixels on the boundaries of objects but does not allow objects to break apart. The pixels remaining make up the image skeleton. This option preserves the Euler number.
'spur ' removes spur pixels. For example:

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

0	0	1	0	becomes	0	0	0	0
0	1	0	0		1	0	0	
1	1	0	0		1	1	0	0

'thicken', with $\mathrm{n}=\mathrm{Inf}$, thickens objects by adding pixels to the exterior of objects until doing so would result in previously unconnected objects being 8 -connected. This option preserves the Euler number.
'thin', with $\mathrm{n}=\mathrm{Inf}$, thins objects to lines. It removes pixels so that an object without holes shrinks to a minimally connected stroke, and an object with holes shrinks to a connected ring halfway between each hole and the outer boundary. This option preserves the Euler number.
'tophat ' ("top hat") returns the image minus the morphological opening of the image.

Class Support The input image BW can be numeric or logical. It must be 2-D, real and nonsparse. The output image BW2 is of class logical.

Example

```
BW = imread('circles.png');
imview(BW);
```



```
BW2 = bwmorph(BW,'remove');
imview(BW2)
```


bwmorph

BW3 = bwmorph(BW,'skel',Inf); imview(BW3)

See Also
References
bweuler, bwperim, imdilate, imerode
[1] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision, Volume I, Addison-Wesley, 1992.
[2] Pratt, William K., Digital Image Processing, John Wiley \& Sons, Inc., 1991.

Purpose Pack binary image

Syntax $\quad B W P=$ bwpack $(B W)$

Description
BWP = bwpack (BW) packs the uint8 binary image BW into the uint32 array BWP, which is known as a packed binary image. Because each 8-bit pixel value in the binary image has only two possible values, 1 and 0 , bwpack can map each pixel to a single bit in the packed output image.
bwpack processes the image pixels by column, mapping groups of 32 pixels into the bits of a uint32 value. The first pixel in the first row corresponds to the least significant bit of the first uint32 element of the output array. The first pixel in the 32 nd input row corresponds to the most significant bit of this same element. The first pixel of the 33 rd row corresponds to the least significant bit of the second output element, and so on. If BW is M-by-N, then BWP is ceil (M/32) - by - N . This figure illustrates how bwpack maps the pixels in a binary image to the bits in a packed binary image.

Binary image packing is used to accelerate some binary morphological operations, such as dilation and erosion. If the input to imdilate or imerode is a packed binary image, the functions use a specialized routine to perform the operation faster.
bwunpack is used to unpack packed binary images.

```Class Support
BW can be logical or numeric, and it must be 2-D, real, and nonsparse. BWP is of class uint32.
```


Example

```
Pack, dilate, and unpack a binary image:
```

```
BW = imread('text.png');
```

BW = imread('text.png');
BWp = bwpack(BW);
BWp = bwpack(BW);
BWp_dilated = imdilate(BWp,ones(3,3),'ispacked');
BWp_dilated = imdilate(BWp,ones(3,3),'ispacked');
BW_dilated = bwunpack(BWp_dilated, size(BW,1));

```
BW_dilated = bwunpack(BWp_dilated, size(BW,1));
```

See Also
bwunpack, imdilate, imerode

Purpose
Find perimeter pixels in binary image

Syntax
Description

Class Support BW1 must be logical or numeric, and it must be nonsparse. BW2 is of class logical.

Example

BW2 = bwperim(BW1)
BW2 = bwperim(BW1,CONN)
BW2 = bwperim(BW1) returns a binary image containing only the perimeter pixels of objects in the input image BW1. A pixel is part of the perimeter if it is nonzero and it is connected to at least one zero-valued pixel. The default connectivity is 4 for two dimensions, 6 for three dimensions, and conndef(ndims(BW), 'minimal') for higher dimensions.

BW2 = bwperim(BW1, CONN) specifies the desired connectivity. CONN can have any of the following scalar values.

Value	Meaning
Two-dimensional connectivities	
4	4-connected neighborhood
8	8-connected neighborhood
Three-dimensional connectivities	
6	6-connected neighborhood
18	18-connected neighborhood
26	26 -connected neighborhood

Connectivity can also be defined in a more general way for any dimension by using for CONN a 3-by-3-by-...-by-3 matrix of 0's and 1's. The 1 -valued elements define neighborhood locations relative to the center element of CONN. Note that CONN must be symmetric about its center element.

```
    BW1 = imread('circbw.tif');
    BW2 = bwperim(BW1,8);
    imview(BW1)
```


bwperim

See Also
bwarea, bweuler, conndef, imfill

Purpose

Syntax

Description

Class Support

Select objects in a binary image

```
BW2 = bwselect(BW,c,r,n)
BW2 = bwselect(BW,n)
[BW2,idx] = bwselect(...)
BW2 = bwselect(x,y,BW,xi,yi,n)
[x,y,BW2,idx,xi,yi] = bwselect(...)
```

BW2 = bwselect (BW, $c, r, n)$ returns a binary image containing the objects that overlap the pixel (r, c). r and c can be scalars or equal-length vectors. If r and c are vectors, BW2 contains the sets of objects overlapping with any of the pixels $(r(k), c(k)) . n$ can have a value of either 4 or 8 (the default), where 4 specifies 4 -connected objects and 8 specifies 8 -connected objects. Objects are connected sets of on pixels (i.e., pixels having a value of 1).

BW2 = bwselect (BW, n) displays the image BW on the screen and lets you select the (r, c) coordinates using the mouse. If you omit $B W$, bwselect operates on the image in the current axes. Use normal button clicks to add points. Pressing Backspace or Delete removes the previously selected point. A shift-click, right-click, or double-click selects the final point; pressing Return finishes the selection without adding a point.
[BW2,idx] = bwselect(...) returns the linear indices of the pixels belonging to the selected objects.

BW2 = bwselect($\mathrm{x}, \mathrm{y}, \mathrm{BW}, \mathrm{xi}, \mathrm{yi}, \mathrm{n}$) uses the vectors x and y to establish a nondefault spatial coordinate system for BW1. xi and yi are scalars or equal-length vectors that specify locations in this coordinate system.
[$\mathrm{x}, \mathrm{y}, \mathrm{BW} 2, \mathrm{idx}, \mathrm{xi}, \mathrm{yi}]=$ bwselect (...) returns the XData and YData in x and y, the output image in BW2, linear indices of all the pixels belonging to the selected objects in idx, and the specified spatial coordinates in xi and yi.

If bwselect is called with no output arguments, the resulting image is displayed in a new figure.

The input image BW can be logical or numeric and must be 2-D and nonsparse. The output image BW2 is of class logical.

bwselect

Example

```
BW1 = imread('text.png');
c = [43 185 212];
r = [38 68 181];
BW2 = bwselect(BW1,c,r,4);
imview(BW1), imview(BW2)
```

The term watershed refers to a ridge that ...

See Also bwlabel, imfill, impixel, roipoly, roifill

Purpose

```
Syntax B = bwtraceboundary (BW,P,fstep)
B = bwtraceboundary(BW,P,fstep,CONN)
B = bwtraceboundary(...,N,dir)
```

Description $\quad B=$ bwtraceboundary (BW, P, fstep) traces the outline of an object in binary image bw. Nonzero pixels belong to an object and 0 pixels constitute the background. P is a two-element vector specifying the row and column coordinates of the point on the object boundary where you want the tracing to begin. fstep is a string specifying the initial search direction for the next object pixel connected to P. You use strings such as 'N' for north, 'NE ' for northeast, to specify the direction. The following figure illustrates all the possible values for fstep.

bwtraceboundary returns B, a Q-by-2 matrix, where Q is the number of boundary pixels for the region. B holds the row and column coordinates of the boundary pixels.
$B=b w t r a c e b o u n d a r y(b w, P, f s t e p, C O N N)$ specifies the connectivity to use when tracing the boundary. CONN can have either of the following scalar values.

Value	Meaning
4	4-connected neighborhood Note: With this connectivity, fstep is limited to the following values: 'N', 'E', 'S', and 'W'.
8	8-connected neighborhood. This is the default.

$B=$ bwtraceboundary (..., N , dir) specifies n , the maximum number of boundary pixels to extract, and dir, the direction in which to trace the boundary. When N is set to Inf, the default value, the algorithm identifies all the pixels on the boundary. dir can have either of the following values:

Value	Meaning
'clockwise'	Search in a clockwise direction. This is the default.
'counterclockwise'	Search in counterclockwise direction.

Class Support

Example

BW can be logical or numeric and it must be real, 2-D, and nonsparse. B, P, CONN, and N are of class double. dir and fstep are strings.

Read in and display a binary image. Starting from the top left, project a beam across the image searching for the first nonzero pixel. Use the location of that pixel as the starting point for the boundary tracing. Including the starting point, extract 50 pixels of the boundary and overlay them on the image. Mark the starting points with a green x . Mark beams that missed their targets with a red x .

```
BW = imread('blobs.png');
imshow(BW,[]);
s=size(BW);
for row = 2:55:s(1)
    for col=1:s(2)
```

```
        if BW(row,col),
        break;
        end
    end
    contour = bwtraceboundary(BW, [row, col], 'W', 8, 50,...
                                    'counterclockwise');
    if(~isempty(contour))
        hold on;
        plot(contour(:, 2),contour(:,1),'g','LineWidth', 2);
        hold on;
        plot(col, row,'gx','LineWidth',2);
        else
        hold on; plot(col, row,'rx','LineWidth',2);
        end
end
```

See Also
bwboundaries

bwulterode

Purpose Ultimate erosion

Syntax \quad| BW2 | $=$ bwulterode (BW) |
| ---: | :--- |
| BW2 | $=$ bwulterode (BW, METHOD, CONN) |

Description

Class Support

BW2 = bwulterode (BW) computes the ultimate erosion of the binary image BW. The ultimate erosion of BW consists of the regional maxima of the Euclidean distance transform of the complement of BW. The default connectivity for computing the regional maxima is 8 for two dimensions, 26 for three dimensions, and conndef(ndims (BW), 'maximal') for higher dimensions.

BW2 = bwulterode(BW,METHOD,CONN) specifies the distance transform method and the regional maxima connectivity. METHOD can be one of the strings 'euclidean', 'cityblock', 'chessboard', and 'quasi-euclidean'.

CONN can have any of the following scalar values.

Value	Meaning
Two-dimensional connectivities	
4	4-connected neighborhood
8	8-connected neighborhood
Three-dimensional connectivities	
6	6-connected neighborhood
18	18-connected neighborhood
26	26-connected neighborhood

Connectivity can be defined in a more general way for any dimension by using for CONN a 3-by-3-by... - by-3 matrix of 0's and 1's. The 1 -valued elements define neighborhood locations relative to the center element of CONN. Note that CONN must be symmetric about its center element.

BW can be numeric or logical and it must be nonsparse. It can have any dimension. The return value BW2 is always a logical array.

```
Example
```

See Also
bwdist, conndef, imregionalmax

Purpose Unpack binary image

$$
\text { Syntax } \quad B W=\operatorname{bwunpack}(B W P, M)
$$

Description

Class Support

Example

See Also

BWP is of class uint32 and must be real, 2-D, and nonsparse. The return value BW is of class uint8.

Pack, dilate, and unpack a binary image.

```
bw = imread('text.png');
bwp = bwpack(bw);
bwp_dilated = imdilate(bwp,ones(3,3),'ispacked');
bw_dilated = bwunpack(bwp_dilated, size(bw,1));
```

bwpack, imdilate, imerode

Purpose
 Create checkerboard image

Syntax \quad| I $=$ checkerboard |
| :--- |
| I $=$ checkerboard (N) |
| I |

Description

Example

I = checkerboard creates an 8-by-8 square checkerboard image that has four identifiable corners. Each square has 10 pixels per side. The light squares on the left half of the checkerboard are white. The light squares on the right half of the checkerboard are gray.

I = checkerboard(N) creates a checkerboard image where each square has N pixels per side.
$I=$ checkerboard (N, P, Q) creates a rectangular checkerboard where P specifies the number of rows and Q specifies the number of columns. If you omit Q, it defaults to P and the checkerboard is square.

Each row and column is made up of tiles. Each tile contains four squares, N pixels per side, defined as

```
TILE = [DARK LIGHT; LIGHT DARK]
```

The light squares on the left half of the checkerboard are white. The light squares on the right half of the checkerboard are gray.

Create a checkerboard where the side of every square is 20 pixels in length.

```
I = checkerboard(20);
imview(I)
```


Create a rectangular checkerboard that is 2 tiles in height and 3 tiles wide.

```
J = checkerboard(10,2,3);
```

imview(J)

Create a black and white checkerboard.
$\mathrm{K}=$ (checkerboard > 0.5);
figure, imshow(K)

See Also
cp2tform, imtransform, maketform

Purpose Rearrange the colors in a colormap

Syntax \quad| $[Y$, newmap $]$ | $=$ cmpermute $(X$, map $)$ |
| ---: | :--- |
| $[Y$, newmap $]$ | $=$ cmpermute $(X$, map, index $)$ |

Description

Class Support The input image X can be of class uint8 or double. Y is returned as an array of the same class as X.

Example

To arrange a colormap in order by luminance, use

```
ntsc = rgb2ntsc(map);
[dum,index] = sort(ntsc(:,1));
[Y,newmap] = cmpermute(X,map,index);
```

See Also randperm, sort in the MATLAB Function Reference

Purpose
Find unique colormap colors and the corresponding image

```
[Y,newmap] = cmunique(X,map)
[Y,newmap] = cmunique(RGB)
[Y,newmap] = cmunique(I)
```

Description $\quad[Y$, newmap] $=$ cmunique $(X$, map $)$ returns the indexed image Y and associated colormap newmap that produce the same image as (X, map) but with the smallest possible colormap. The cmunique function removes duplicate rows from the colormap and adjusts the indices in the image matrix accordingly.
[Y , newmap] = cmunique(RGB) converts the true-color image RGB to the indexed image Y and its associated colormap newmap. The return value newmap is the smallest possible colormap for the image, containing one entry for each unique color in RGB. (Note that newmap might be very large, because the number of entries can be as many as the number of pixels in RGB.)
[Y , newmap] = cmunique(I) converts the intensity image I to an indexed image Y and its associated colormap newmap. The return value newmap is the smallest possible colormap for the image, containing one entry for each unique intensity level in I.
Class Support

The input image can be of class uint8, uint16, or double. The class of the
output image Y is uint8 if the length of newmap is less than or equal to 256. If
the length of newmap is greater than $256, \mathrm{Y}$ is of class double.

See Also gray2ind, rgb2ind

Purpose
 Rearrange matrix columns into blocks

Class Support B can be logical or numeric. The return value A is of the same class as B.
See Also
blkproc, colfilt, im2col, nlfilter

Purpose
Perform neighborhood operations using columnwise functions

Syntax

```
B = colfilt(A,[m n],block_type,fun)
B = colfilt(A,[m n],block_type,fun,P1,P2,...)
B = colfilt(A,[m n],[mblock nblock],block_type,fun,...)
B = colfilt(A,'indexed',...)
```


Description

colfilt processes distinct or sliding blocks as columns. colfilt can perform operations similar to blkproc and nlfilter, but often executes much faster.
$B=$ colfilt(A, $\left.[m n], b l o c k _t y p e, f u n\right)$ processes the image A by rearranging each m-by-n block of A into a column of a temporary matrix, and then applying the function fun to this matrix. fun can be a function_handle, created using @, or an inline object. colfilt zero-pads A, if necessary.

Before calling fun, colfilt calls im2col to create the temporary matrix. After calling fun, colfilt rearranges the columns of the matrix back into m-by-n blocks using col2im.
block_type is a string that can have one of the values listed in this table.

Value	Description
'distinct'	Rearranges each m-by-n distinct block of A into a column in a temporary matrix, and then applies the function fun to this matrix. fun must return a matrix the same size as the temporary matrix. colfilt then rearranges the columns of the matrix returned by fun into m-by-n distinct blocks.
sliding '	Rearranges each m-by-n sliding neighborhood of A into a column in a temporary matrix, and then applies the function fun to this matrix. fun must return a row vector containing a single value for each column in the temporary matrix. (Column compression functions such as sum return the appropriate type of output.) colfilt then rearranges the vector returned by fun into a matrix the same size as A.

$B=\operatorname{colfilt}\left(A,[m n], b l o c k _t y p e, f u n, P 1, P 2, \ldots\right)$ passes the additional parameters P1, P2, ... to fun. The colfilt function calls fun using

$$
y=\operatorname{fun}(x, P 1, P 2, \ldots)
$$

where x is the temporary matrix before processing, and y is the temporary matrix after processing.

B = colfilt(A,[m n],[mblock nblock],block_type,fun,...) processes the matrix A as above, but in blocks of size mblock-by-nblock to save memory. Note that using the [mblock nblock] argument does not change the result of the operation.

B = colfilt(A,'indexed',...) processes A as an indexed image, padding with 0 's if the class of A is uint 8 or uint16, or 1's if the class of A is double.

Note To save memory, the colfilt function might divide A into subimages and process one subimage at a time. This might require colfilt to call the function fun multiple times. In addition, the first argument to fun can have a different number of columns each time.

Class Support

Example

The input image A can be of any class supported by fun. The class of B depends on the class of the output from fun.

This example sets each output pixel to the mean value of the input pixel's 5-by-5 neighborhood.

```
I = imread('tire.tif');
imview(I)
I2 = uint8(colfilt(I,[5 5],'sliding',@mean));
imview(I2)
```

See Also blkproc, col2im, im2col, nlfilter

colorbar

Purpose
Display a color bar
colorbar is a MATLAB function. To get help for this function, select MATLAB
Help from the Help menu and view the online function reference page.

Purpose Create connectivity array

Syntax CONN = conndef(NUM_DIMS,TYPE)

Description CONN = conndef(NUM_DIMS,TYPE) returns the connectivity array defined by TYPE for NUM_DIMS dimensions. TYPE can have either of the values listed in this table.

Value	Description
'minimal'	Defines a neighborhood whose neighbors are touching the central element on an (N-1)-dimensional surface, for the
N-dimensional case.	

Several Image Processing Toolbox functions use conndef to create the default connectivity input argument.

Examples

The minimal connectivity array for two dimensions includes the neighbors touching the central element along a line.

```
conn1 = conndef(2,'minimal')
conn1 =
    0 1 0
    1 1 1
    0 1 0
```

The minimal connectivity array for three dimensions includes all the neighbors touching the central element along a face.

```
conndef(3,'minimal')
ans(:,:,1) =
    0 0 0
    0 1 0
    0 0}
```

```
ans(:,:,2) =
    0
    1 1 1
    0 1 0
ans(:,:,3) =
    0 0 0
    0 1 0
    0 0}
```

The maximal connectivity array for two dimensions includes all the neighbors touching the central element in any way.

```
conn2 = conndef(2,'maximal')
conn2 =
    1 1 1
    1 1 1
    1 1 1
```


Purpose

Perform two-dimensional convolution
conv2 is a function in MATLAB. To get help for this function, select MATLAB
Help from the Help menu and view the online function reference page.

Purpose
 Compute two-dimensional convolution matrix

Syntax
$\mathrm{T}=$ convmtx2($\mathrm{H}, \mathrm{m}, \mathrm{n})$
$\mathrm{T}=\operatorname{convmtx} 2(\mathrm{H},[\mathrm{m} \mathrm{n}])$

Description $\quad \begin{aligned} & T=\operatorname{convmtx} 2(H, m, n) \text { or } T=\operatorname{convmtx} 2(H,[m n]) \text { returns the } \\ & \\ & \\ & \\ & \\ & \text { convolution matrix } T \text { for the matrix } H . \text { If } X \text { is an } m \text {-by- }(T * X(:), \operatorname{size}(H)+[m n]-1) \text { is the same as conv2 }(X, H) .\end{aligned}$
Class Support The inputs are all of class double. The output matrix T is of class sparse. The number of nonzero elements in T is no larger than $\operatorname{prod}(\operatorname{size}(H)) * m * n$.

See Also

conv2
convmtx in the Signal Processing Toolbox User's Guide documentation

Purpose

Perform N-dimensional convolution
convn is a MATLAB function. To get help for this function, select MATLAB
Help from the Help menu and view the online function reference page.

Purpose

Syntax
 $r=\operatorname{corr2}(A, B)$

Description

Class Support
Algorithm corr2 computes the correlation coefficient using

$$
r=\frac{\sum_{m} \sum_{n}\left(A_{m n}-\bar{A}\right)\left(B_{m n}-\bar{B}\right)}{\sqrt{\left(\sum_{m} \sum_{n}\left(A_{m n}-\bar{A}\right)^{2}\right)\left(\sum_{m} \sum_{n}\left(B_{m n}-\bar{B}\right)^{2}\right)}}
$$

where $\bar{A}=$ mean2(A), and $\bar{B}=\operatorname{mean2}(B)$.

See Also

std2
corrcoef in the MATLAB Function Reference

Purpose

Syntax

Description

Infer geometric transformation from control point pairs

```
TFORM = cp2tform(input_points,base_points,transformtype)
TFORM = cp2tform(CPSTRUCT,transformtype)
TFORM = cp2tform(input_points,base_points,transformtype,parameter)
TFORM = cp2tform(CPSTRUCT,transformtype,parameter)
[TFORM,input_points,base_points] = cp2tform(CPSTRUCT,...)
[TFORM,input_points,base_points,input_points_bad,base_points_bad]
    = cp2tform(...,'piecewise linear')
```

TFORM = cp2tform(input_points,base_points,transformtype) takes pairs of control points and uses them to infer a spatial transformation. The function returns a TFORM structure containing the spatial transformation. input_points is an m-by- 2 double matrix containing the x - and y-coordinates of control points in the image you want to transform. base_points is an m-by-2 double matrix containing the x - and y-coordinates of control points specified in the base image.

TFORM $=$ cp2tform (CPSTRUCT, transformtype) takes pairs of control points and uses them to infer a spatial transformation. The function returns a TFORM structure containing the spatial transformation. CPSTRUCT is a structure that contains the control point matrices for the input and base images. You use the Control Point Selection Tool to create the CPSTRUCT.
transformtype specifies the type of spatial transformation to infer. This table lists all the transformation types supported by cp2tform in order of complexity.

cp2tform

The 'lwm' and 'polynomial' transform types can each take an optional, additional parameter. See the syntax descriptions that follow for details.

Transformation Type	Description	Minimum Control Points	Example
'linear conformal'	Use this transformation when shapes in the input image are unchanged, but the image is distorted by some combination of translation, rotation, and scaling. Straight lines remain straight, and parallel lines are still parallel.	2 pairs	
'affine ${ }^{\text {/ }}$	Use this transformation when shapes in the input image exhibit shearing. Straight lines remain straight, and parallel lines remain parallel, but rectangles become parallelograms.	3 pairs	
'projective'	Use this transformation when the scene appears tilted. Straight lines remain straight, but parallel lines converge toward vanishing points that might or might not fall within the image.	4 pairs	틉봉
'polynomial'	Use this transformation when objects in the image are curved. The higher the order of the polynomial, the better the fit, but the result can contain more curves than the base image.	6 pairs (order 2) 10 pairs (order 3) 16 pairs (order 4)	

Transformation Type	Description	Minimum Control Points	Example
'piecewise linear'	Use this transformation when parts of the image appear distorted differently.	4 pairs	
'lwm'	Use this transformation (local weighted mean), when the distortion varies locally and piecewise linear is not sufficient.	6 pairs (12 pairs recommended)	

Note When transformtype is 'linear conformal','affine', 'projective', or 'polynomial', and input_points and base_points (or CPSTRUCT) have the minimum number of control points needed for a particular transformation, cp2tform finds the coefficients exactly. If input_points and base_points include more than the minimum number of points, cp2tform uses a least squares solution. For more information, see mldivide.

TFORM $=$ cp2tform(input_points,base_points,'polynomial',order) returns a TFORM structure specifying a 'polynomial' transformation, where order specifies the order of the polynomial to use. order can be the scalar value 2,3 , or 4 . If you omit order, it defaults to 3.

TFORM $=$ cp2tform(CPSTRUCT, 'polynomial', order) same as the previous syntax except that the control points are specified in a CPSTRUCT.

TFORM = cp2tform(input_points,base_points, 'lwm',N) returns a TFORM structure specifying a 'lwm' transformation, where N specifies the number of points used to infer each polynomial. The radius of influence extends out to the furthest control point used to infer that polynomial. The N closest points are used to infer a polynomial of order 2 for each control point pair. If you omit N, it defaults to $12 . \mathrm{N}$ can be as small as 6 , but making N small risks generating ill-conditioned polynomials.

TFORM $=$ cp2tform(CPSTRUCT, 'lwm',N) same as the previous syntax except that the control points are specified in a CPSTRUCT.
[TFORM, input_points,base_points] = cp2tform(CPSTRUCT,...) returns the control points that were actually used in the return values input_points and base_points. Unmatched and predicted points are not used. For more information, see cpstruct2pairs.
[TFORM, input_points, base_points,input_points_bad, base_points_bad]= cp2tform(input_points, base_points,'piecewise linear') returns a TFORM structure specifying a 'piecewise linear' transformation. Returns the control points that were actually used in input_points and base_points, and returns the control points that were eliminated because they were middle vertices of degenerate fold-over triangles, in input_points_bad and base_points_bad.
[TFORM, input_points, base_points,input_points_bad,base_points_bad]= cp2tform(CPSTRUCT, 'piecewise linear') same as the previous syntax except that the control points are specified in a CPSTRUCT.

Algorithms

cp2tform uses the following general procedure:
1 Use valid pairs of control points to infer a spatial transformation or an inverse mapping from output space (x, y) to input space (u, v) according to transformtype.
2 Return TFORM structure containing spatial transformation.
The procedure varies depending on the transformtype.

Linear Conformal

Linear conformal transformations can include a rotation, a scaling, and a translation. Shapes and angles are preserved. Parallel lines remain parallel. Straight lines remain straight.

Let

```
sc = scale*cos(angle)
ss = scale*sin(angle)
[u v] = [x y 1] * [ sc -ss
```

```
ss sc
tx ty]
```

Solve for sc, ss, tx, ty.

```
t_lc = cp2tform(input_points,base_points,'linear conformal');
```

The coefficients of the inverse mapping are stored in t_lc.tdata.Tinv.
Since linear conformal transformations are a subset of affine transformations, t_lc.forward_fcn is @affine_fwd and t_lc.inverse_fcn is @affine_inv.

At least two control-point pairs are needed to solve for the four unknown coefficients.

Affine

In an affine transformation, the x and y dimensions can be scaled or sheared independently and there can be a translation. Parallel lines remain parallel. Straight lines remain straight. Linear conformal transformations are a subset of affine transformations.

For an affine transformation,

$$
\left[\begin{array}{ll}
u & v
\end{array}\right]=\left[\begin{array}{lll}
x & y & 1
\end{array}\right] \text { * Tinv }
$$

Tinv is a 3-by-2 matrix. Solve for the six elements of Tinv.

```
t_affine = cp2tform(input_points,base_points,'affine');
```

The coefficients of the inverse mapping are stored in t_affine.tdata.Tinv.
At least three control-point pairs are needed to solve for the six unknown coefficients.

Projective

In a projective transformation, quadrilaterals map to quadrilaterals. Straight lines remain straight. Affine transformations are a subset of projective transformations.

For a projective transformation

```
    [up vp wp] = [x y w] * Tinv
```

where

$$
\begin{aligned}
& u=u p / w p \\
& v=v p / w p
\end{aligned}
$$

Tinv is a 3 -by- 3 matrix.
Assuming

```
Tinv = [ A D G;
    B E H;
    C F I ];
u=(Ax + By +C)/(Gx + Hy + I)
v = (Dx + Ey + F)/(Gx + Hy + I)
```

Solve for the nine elements of Tinv.

```
t_proj = cp2tform(input_points,base_points,'projective');
```

The coefficients of the inverse mapping are stored in t_proj.tdata.Tinv.
At least four control-point pairs are needed to solve for the nine unknown coefficients.

Polynomial

In a polynomial transformation, polynomial functions of x and y determine the mapping.

Second-Order Polynomials

For a second-order polynomial transformation,

```
[u v] = [1 x y x*y x^2 y^2] * Tinv
```

Both u and v are second-order polynomials of x and y. Each second-order polynomial has six terms. To specify all coefficients, Tinv has size 6-by-2.

```
t_poly_ord2 =
cp2tform(input_points,base_points,'polynomial');
```

The coefficients of the inverse mapping are stored in t_poly_ord2.tdata.
At least six control-point pairs are needed to solve for the 12 unknown coefficients.

Third-Order Polynomials

For a third-order polynomial transformation:

$$
[u v]=\left[\begin{array}{llllllllll}
1 & x & y & x^{*} y & x^{\wedge} 2 & y^{\wedge} 2 & y^{*} x^{\wedge} 2 & x^{*} y^{\wedge} 2 & x^{\wedge} 3 & y^{\wedge} 3
\end{array}\right] \text { * Tinv }
$$

Both u and v are third-order polynomials of x and y. Each third-order polynomial has ten terms. To specify all coefficients, Tinv has size 10-by-2.

```
t_poly_ord3 = cp2tform(input_points, base_points,
    'polynomial',3);
```

The coefficients of the inverse mapping are stored in t_poly_ord3.tdata.
At least ten control-point pairs are needed to solve for the 20 unknown coefficients.

Fourth-Order Polynomials

For a fourth-order polynomial transformation:

```
[u v] = [11 x y x*y x^2 y^2 y*x^2 x*y^2 x^3 y^3] * Tinv
```

Both u and v are fourth-order polynomials of x and y. Each fourth-order polynomial has 15 terms. To specify all coefficients, Tinv has size 15-by-2.

```
t_poly_ord4 = cp2tform(input_points, base_points,
    'polynomial',4);
```

The coefficients of the inverse mapping are stored in t_poly_ord4.tdata.
At least 15 control-point pairs are needed to solve for the 30 unknown coefficients.

Piecewise Linear

In a piecewise linear transformation, linear (affine) transformations are applied separately to each triangular region of the image [1].

1 Find a Delaunay triangulation of the base control points.

2 Using the three vertices of each triangle, infer an affine mapping from base to input coordinates.

Note At least four control-point pairs are needed. Four pairs result in two triangles with distinct mappings.

Local Weighted Mean

For each control point in base_points:
1 Find the N closest control points.
2 Use these N points and their corresponding points in input_points to infer a second-order polynomial.
3 Calculate the radius of influence of this polynomial as the distance from the center control point to the farthest point used to infer the polynomial (using base_points). [2]

Note At least six control-point pairs are needed to solve for the second-order polynomial. Ill-conditioned polynomials might result if too few pairs are used.

Example

```
I = checkerboard;
J = imrotate(I,30);
base_points = [11 11; 41 71];
input_points = [14 44; 70 81];
cpselect(J,I,input_points,base_points);
t = cp2tform(input_points,base_points,'linear conformal');
```

To recover angle and scale,

```
ss = t.tdata.Tinv(2,1); % ss = scale * sin(angle)
sc = t.tdata.Tinv(1,1); % sc = scale * cos(angle)
angle = atan2(ss,sc)*180/pi
scale = sqrt(ss*ss + sc*sc)
```


See Also

References
cpcorr, cpselect, cpstruct2pairs, imtransform
[1] Goshtasby, Ardeshir, "Piecewise linear mapping functions for image registration," Pattern Recognition, Vol. 19, 1986, pp. 459-466.
[2] Goshtasby, Ardeshir, "Image registration by local approximation methods," Image and Vision Computing, Vol. 6, 1988, pp. 255-261.

cpcorr

Purpose

Syntax

Description

Class Support

Algorithm

Tune control-point locations using cross correlation

```
input_points = cpcorr(input_points_in,base_points_in,input,base)
```

input_points = cpcorr(input_points_in,base_points_in,input,base) uses normalized cross-correlation to adjust each pair of control points specified in input_points_in and base_points_in.
input_points_in must be an M-by-2 double matrix containing the coordinates of control points in the input image. base_points_in is an M-by-2 double matrix containing the coordinates of control points in the base image.
cpcorr returns the adjusted control points in input_points, a double matrix the same size as input_points_in. If cpcorr cannot correlate a pair of control points, input_points contains the same coordinates as input_points_in for that pair.
cpcorr only moves the position of a control point by up to four pixels. Adjusted coordinates are accurate to one-tenth of a pixel. cpcorr is designed to get subpixel accuracy from the image content and coarse control-point selection.

Note input and base images must have the same scale for cpcorr to be effective.
cpcorr cannot adjust a point if any of the following occur:

- Points are too near the edge of either image.
- Regions of images around points contain Inf or NaN.
- Region around a point in input image has zero standard deviation.
- Regions of images around points are poorly correlated.

The images input and base can be of class logical, uint8, uint16, or double and must contain finite values. The control-point pairs are of class double.
cpcorr uses the following general procedure.
For each control-point pair,

1 Extract an 11-by-11 template around the input control point and a 21-by-21 region around the base control point.
2 Calculate the normalized cross-correlation of the template with the region.
3 Find the absolute peak of the cross-correlation matrix.
4 Use the position of the peak to adjust the coordinates of the input control point.

Example

See Also

This example uses cpcorr to fine-tune control points selected in an image. Note the difference in the values of the input_points matrix and the input_points_adj matrix.

```
input = imread('onion.png');
```

base = imread('peppers.png');
input_points = [127 93; 74 59];
base_points = [323 195; 269 161];
input_points_adj = cpcorr(input_points,base_points,...
input(:,:,1), base(:,:,1))
input_points_adj =
$127.0000 \quad 93.0000$
$71.0000 \quad 59.6000$
cp2tform, cpselect, imtransform, normxcorr2

Purpose
 Control Point Selection Tool

```
Syntax cpselect(input,base)
cpselect(input,base,CPSTRUCT_IN )
cpselect(input,base,xyinput_in,xybase_in)
H = cpselect(input,base,...)
```


Description

Class Support

Algorithm
cpselect(input, base) starts the Control Point Selection Tool, a graphical user interface that enables you to select control points in two related images. input is the image that needs to be warped to bring it into the coordinate system of the base image. input and base can be either variables that contain images or strings that identify files containing grayscale images. The Control Point Selection Tool returns the control points in a CPSTRUCT structure. (For more information, see "Using the Control Point Selection Tool" in Chapter 5.)
cpselect(input, base, CPSTRUCT_IN) starts cpselect with an initial set of control points that are stored in CPSTRUCT_IN. This syntax allows you to restart cpselect with the state of control points previously saved in CPSTRUCT_IN.
cpselect(input, base, xyinput_in, xybase_in) starts cpselect with a set of initial pairs of control points. xyinput_in and xybase_in are m-by- 2 matrices that store the input and base coordinates, respectively.
$\mathrm{H}=\mathrm{cpselect}($ input, base, \ldots) returns a handle H to the tool. You can use the close (H) or H. close syntax to close the tool from the command line.

The input images can be of class uint8, uint16, double, or logical.
cpselect uses the following general procedure for control-point prediction.
1 Find all valid pairs of control points.
2 Infer a spatial transformation between input and base control points using method that depends on the number of valid pairs, as follows:

2 pairs	Linear conformal
3 pairs	Affine
4 or more pairs	Projective

3 Apply spatial transformation to the new point to generate the predicted point.
4 Display predicted point.

Notes

Example

See Also

To increase the amount of memory available to cpselect, you must put a file called 'java.opts' in your start-up directory. See imview for details.

Start tool with saved images.

```
aerial = imread('westconcordaerial.png');
cpselect(aerial(:,:,1),'westconcordorthophoto.png')
```

Start tool with workspace images and points.

```
I = checkerboard;
J = imrotate(I,30);
base_points = [11 11; 41 71];
input_points = [14 44; 70 81];
cpselect(J,I,input_points,base_points);
```

cpcorr, cp2tform, cpstruct2pairs, imtransform

cpstruct2pairs

Purpose
Syntax
Description

Example

See Also

Convert CPSTRUCT to valid pairs of control points
[input_points, base_points] = cpstruct2pairs(CPSTRUCT)
[input_points, base_points] = cpstruct2pairs(CPSTRUCT) takes a CPSTRUCT (produced by cpselect) and returns the arrays of coordinates of valid control point pairs in input_points and base_points. cpstruct2pairs eliminates unmatched points and predicted points.

Start the Control Point Selection Tool, cpselect, with saved images.

```
aerial = imread('westconcordaerial.png');
cpselect(aerial(:,:,1),'westconcordorthophoto.png')
```

Using cpselect, pick control points in the images. Select Save to Workspace from the File menu to save the points to the workspace. On the Save dialog box, check the Structure with all points check box and clear Input points of valid pairs and Base points of valid pairs. Click OK. Use cpstruct2pairs to extract the input and base points from the CPSTRUCT.

```
[input_points,base_points] = cpstruct2pairs(cpstruct);
```

cp2tform, cpselect, imtransform

Purpose
 Compute two-dimensional discrete cosine transform

Syntax

$B=\operatorname{dct2}(A)$
$B=\operatorname{dct2}(A, m, n)$
$B=\operatorname{dct2}(A,[m n])$

Class Support

Algorithm

Example

$B=\operatorname{dct2}(A)$ returns the two-dimensional discrete cosine transform of A. The matrix B is the same size as A and contains the discrete cosine transform coefficients $B\left(k_{1}, k_{2}\right)$.
$B=\operatorname{dct2}(A, m, n)$ or $B=\operatorname{dct2}(A,[m n])$ pads the matrix A with 0 's to size m-by- n before transforming. If m or n is smaller than the corresponding dimension of A, dct2 truncates A.

A can be numeric or logical. The returned matrix B is of class double.

$$
\begin{aligned}
& B_{p q}=\alpha_{p} \alpha_{q} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} A_{m n} \cos \frac{\pi(2 m+1) p}{2 M} \cos \frac{\pi(2 n+1) q}{2 N}, \quad \begin{array}{l}
0 \leq p \leq M-1 \\
0 \leq q \leq N-1
\end{array} \\
& \alpha_{p}=\left\{\begin{array}{ll}
1 / \sqrt{M}, & p=0 \\
\sqrt{2 / M}, & 1 \leq p \leq M-1
\end{array} \quad \alpha_{q}= \begin{cases}1 / \sqrt{N}, & q=0 \\
\sqrt{2 / N}, & 1 \leq q \leq N-1\end{cases} \right.
\end{aligned}
$$

where M and N are the row and column size of A, respectively. If you apply the DCT to real data, the result is also real. The DCT tends to concentrate information, making it useful for image compression applications.

This transform can be inverted using idct2.
The commands below compute the discrete cosine transform for the autumn image. Notice that most of the energy is in the upper left corner.

```
RGB = imread('autumn.tif');
I = rgb2gray(RGB);
J = dct2(I);
imshow(log(abs(J)),[]), colormap(jet(64)), colorbar
```


Now set values less than magnitude 10 in the DCT matrix to zero, and then reconstruct the image using the inverse DCT function idct2.

```
J(abs(J) < 10) = 0;
K = idct2(J);
imview(I)
imview(K,[0 255])
```


See Also
fft2, idct2, ifft2
References
[1] Jain, Anil K., Fundamentals of Digital Image Processing, Englewood Cliffs, NJ, Prentice Hall, 1989, pp. 150-153.
[2] Pennebaker, William B., and Joan L. Mitchell, JPEG: Still Image Data Compression Standard, Van Nostrand Reinhold, 1993.

Purpose
 Compute discrete cosine transform matrix

Syntax $D=\operatorname{dctmtx}(n)$

Description

Class Support

Remarks

See Also

Purpose

 Restore image using the blind deconvolution algorithmSyntax
\section*{Description}

```
[J,PSF] = deconvblind(I,INITPSF)
[J,PSF] = deconvblind(I,INITPSF,NUMIT)
[J,PSF] = deconvblind(I,INITPSF,NUMIT,DAMPAR)
[J,PSF] = deconvblind(I,INITPSF,NUMIT,DAMPAR,WEIGHT)
[J,PSF] = deconvblind(I,INITPSF,NUMIT,DAMPAR,WEIGHT,READOUT)
[J,PSF] = deconvblind(...,FUN,P1,P2,...,PN)
```

[J,PSF] = deconvblind(I,INITPSF) deconvolves image I using the maximum likelihood algorithm, returning both the deblurred image J and a restored point-spread function PSF. The input array I and your initial guess at the PSF INITPSF can be numeric arrays or cell arrays. (Use cell arrays when you want to be able to perform additional deconvolutions that start where your initial deconvolution finished. The restored PSF is a positive array that is the same size as INITPSF, normalized so its sum adds up to 1 .

Note The PSF restoration is affected strongly by the size of the initial guess INITPSF and less by the values it contains. For this reason, specify an array of 1's as your INITPSF.

To improve the restoration, deconvblind supports several optional parameters, described below. Use [] as a placeholder if you do not specify an intermediate parameter.
[J,PSF] = deconvblind(I, INITPSF,NUMIT) specifies the number of iterations (default is 10).
[J,PSF] = deconvblind(I,INITPSF,NUMIT,DAMPAR) specifies the threshold deviation of the resulting image from the input image I (in terms of the standard deviation of Poisson noise) below which damping occurs. The iterations are suppressed for the pixels that deviate within the DAMPAR value from their original value. This suppresses the noise generation in such pixels, preserving necessary image details elsewhere. The default value is 0 (no damping).
[J,PSF] = deconvblind(I,INITPSF,NUMIT,DAMPAR,WEIGHT) specifies which pixels in the input image I are considered in the restoration. By default, WEIGHT is a unit array, the same size as the input image. You can assign a value between 0.0 and 1.0 to elements in the WEIGHT array. The value of an element in the WEIGHT array determines how much the pixel at the corresponding position in the input image is considered. For example, to exclude a pixel from consideration, assign it a value of 0 in the WEIGHT array. You can adjust the weight value assigned to each pixel according to the amount of flat-field correction.
[J, PSF] = deconvblind(I, INITPSF, NUMIT, DAMPAR, WEIGHT, READOUT), where READOUT is an array (or a value) corresponding to the additive noise (e.g., background, foreground noise) and the variance of the read-out camera noise. READOUT has to be in the units of the image. The default value is 0 .
$[J, P S F]=$ deconvblind (...,FUN,P1,P2, .., PN $)$, where FUN is a function describing additional constraints on the PSF. There are four ways to specify FUN:

- Function handle (@)
- Inline object
- String containing function name
- String containing a MATLAB expression

FUN is called at the end of each iteration. FUN must accept the PSF as its first argument and can accept additional parameters P1, P2, ..., PN. The FUN function should return one argument, PSF, that is the same size as the original PSF and that satisfies the positivity and normalization constraints.

Note The output image J could exhibit ringing introduced by the discrete Fourier transform used in the algorithm. To reduce the ringing, use I = edgetaper(I,PSF) before calling deconvblind.

Resuming Deconvolution

You can use deconvblind to perform a deconvolution that starts where a previous deconvolution stopped. To use this feature, pass the input image I and the initial guess at the PSF, INITPSF, as cell arrays: $\{$ I $\}$ and \{INITPSF \}. When you do, the deconvblind function returns the output image J and the restored
point-spread function, PSF, as cell arrays, which can then be passed as the input arrays into the next deconvblind call. The output cell array J contains four elements:
$J\{1\}$ contains I, the original image.
$J\{2\}$ contains the result of the last iteration.
$J\{3\}$ contains the result of the next-to-last iteration.
$J\{4\}$ is an array generated by the iterative algorithm.

Class Support

I can be of class uint8, uint16, or double. The DAMPAR and READOUT arguments have to be of the same class as the input image. Other inputs have to be of class double. The output image J, or the first array of the output cell array, is of the same class as the input image.

Example

See Also

```
I = checkerboard(8);
PSF = fspecial('gaussian',7,10);
V = .0001;
BlurredNoisy = imnoise(imfilter(I,PSF),'gaussian',0,V);
WT = zeros(size(I));
WT(5:end-4,5:end-4) = 1;
INITPSF = ones(size(PSF));
FUN = inline('PSF + P1','PSF','P1');
[J P]= deconvblind(BlurredNoisy,INITPSF,20,10*sqrt(V),WT,FUN,0);
subplot(221);imshow(BlurredNoisy);
title('A = Blurred and Noisy');
subplot(222);imshow(PSF,[]);
title('True PSF');
subplot(223);imshow(J);
title('Deblured Image');
subplot(224);imshow(P,[]);
title('Recovered PSF');
```

deconvlucy, deconvreg, deconvwnr, otf2psf, padarray, psf2otf

deconvlucy

Purpose
Syntax
Description

Restore image using the Lucy-Richardson algorithm

```
J = deconvlucy(I,PSF)
J = deconvlucy(I,PSF,NUMIT)
J = deconvlucy(I,PSF,NUMIT,DAMPAR)
J = deconvlucy(I,PSF,NUMIT,DAMPAR,WEIGHT)
J = deconvlucy(I,PSF,NUMIT,DAMPAR,WEIGHT,READOUT)
J = deconvlucy(I,PSF,NUMIT,DAMPAR,WEIGHT,READOUT,SUBSMPL)
```

$J=$ deconvlucy(I,PSF) restores image I that was degraded by convolution with a point-spread function PSF and possibly by additive noise. The algorithm is based on maximizing the likelihood of the resulting image J's being an instance of the original image I under Poisson statistics. The input array I can be a numeric array (the blurred image) or a cell array.

If I is a cell array, it can contain a single numerical array (the blurred image) or it can be the output from a previous run of deconvlucy.

When you pass a cell array to deconvlucy as input, it returns a 1-by-4 cell array J, where
$J\{1\}$ contains I, the original image.
$J\{2\}$ contains the result of the last iteration.
$J\{3\}$ contains the result of the next-to-last iteration.
$J\{4\}$ is an array generated by the iterative algorithm.
To improve the restoration, deconvlucy supports several optional parameters. Use [] as a placeholder if you do not specify an intermediate parameter.
$J=$ deconvlucy (I, PSF, NUMIT) specifies the number of iterations the deconvlucy function performs. If this value is not specified, the default is 10 .
$J=$ deconvlucy (I, PSF , NUMIT , DAMPAR) specifies the threshold deviation of the resulting image from the image I (in terms of the standard deviation of Poisson noise) below which damping occurs. Iterations are suppressed for pixels that deviate beyond the DAMPAR value from their original value. This suppresses the noise generation in such pixels, preserving necessary image details elsewhere. The default value is 0 (no damping).
$J=$ deconvlucy (I, PSF, NUMIT, DAMPAR, WEIGHT) specifies the weight to be assigned to each pixel to reflect its recording quality in the camera. A bad pixel is excluded from the solution by assigning it zero weight value. Instead of giving a weight of unity for good pixels, you can adjust their weight according to the amount of flat-field correction. The default is a unit array of the same size as input image I.
$J=$ deconvlucy (I, PSF, NUMIT, DAMPAR,WEIGHT, READOUT) specifies a value corresponding to the additive noise (e.g., background, foreground noise) and the variance of the readout camera noise. READOUT has to be in the units of the image. The default value is 0 .
$J=$ deconvlucy(I, PSF,NUMIT, DAMPAR,WEIGHT, READOUT, SUBSMPL), where SUBSMPL denotes subsampling and is used when the PSF is given on a grid that is SUBSMPL times finer than the image. The default value is 1.

Note The output image J could exhibit ringing introduced by the discrete Fourier transform used in the algorithm. To reduce the ringing, use $\mathrm{I}=$ edgetaper(I, PSF) before calling deconvlucy.

Class Support
I can be of class uint8, uint16, or double. The DAMPAR and READOUT arguments have to be of the same class as the input image. Other inputs have to be of class double. Output image (or the first array of the output cell) is of the same class as the input image.

Example

```
I = checkerboard(8);
PSF = fspecial('gaussian',7,10);
V = .0001;
BlurredNoisy = imnoise(imfilter(I,PSF),'gaussian',0,V);
WT = zeros(size(I));
WT(5:end-4,5:end-4) = 1;
J1 = deconvlucy(BlurredNoisy,PSF);
J2 = deconvlucy(BlurredNoisy,PSF,20,sqrt(V));
J3 = deconvlucy(BlurredNoisy,PSF,20,sqrt(V),WT);
subplot(221);imshow(BlurredNoisy);
title('A = Blurred and Noisy');
```

```
subplot(222);imshow(J1);
title('deconvlucy(A,PSF)');
subplot(223);imshow(J2);
title('deconvlucy(A,PSF,NI,DP)');
subplot(224);imshow(J3);
title('deconvlucy(A,PSF,NI,DP,WT)');
```

See Also
deconvblind, deconvreg, deconvwnr, otf2psf, padarray, psf2otf

Purpose

Syntax
Description

Restore image using a regularized filter

```
J = deconvreg(I,PSF)
J = deconvreg(I,PSF,NOISEPOWER)
J = deconvreg(I,PSF,NOISEPOWER,LRANGE)
J = deconvreg(I,PSF,NOISEPOWER,LRANGE,REGOP)
[J, LAGRA] = deconvreg(I,PSF,...)
```

$J=$ deconvreg (I, PSF) restores image I that was degraded by convolution with a point-spread function PSF and possibly by additive noise. The algorithm is a constrained optimum in a sense of least square error between the estimated and the true images under the requirement of preserving image smoothness.
$J=$ deconvreg(I,PSF,NOISEPOWER), where NOISEPOWER is the additive noise power. The default value is 0 .
$J=$ deconvreg(I,PSF,NOISEPOWER,LRANGE), where LRANGE is a vector specifying range where the search for the optimal solution is performed. The algorithm finds an optimal Lagrange multiplier LAGRA within the LRANGE range. If LRANGE is a scalar, the algorithm assumes that LAGRA is given and equal to LRANGE; the NP value is then ignored. The default range is between [1e-9 and 1e9].
$J=$ deconvreg(I,PSF,NOISEPOWER,LRANGE,REGOP), where REGOP is the regularization operator to constrain the deconvolution. The default regularization operator is the Laplacian operator, to retain the image smoothness. The REGOP array dimensions must not exceed the image dimensions; any nonsingleton dimensions must correspond to the nonsingleton dimensions of PSF.
[J, LAGRA] = deconvreg (I, PSF, ...) outputs the value of the Lagrange multiplier LAGRA in addition to the restored image J.

Note The output image J could exhibit ringing introduced by the discrete Fourier transform used in the algorithm. To reduce the ringing, process the image with the edgetaper function prior to calling the deconvreg function. For example, I = edgetaper(I,PSF).

```
Class Support I can be of class uint8, uint16, or double. Other inputs have to be of class double. \(J\) is of the same class as I.
```


Example

```
See Also
deconvblind, deconvlucy, deconvwnr, otf2psf, padarray, psf2otf
```


Purpose

Syntax
Description

Restore image using the Wiener filter
$J=$ deconvwnr(I,PSF)
$J=$ deconvwnr(I,PSF,NSR)
J = deconvwnr(I,PSF,NCORR,ICORR)
$J=$ deconvwnr(I, PSF) restores image I that was degraded by convolution with a point-spread function PSF and possibly by additive noise. The algorithm is optimal in a sense of least mean square error between the estimated and the true image, and uses the correlation matrixes of image and noise. In the absence of noise, the Wiener filter reduces to the ideal inverse filter.
$J=$ deconvwnr(I, PSF, NSR), where NSR is the noise-to-signal power ratio. NSR could be a scalar or an array of the same size as I. The default value is 0 .
$J=$ deconvwnr(I, PSF, NCORR, ICORR), where NCORR and ICORR are the autocorrelation functions of the noise and the original image, respectively. NCORR and ICORR can be of any size or dimension not exceeding the original image. An N -dimensional NCORR or ICORR array corresponds to the autocorrelation within each dimension. A vector NCORR or ICORR represents an autocorrelation function in the first dimension if PSF is a vector. If PSF is an array, the 1-D autocorrelation function is extrapolated by symmetry to all nonsingleton dimensions of PSF. A scalar NCORR or ICORR represents the power of the noise or the image.

Note The output image J could exhibit ringing introduced by the discrete Fourier transform used in the algorithm. To reduce the ringing, process the image with the edgetaper function prior to calling the deconvwnr function. For example, I = edgetaper(I,PSF)

Class Support

Example

I can be of class uint8, uint16, or double. Other inputs must be of class double. J is of the same class as I.

```
I = checkerboard(8);
noise = 0.1*randn(size(I));
PSF = fspecial('motion',21,11);
Blurred = imfilter(I,PSF,'circular');
```

```
BlurredNoisy = im2uint8(Blurred + noise);
NSR = sum(noise(:).^2)/sum(I(:).^2);% noise-to-power ratio
NP = abs(fftn(noise)).^2;% noise power
NPOW = sum(NP(:))/prod(size(noise));
NCORR = fftshift(real(ifftn(NP)));% noise autocorrelation
function, centered
IP = abs(fftn(I)).^2;% original image power
IPOW = sum(IP(:))/prod(size(I));
ICORR = fftshift(real(ifftn(IP)));% image autocorrelation
function, centered
ICORR1 = ICORR(:,ceil(size(I,1)/2));
NSR = NPOW/IPOW;
subplot(221);imshow(BlurredNoisy,[]);
title('A = Blurred and Noisy');
subplot(222);imshow(deconvwnr(BlurredNoisy,PSF,NSR),[]);
title('deconvwnr(A,PSF,NSR)');
subplot(223);imshow(deconvwnr(BlurredNoisy,PSF,NCORR,ICORR),[]);
title('deconvwnr(A,PSF,NCORR,ICORR)');
subplot(224);imshow(deconvwnr(BlurredNoisy,PSF,NPOW,ICORR1), []);
title('deconvwnr(A,PSF,NPOW,ICORR_1_D)');
```

See Also
deconvblind, deconvlucy, deconvreg, otf2psf, padarray, psf2otf

Purpose

Syntax
\section*{Description}

Notes

Apply a decorrelation stretch to a multichannel image
S = decorrstretch(I)
S = decorrstretch(I,TOL)

S = decorrstretch(I) applies a decorrelation stretch to a multichannel image I and returns the result in S. S has the same size and class as I. The mean and variance in each band are the same as in I.

S = decorrstretch(I,TOL) applies a contrast following the decorrelation stretch. The contrast stretch is controlled by TOL:

- TOL = [LOW_FRACT HIGH_FRACT] specifies the fraction of the image to saturate at low and high intensities.
- If TOL is a scalar, LOW_FRACT = TOL, and HIGH_FRACT = 1 - TOL, which saturates equal fractions at low and high intensities.

The decorrelation stretch is normally applied to three band images (ordinary RGB images or RGB multispectral composite images), but decorrstretch works on an arbitrary number of bands.

The primary purpose of decorrelation stretch is visual enhancement. Small adjustments to TOL can strongly affect the visual appearance of the output.

Class Support The input image must be of class uint8, uint16, or double.
Example

See Also imadjust, stretchlim

dicominfo

Purpose
 Read metadata from a DICOM message

Syntax	```info = dicominfo(filename) info = dicominfo(filename,'dictionary', D)```
Description	info = dicominfo(filename) reads the metadata from the complian Imaging and Communications in Medicine (DICOM) file specified in the filename. info = dicominfo(filename,'dictionary', D) uses the data dictio given in the string D to read the DICOM message. The file in D must b MATLAB search path. The default dictionary file is dicom-dict.txt.
Examples	```info = dicominfo('CT-MONO2-16-ankle.dcm') info = Filename: [1x47 char] FileModDate: '24-Dec-2000 19:54:47' FileSize: 525436 Format: 'DICOM' FormatVersion: 3 Width: 512 Height: 512 BitDepth: 16 ColorType: 'grayscale'```
See Also	dicomread, dicomwrite

Purpose

Syntax

Description

Read a DICOM image

```
X = dicomread(filename)
X = dicomread(info)
[X,map] = dicomread(...)
[X,map,alpha] = dicomread(...)
[X,map,alpha,overlays] = dicomread(...)
[...] = dicomread(filename, param1, val1, param2, val2, ...)
[...] = dicomread(info, param1, val1, param2, val2, ...)
```

X = dicomread(filename) reads the image data from the compliant Digital Imaging and Communications in Medicine (DICOM) file filename. For single-frame grayscale images, X is an M-by-N array. For single-frame true-color images, X is an M-by-N-by- 3 array. Multiframe images are always 4 -D arrays.
$X=$ dicomread(info) reads the image data from the message referenced in the DICOM metadata structure info. The info structure is produced by the dicominfo function.
[X, map] $=$ dicomread (...) returns the image X and the colormap map. If X is a grayscale or true-color image, map is empty.
[X, map, alpha] = dicomread (...) returns the image X, the colormap map, and an alpha channel matrix for X. The values of alpha are 0 if the pixel is opaque; otherwise they are row indices into map. The RGB value in map should be substituted for the value in X to use alpha. alpha has the same height and width as X and is 4 - D for a multiframe image.
[X,map,alpha,overlays] = dicomread(...) returns the image X, the colormap map, an alpha channel matrix for X, and any overlays from the DICOM file. Each overlay is a 1-bit black and white image with the same height and width as X . If multiple overlays are present in the file, overlays is a 4-D multiframe image. If no overlays are in the file, overlays is empty.

The first input argument, either filename or info, can be followed by a set of parameter name/value pairs.

```
[...] = dicomread(filename,param1, value1, param2, value2, ...)
[...] = dicomread(info, param1, value1, param2, value2, ...)
```


dicomread

Supported parameter names and values include the following:

Parameter	Description
'Frames '	Integer scalar, vector of integers, or the string 'all' specifying frame, or frames, to read from the image. The default value is 'all'.
'Dictionary ${ }^{\text {' }}$	String specifying the data dictionary file. The default value is 'dicom-dict.txt'.
'Raw '	Integer scalar specifying whether dicomread performs any pixel-level transformations on the image data. 1 (the default) - Do not perform any pixel-level transformations. 0 - Rescale the image to use the full dynamic range and automatically convert color images to the RGB color space. Note 1: Because the HSV color space is inadequately defined in the DICOM standard, dicomread does not automatically convert data in this color space to RGB. Note 2: dicomread never rescales or changes the color spaces of images containing signed data. Note 3: Rescaling values and applying color space conversions does not change the metadata in any way. Consequently, metadata values that refer to pixel values (such as window center/width or LUTs) might not be correct when pixels are scaled or converted.

Examples

Example 1

Use dicomread to retrieve the data matrix X and colormap matrix map needed to create a montage.

```
[X, map] = dicomread('US-PAL-8-10x-echo.dcm');
montage(X, map);
```


Example 2

Call dicomread with the information retrieved from the DICOM file using dicominfo. Display the image with imview using its autoscaling syntax.

```
info = dicominfo('CT-MONO2-16-ankle.dcm');
Y = dicomread(info);
imview(Y, []);
```

See Also
dicominfo, dicomwrite

dicomuid

Purpose Generate a DICOM unique identifier
Syntax UID = dicomuid
Description UID = dicomuid creates a string UID containing a new DICOM unique identifier.

Multiple calls to dicomuid produce globally unique values. Two calls to dicomuid always return different values.

See Also dicominfo, dicomwrite

Purpose
 Write images as DICOM files

Syntax
Description

```
dicomwrite(X, filename)
dicomwrite(X, map, filename)
dicomwrite(...,param1,value1, param2,value2,...)
dicomwrite(...,'ObjectType',IOD,...)
dicomwrite(...,'SOPClassUID',UID,...)
dicomwrite(...,meta_struct,...)
dicomwrite(...,info,...)
status = dicomwrite(...)
```

dicomwrite(X , filename) writes the binary, grayscale, or true color image X to the file filename, where filename is a string specifying the name of the Digital Imaging and Communications in Medicine (DICOM) file to create.
dicomwrite(X,map,filename) writes the indexed image X with colormap map.
dicomwrite(..., param1, value1, param2, value2,...) specifies additional metadata to write to the DICOM file. The parameters (param1, param2, etc.) are either names of DICOM file attributes or options that affect how the file is written. Each attribute or option has a corresponding value (value1, value2, etc.). This table lists the options supported by the dicomwrite function. Default values are enclosed in braces ($\}$). To find a list of the DICOM attributes, see the data dictionary file, dicom-dict.txt, included with the Image Processing Toolbox.

Option Name	Description
'CompressionMode '	String specifying the type of compression to use when storing the image. \{'None ' $\}$
'JPEG lossless'	
'JPEG lossy'	
'RLE'	

dicomwrite

Option Name	Description
'TransferSyntax'	A DICOM UID specifying the DICOM transfer
syntax.	
	Note: If you specify the 'TransferSyntax' option, dicomwrite ignores the other three options, if they are specified. The 'TransferSyntax' option encodes the settings for the 'Endian', 'VR', and 'CompressionMode'
	options in a single value.

dicomwrite(...,'ObjectType', IOD, ...) writes a file containing the necessary metadata for a particular type of DICOM Information Object (IOD). Supported IODs are

- 'Secondary Capture Image Storage' (default)
- 'CT Image Storage'
- 'MR Image Storage'
dicomwrite(...,'SOPClassUID', UID, ...) provides an alternate method for specifying the IOD to create. UID is the DICOM unique identifier corresponding to one of the IODs listed above.
dicomwrite(..., meta_struct, ...) specifies optional metadata or file options in structure meta_struct. The structure's field names must be the names of DICOM file attributes or options. The field's value is the value of that attribute or option.
dicomwrite(..., info, ...) specifies metadata in the metadata structure info, which is produced by the dicominfo function. For more information about this structure, see dicominfo.
status = dicomwrite(...) returns information about the metadata and the descriptions used to generate the DICOM file. This syntax can be useful when you specify an info structure that was created by dicominfo to the dicomwrite function. An info structure can contain many fields. If no metadata was specified, dicomwrite returns an empty matrix ([]).

The structure returned by dicomwrite contains these fields:

Field	Description
'BadAttribute'	The attribute's internal description is bad. It might be missing from the data dictionary or have incorrect data in its description.
'MissingCondition'	The attribute is conditional but no condition has been provided for when to use it.
'MissingData'	No data was provided for an attribute that must appear in the file.
'SuspectAttribute'	Data in the attribute does not match a list of enumerated values in the DICOM specification.

Example

This example uses dicominfo to retrieve information about the contents of the sample DICOM file included with the Image Processing Toolbox. The example uses dicomread to read the data from the file and then writes the data into a new DICOM file, including the metadata from the original file.

```
info = dicominfo('CT-MONO2-16-ankle.dcm');
Y = dicomread(info);
status = dicomwrite(Y,'my_dicomfile.dcm',info);
status =
    dicominfo_fields: {12x1 cell}
            wrong_IOD: {21x1 cell}
        not_modifiable: {23x1 cell}
```


dicomwrite

```
status.dicominfo_fields
ans =
    'BitDepth'
    'ColorType'
    'FileModDate'
    'FileSize
    'FileStruct'
    'Filename'
    'Format'
    'FormatVersion'
    'Height'
    'SelectedFrames'
    'StartOfPixelData'
    'Width'
```

See Also
dicomread, dicominfo

Purpose

Syntax	$X=\operatorname{dither}($ RGB ,map $)$
	$B W=\operatorname{dither}(I)$

Class Support

References

See Also rgb2ind

double

Purpose

Convert data to double precision
double is a MATLAB built-in function. To get help for this function, select MATLAB Help from the Help menu and view the online function reference page.

Purpose
 Find edges in an intensity image

```
Syntax BW = edge(I,'sobel')
BW = edge(I,'sobel',thresh)
BW = edge(I,'sobel',thresh,direction)
[BW,thresh] = edge(I,'sobel',...)
BW = edge(I,'prewitt')
BW = edge(I,'prewitt',thresh)
BW = edge(I,'prewitt',thresh,direction)
[BW,thresh] = edge(I,'prewitt',...)
BW = edge(I,'roberts')
BW = edge(I,'roberts',thresh)
[BW,thresh] = edge(I,'roberts',...)
BW = edge(I,'log')
BW = edge(I,'log',thresh)
BW = edge(I,'log',thresh,sigma)
[BW,threshold] = edge(I,'log',...)
BW = edge(I,'zerocross',thresh,h)
[BW,thresh] = edge(I,'zerocross',...)
BW = edge(I,'canny')
BW = edge(I,'canny',thresh)
BW = edge(I,'canny',thresh,sigma)
[BW,threshold] = edge(I,'canny',...)
```

Description edge takes an intensity image I as its input, and returns a binary image BW of the same size as I, with 1's where the function finds edges in I and 0's elsewhere.
edge supports six different edge-finding methods:

- The Sobel method finds edges using the Sobel approximation to the derivative. It returns edges at those points where the gradient of I is maximum.
- The Prewitt method finds edges using the Prewitt approximation to the derivative. It returns edges at those points where the gradient of I is maximum.
- The Roberts method finds edges using the Roberts approximation to the derivative. It returns edges at those points where the gradient of I is maximum.
- The Laplacian of Gaussian method finds edges by looking for zero crossings after filtering I with a Laplacian of Gaussian filter.
- The zero-cross method finds edges by looking for zero crossings after filtering I with a filter you specify.
- The Canny method finds edges by looking for local maxima of the gradient of I. The gradient is calculated using the derivative of a Gaussian filter. The method uses two thresholds, to detect strong and weak edges, and includes the weak edges in the output only if they are connected to strong edges. This method is therefore less likely than the others to be fooled by noise, and more likely to detect true weak edges.

The parameters you can supply differ depending on the method you specify. If you do not specify a method, edge uses the Sobel method.

Sobel Method

BW = edge(I, 'sobel') specifies the Sobel method.
BW = edge (I, 'sobel', thresh) specifies the sensitivity threshold for the Sobel method. edge ignores all edges that are not stronger than thresh. If you do not specify thresh, or if thresh is empty ([]), edge chooses the value automatically.

BW = edge(I,'sobel', thresh, direction) specifies the direction of detection for the Sobel method. direction is a string specifying whether to look for 'horizontal' or 'vertical' edges or 'both' (the default).
[BW,thresh] = edge(I,'sobel',...) returns the threshold value.

Prewitt Method

BW = edge(I,'prewitt') specifies the Prewitt method.
BW = edge(I, 'prewitt', thresh) specifies the sensitivity threshold for the Prewitt method. edge ignores all edges that are not stronger than thresh. If
you do not specify thresh, or if thresh is empty ([]), edge chooses the value automatically.

BW = edge(I,'prewitt',thresh,direction) specifies the direction of detection for the Prewitt method. direction is a string specifying whether to look for
'horizontal' or 'vertical' edges or 'both' (the default).
[BW,thresh] = edge(I,'prewitt',...) returns the threshold value.

Roberts Method

BW = edge(I,'roberts') specifies the Roberts method.
BW = edge(I,'roberts', thresh) specifies the sensitivity threshold for the Roberts method. edge ignores all edges that are not stronger than thresh. If you do not specify thresh, or if thresh is empty ([]), edge chooses the value automatically.
[BW,thresh] = edge(I,'roberts',...) returns the threshold value.

Laplacian of Gaussian Method

BW = edge(I,'log') specifies the Laplacian of Gaussian method.
BW = edge(I, 'log', thresh) specifies the sensitivity threshold for the Laplacian of Gaussian method. edge ignores all edges that are not stronger than thresh. If you do not specify thresh, or if thresh is empty ([]), edge chooses the value automatically.

BW = edge(I,'log',thresh, sigma) specifies the Laplacian of Gaussian method, using sigma as the standard deviation of the LoG filter. The default sigma is 2 ; the size of the filter is n-by-n, where $n=$ ceil (sigma* 3) $2+1$.
[BW,thresh] = edge(I,'log',...) returns the threshold value.

Zero-Cross Method

BW = edge(I,'zerocross',thresh,h) specifies the zero-cross method, using the filter h. thresh is the sensitivity threshold; if the argument is empty ([]), edge chooses the sensitivity threshold automatically.
[BW,thresh] = edge(I,'zerocross',...) returns the threshold value.

Canny Method

BW = edge(I,'canny') specifies the Canny method.
BW = edge(I, 'canny', thresh) specifies sensitivity thresholds for the Canny method. thresh is a two-element vector in which the first element is the low threshold, and the second element is the high threshold. If you specify a scalar for thresh, this value is used for the high threshold and 0.4*thresh is used for the low threshold. If you do not specify thresh, or if thresh is empty ([]), edge chooses low and high values automatically.

BW = edge(I, 'canny',thresh, sigma) specifies the Canny method, using sigma as the standard deviation of the Gaussian filter. The default sigma is 1 ; the size of the filter is chosen automatically, based on sigma.
[BW, thresh] = edge(I,'canny',...) returns the threshold values as a two-element vector.

Class Support I can be of class uint8, uint16, or double. BW is of class logical.
Remarks

Example
Find the edges of an image using the Prewitt and Canny methods.

```
I = imread('circuit.tif');
BW1 = edge(I,'prewitt');
BW2 = edge(I,'canny');
imshow(BW1);
figure, imshow(BW2)
```


See Also fspecial

References
[1] Canny, John, "A Computational Approach to Edge Detection," IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol. PAMI-8, No. 6, 1986, pp. 679-698.
[2] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ, Prentice Hall, 1990, pp. 478-488.
[3] Parker, James R., Algorithms for Image Processing and Computer Vision, New York, John Wiley \& Sons, Inc., 1997, pp. 23-29.

Purpose

Syntax $\quad J=\operatorname{edgetaper}(I, P S F)$
Description
$J=$ edgetaper (I, PSF) blurs the edges of the input image I using the point spread function PSF. The output image J is the weighted sum of the original image I and its blurred version. The weighting array, determined by the autocorrelation function of PSF, makes J equal to I in its central region, and equal to the blurred version of I near the edges.

The edgetaper function reduces the ringing effect in image deblurring methods that use the discrete Fourier transform, such as deconvwnr, deconvreg, and deconvlucy.

Note The size of the PSF cannot exceed half of the image size in any dimension.

```
Class Support I and PSF can be of class uint8, uint16, or double. J is of the same class as I.
Example
```

See Also
deconvlucy, deconvreg, deconvwnr, otf2psf, padarray, psf2otf

Purpose

Syntax

```
P = fan2para(F,D)
P = fan2para(...,param1,val1,param2,val2,...)
[P,parallel_locations,parallel_rotation_angles] = fan2para(...)
```

Description $\quad P=$ fan2para(F, D) computes the parallel-beam data (sinogram) from the fan-beam data (sinogram) F. Each column of F contains the fan-beam spread angles at a single rotation angle. D is the distance from the fan-beam vertex to the center of rotation.
fan2para assumes the fan-beam spread angles are the same increments as the input rotation angles, split equally on either side of zero. The input rotation angles are assumed to be stepped in equal increments to cover $[0,360$) degrees. Output angles are calculated to cover $[0,180)$ degrees in the same increments as the input.

P = fan2para(..., param1, val1, param2, val2,...) specifies parameters that control various aspects of the fan2para conversion, listed in the following table. Parameter names can be abbreviated, and case does not matter. Default values are in braces ($\}$).

Parameter	Description
'FanCoverage'	String specifying the range through which the beams are rotated.
Possible values: \{'cycle' '\} or 'minimal' ' See ifanbeam for details.	
'FanRotationIncrement'	Positive real scalar specifying the increment of the rotation angle of the fan-beam projections, measured in degrees. Default value is 1.

fan2para

Parameter	Description
'FanSensorGeometry'	String specifying how sensors are positioned.
	Possible values: \{ 'arc ' \} or 'line'
	See fanbeam for details.

Parameter		Description
'Parallel	nIncrement'	Positive real scalar specifying the parallel-beam rotation angle increment, measured in degrees. Parallel beam angles are calculated to cover $[0,180)$ degrees with increment PAR_ROT_INC, where PAR_ROT_INC is the value of 'ParallelRotationIncrement'. 180/PAR_ROT_INC must be an integer. If 'ParallelRotationIncrement ' is not specified, the increment is assumed to be the same as the increment of the fan-beam rotation angles.
'ParallelSensorSpacing'		Positive real scalar specifying the spacing of the parallel-beam sensors in pixels. The range of sensor locations is implied by the range of fan angles and is given by $\left[D * \sin \left(\min \left(F A N _A N G L E S\right)\right), D * \sin \left(\max \left(F A N _A N G L E S\right)\right)\right]$ If 'ParallelSensorSpacing' is not specified, the spacing is assumed to be uniform and is set to the minimum spacing implied by the fan angles and sampled over the range implied by the fan angles.
	[P, parallel_locations, parallel_rotation_angles] = fan2para(...) returns the parallel-beam sensor locations in parallel_locations and rotation angles in parallel_rotation_angles.	
Example	Create synth fan-beam da $\mathrm{ph}=\mathrm{pha}$ theta = [Psynthe imshow(t title('S xlabel(' ylabel(' colormap Fsynthet	parallel-beam data, derive fan-beam data, and then use the o recover the parallel-beam data. ```m(128); 79; ,xp] = radon(ph,theta); a,xp,Psynthetic,[],'n'), axis normal hetic Parallel-Beam Data') eta (degrees)') ') t), colorbar = para2fan(Psynthetic,100,'FanSensorSpacing',1);```

fan2para

Recover original parallel-beam data.

```
[Precovered,Ploc,Pangles] = fan2para(Fsynthetic,100,...
                                    'FanSensorSpacing',1,...
                                    'ParallelSensorSpacing',1);
figure, imshow(Pangles,Ploc,Precovered,[],'n'), axis normal
title('Recovered Parallel-Beam Data')
xlabel('Rotation Angles (degrees)')
ylabel('Parallel Sensor Locations (pixels)')
colormap(hot), colorbar
```


Class Support

See Also

I can be of class double, uint8, uint16, or logical. All other numeric inputs and outputs are of class double.
fanbeam, ifanbeam, iradon, para2fan, phantom, radon

Purpose Compute fan-beam transform

```
Syntax F = fanbeam(I,D)
F = fanbeam(...,param1,val1,param1,val2,...)
[F,sensor_positions,fan_rotation_angles] = fanbeam(...)
```

Description $\quad F=$ fanbeam (I, D) computes the fan-beam data (sinogram) F from the image I. D is the distance in pixels from the from the fan-beam vertex to the center of rotation. Each column of F contains the fan-beam sensor samples at one rotation angle. The sensors are assumed to have a one-degree angular spacing. The rotation angles are spaced equally to cover [0:359] degrees.

F = fanbeam(..., param1, val1, param1, val2,...) specifies parameters that control various aspects of the fan-beam projection, listed in the following table. Parameter names can be abbreviated, and case does not matter. Default values are enclosed in braces ($\}$).

Parameter	Description
'FanRotationIncrement'	Positive real scalar specifying the increment of the rotation angle of the fan-beam projections, measured in degrees. Default value is 1.
'FanSensorGeometry'	Text string specifying how sensors are positioned. \{'arc' \} — Sensors are spaced along a circular arc at distance D from the center of rotation. ' line' — Sensors are spaced equally along a line, the closest point of which is distance D from the center of rotation.
'FanSensorSpacing'	Positive real scalar specifying the spacing of the fan beams. Interpretation of the value depends on the setting of
	'FanSensorGeometry ':
	If 'FanSensorGeometry ' is 'arc ', the value defines the angular spacing in degrees. Default value is 1.
	If 'FanSensorGeometry ' is 'line ', the value defines the linear spacing in pixels.

fanbeam

```
[F,sensor_positions,fan_rotation_angles] = fanbeam(...) returns
information about the position of sensors and rotation angles. If
'FanSensorGeometry' is 'arc', sensor_positions contains the fan-beam sensor measurement angles, measured in degrees. If 'FanSensorGeometry ' is 'line', sensor_positions contains the fan-beam sensor positions along the line of sensors, measured in pixels. fan_rotation_angles contains rotation angles.
```

Class Support \quad I can be of class double, logical, or any integer class. All other numeric inputs
and outputs are of class double. None of the inputs can be sparse.

Example

See Also
Reference
fan2para, ifanbeam, iradon, para2fan, phantom, radon
[1] Kak, A.C., \& Slaney, M., Principles of Computerized Tomographic Imaging, IEEE Press, NY, 1988, pp. 92-93.

```
ph = phantom(128);
```

ph = phantom(128);
imview(ph)
imview(ph)
[F,Floc,Fangles] = fanbeam(ph,250);
[F,Floc,Fangles] = fanbeam(ph,250);
imshow(Fangles,Floc,F,[],'n'), axis normal
imshow(Fangles,Floc,F,[],'n'), axis normal
xlabel('Rotation Angles (degrees)')
xlabel('Rotation Angles (degrees)')
ylabel('Sensor Positions (degrees)')
ylabel('Sensor Positions (degrees)')
colormap(hot), colorbar

```
colormap(hot), colorbar
```

Purpose
Compute two-dimensional fast Fourier transform
fft2 is a function in MATLAB. To get help for this function, select MATLAB
Help from the Help menu and view the online function reference page.

fftn

Purpose

Compute N -dimensional fast Fourier transform
fftn is a function in MATLAB. To get help for this function, select MATLAB
Help from the Help menu and view the online function reference page.

fftshift

Purpose
 Shift zero-frequency component of fast Fourier transform to center of spectrum
 fftshift is a function in MATLAB. To get help for this function, select
 MATLAB Help from the Help menu and view the online function reference page.

filter2

Purpose
Perform two-dimensional linear filtering
filter2 is a function in MATLAB. To get help for this function, select
MATLAB Help from the Help menu and view the online function reference page.

Purpose	Find output bounds for spatial transformation
Syntax	outbounds = findbounds (TFORM, inbounds)
Description	outbounds = findbounds (TFORM, inbounds) estimates the output bounds corresponding to a given spatial transformation and a set of input bounds. TFORM is a spatial transformation structure as returned by maketform. inbounds is 2-by-NUM_DIMS matrix. The first row of inbounds specifies the lower bounds for each dimension, and the second row specifies the upper bounds. NUM_DIMS has to be consistent with the ndims_in field of TFORM.
outbounds has the same form as inbounds. It is an estimate of the smallest rectangular region completely containing the transformed rectangle represented by the input bounds. Since outbounds is only an estimate, it might not completely contain the transformed input rectangle.	
Notesimtransform uses findbounds to compute the ' OutputBounds ' parameter if the user does not provide it.	
If TFORM contains a forward transformation (a nonempty forward_fcn field), then findbounds works by transforming the vertices of the input bounds rectangle and then taking minimum and maximum values of the result.	
ExampleIf TFORM does not contain a forward transformation, then findbounds estimates the output bounds using the Nelder-Mead optimization function fminsearch.	
If the optimization procedure fails, findbounds issues a warning and returns	
outbounds = inbounds.	

fliptform

Purpose
Flip the input and output roles of a TFORM structure

Syntax
 TFLIP = fliptform(T)

Description

Example

See Also
maketform, tformfwd, tforminv

freqspace

Purpose Determine frequency spacing for two-dimensional frequency response freqspace is a function in MATLAB. To get help for this function, select MATLAB Help from the Help menu and view the online function reference page.

freqz2

Purpose
Compute two-dimensional frequency response

Syntax
\section*{Description}

Class Support

```
[H,f1,f2] = freqz2(h,n1,n2)
[H,f1,f2] = freqz2(h,[n2 n1])
[H,f1,f2] = freqz2(h)
[H,f1,f2] = freqz2(h,f1,f2)
[...] = freqz2(h,...,[dx dy])
[...] = freqz2(h,...,dx)
freqz2(...)
``` h , and the frequency vectors f 1 (of length n 1 ) and f 2 (of length n 2 ). h is a are returned as normalized frequencies in the range -1.0 to 1.0 , where 1.0 corresponds to half the sampling frequency, or \(\pi\) radians.
\([H, f 1, f 2]=\) freqz2(h, [n2 n1]) returns the same result returned by [H,f1,f2] \(=f r e q z 2(h, n 1, n 2)\).
[H,f1,f2] = freqz2(h) uses [n2 n1] = [64 64]. radians. to a sampling frequency of 2.0 . both dimensions.

With no output arguments, freqz2 (...) produces a mesh plot of the two-dimensional magnitude frequency response.
[\(H, f 1, f 2]=\) freqz2(h, n1, n2) returns \(H\), the n2-by-n1 frequency response of two-dimensional FIR filter, in the form of a computational molecule. f1 and f2
\([H, f 1, f 2]=f r e q z 2(h, f 1, f 2)\) returns the frequency response for the FIR filter \(h\) at frequency values in \(f 1\) and \(f 2\). These frequency values must be in the range -1.0 to 1.0 , where 1.0 corresponds to half the sampling frequency, or \(\pi\)
[...] = freqz2(h,..., [dx dy]) uses [dx dy] to override the intersample spacing in h . dx determines the spacing for the \(x\) dimension and dy determines the spacing for the \(y\) dimension. The default spacing is 0.5 , which corresponds
[...] = freqz2(h,...,dx) uses dx to determine the intersample spacing in

The input matrix \(h\) can be of class double or of any integer class. All other inputs to freqz2 must be of class double. All outputs are of class double.

\section*{Example}

Use the window method to create a 16 -by-16 filter, then view its frequency response using freqz2.
```

Hd = zeros(16,16);
Hd(5:12,5:12) = 1;
Hd(7:10,7:10) = 0;
h = fwind1(Hd,bartlett(16));
colormap(jet(64))
freqz2(h,[32 32]); axis ([-1 1 -1 1 0 1])

```


\section*{See Also}
freqz in the Signal Processing Toolbox User's Guide documentation

\section*{fsamp2}

\section*{Purpose} Design two-dimensional FIR filter using frequency sampling
```

Syntax
h = fsamp2(Hd)
h = fsamp2(f1,f2,Hd,[m n])

```

\section*{Description}

Class Support

Example
fsamp2 designs two-dimensional FIR filters based on a desired two-dimensional frequency response sampled at points on the Cartesian plane.
h = fsamp2(Hd) designs a two-dimensional FIR filter with frequency response Hd , and returns the filter coefficients in matrix h . (fsamp2 returns h as a computational molecule, which is the appropriate form to use with filter2.) The filter h has a frequency response that passes through points in Hd. If Hd is \(m\)-by-n, then \(h\) is also m-by-n.

Hd is a matrix containing the desired frequency response sampled at equally spaced points between -1.0 and 1.0 along the \(x\) and \(y\) frequency axes, where 1.0 corresponds to half the sampling frequency, or \(\pi\) radians.
\[
H_{d}\left(f_{1}, f_{2}\right)=\left.H_{d}\left(\omega_{1}, \omega_{2}\right)\right|_{\omega_{1}=\pi f_{1}, \omega_{2}=\pi f_{2}}
\]

For accurate results, use frequency points returned by freqspace to create Hd . (See the entry for freqspace for more information.)
h = fsamp2(f1,f2,Hd,[m n]) produces an m-by-n FIR filter by matching the filter response at the points in the vectors f1 and f2. The frequency vectors f1 and \(f 2\) are in normalized frequency, where 1.0 corresponds to half the sampling frequency, or \(\pi\) radians. The resulting filter fits the desired response as closely as possible in the least squares sense. For best results, there must be at least \(m * n\) desired frequency points. fsamp2 issues a warning if you specify fewer than \(m * n\) points.

The input matrix Hd can be of class double or of any integer class. All other inputs to fsamp2 must be of class double. All outputs are of class double.

Use fsamp2 to design an approximately symmetric two-dimensional bandpass filter with passband between 0.1 and 0.5 (normalized frequency, where 1.0 corresponds to half the sampling frequency, or \(\pi\) radians):

1 Create a matrix Hd that contains the desired bandpass response. Use freqspace to create the frequency range vectors f1 and f2.
```

[f1,f2] = freqspace(21,'meshgrid');
Hd = ones(21);
r = sqrt(f1.^2 + f2.^2);
Hd((r<0.1)|(r>0.5)) = 0;
colormap(jet(64))
mesh(f1,f2,Hd)

```


2 Design the filter that passes through this response.
```

h = fsamp2(Hd);
freqz2(h)

```

\section*{fsamp2}

\section*{Algorithm}

Reference

\section*{See Also}
fsamp2 computes the filter h by taking the inverse discrete Fourier transform of the desired frequency response. If the desired frequency response is real and symmetric (zero phase), the resulting filter is also zero phase.
conv2, filter2, freqspace, ftrans2, fwind1, fwind2
[1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ, Prentice Hall, 1990, pp. 213-217.

\section*{Purpose}
Syntax \(\quad\)\begin{tabular}{rl}
\(h\) & \(=\) fspecial(type) \\
\(h\) & \(=\) fspecial(type, parameters)
\end{tabular}

Create 2-D special filters
h = fspecial(type)
h = fspecial(type,parameters)
h = fspecial(type) creates a two-dimensional filter \(h\) of the specified type. fspecial returns h as a correlation kernel, which is the appropriate form to use with imfilter. type is a string having one of these values.
\begin{tabular}{l|l}
\hline Value & Description \\
\hline 'gaussian' & Gaussian lowpass filter \\
\hline 'sobel' & Sobel horizontal edge-emphasizing filter \\
\hline 'prewitt' & Prewitt horizontal edge-emphasizing filter \\
\hline 'laplacian' & \begin{tabular}{l}
Filter approximating the two-dimensional \\
Laplacian operator
\end{tabular} \\
\hline 'log' & Laplacian of Gaussian filter \\
\hline 'average' & Averaging filter \\
\hline 'unsharp' & Unsharp contrast enhancement filter \\
\hline
\end{tabular}
h = fspecial(type, parameters) accepts a filter type plus additional modifying parameters particular to the type of filter chosen. If you omit these arguments, fspecial uses default values for the parameters.

The following list shows the syntax for each filter type. Where applicable, additional parameters are also shown.
- \(\mathrm{h}=\mathrm{fspecial}(\) 'average ', hsize) returns an averaging filter \(h\) of size hsize. The argument hsize can be a vector specifying the number of rows and columns in \(h\), or it can be a scalar, in which case \(h\) is a square matrix. The default value for hsize is [3 3].
- \(\mathrm{h}=\mathrm{fspecial}\left(\right.\) 'disk' \(^{\prime}\), radius) returns a circular averaging filter (pillbox) within the square matrix of side \(2 *\) radius +1 . The default radius is 5 .
- h = fspecial('gaussian', hsize, sigma) returns a rotationally symmetric Gaussian lowpass filter of size hsize with standard deviation sigma (positive). hsize can be a vector specifying the number of rows and columns in \(h\), or it can be a scalar, in which case \(h\) is a square matrix. The default value for hsize is [33]; the default value for sigma is 0.5 .
- h = fspecial('laplacian', alpha) returns a 3-by-3 filter approximating the shape of the two-dimensional Laplacian operator. The parameter alpha controls the shape of the Laplacian and must be in the range 0.0 to 1.0. The default value for alpha is 0.2.
- \(\mathrm{h}=\mathrm{fspecial}\left(\mathrm{'log}^{\prime}\right.\), hsize, sigma) returns a rotationally symmetric Laplacian of Gaussian filter of size hsize with standard deviation sigma (positive). hsize can be a vector specifying the number of rows and columns in \(h\), or it can be a scalar, in which case \(h\) is a square matrix. The default value for hsize is [55] and 0.5 for sigma.
- \(\mathrm{h}=\mathrm{fspecial}(\) 'motion', len, theta) returns a filter to approximate, once convolved with an image, the linear motion of a camera by len pixels, with an angle of theta degrees in a counterclockwise direction. The filter becomes a vector for horizontal and vertical motions. The default len is 9 and the default theta is 0 , which corresponds to a horizontal motion of nine pixels.
- \(\mathrm{h}=\mathrm{fspec} i a l(' p r e w i t t ')\) returns a 3-by-3 filter h (shown below) that emphasizes horizontal edges by approximating a vertical gradient. If you need to emphasize vertical edges, transpose the filter h '.
\(\left[\begin{array}{lll}1 & 1 & 1\end{array}\right.\)
000
-1-1-1]
To find vertical edges, or for \(x\)-derivatives, use \(h^{\prime}\).
- \(\mathrm{h}=\mathrm{fspec} i a l(\) (sobel') returns a 3-by-3 filter h (shown below) that emphasizes horizontal edges using the smoothing effect by approximating a vertical gradient. If you need to emphasize vertical edges, transpose the filter h'.
[121
000
-1-2-1]
- h = fspecial('unsharp',alpha) returns a 3-by-3 unsharp contrast enhancement filter. fspecial creates the unsharp filter from the negative of the Laplacian filter with parameter alpha. alpha controls the shape of the

Laplacian and must be in the range 0.0 to 1.0. The default value for alpha is 0.2 .

Class Support \(h\) is of class double.

\section*{Example}
```

I = imread('cameraman.tif');
subplot(2,2,1);
imshow(I); title('Original Image');
H = fspecial('motion',20,45);
MotionBlur = imfilter(I,H,'replicate');
subplot(2,2,2);
imshow(MotionBlur);title('Motion Blurred Image');
H = fspecial('disk',10);
blurred = imfilter(I,H,'replicate');
subplot(2,2,3);
imshow(blurred); title('Blurred Image');
H = fspecial('unsharp');
sharpened = imfilter(I,H,'replicate');
subplot(2,2,4);
imshow(sharpened); title('Sharpened Image');

```

\section*{fspecial}

Original Image

Blurred Image

Motion Blurred Image

Sharpened Image

Algorithms
fspecial creates Gaussian filters using
\[
\begin{aligned}
& h_{g}\left(n_{1}, n_{2}\right)=e^{-\left(n_{1}^{2}+n_{2}^{2}\right) /\left(2 \sigma^{2}\right)} \\
& h\left(n_{1}, n_{2}\right)=\frac{h_{g}\left(n_{1}, n_{2}\right)}{\sum_{n} \sum_{g} h_{g}}
\end{aligned}
\]
fspecial creates Laplacian filters using
\[
\begin{aligned}
& \nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} \\
& \nabla^{2} \approx \frac{4}{(\alpha+1)}\left[\begin{array}{ccc}
\frac{\alpha}{4} & \frac{1-\alpha}{4} & \frac{\alpha}{4} \\
\frac{1-\alpha}{4} & -1 & \frac{1-\alpha}{4} \\
\frac{\alpha}{4} & \frac{1-\alpha}{4} & \frac{\alpha}{4}
\end{array}\right]
\end{aligned}
\]
fspecial creates Laplacian of Gaussian (LoG) filters using
\[
\begin{aligned}
& h_{g}\left(n_{1}, n_{2}\right)=e^{-\left(n_{1}^{2}+n_{2}^{2}\right) /\left(2 \sigma^{2}\right)} \\
& h\left(n_{1}, n_{2}\right)=\frac{\left(n_{1}{ }^{2}+n_{2}{ }^{2}-2 \sigma^{2}\right) h_{g}\left(n_{1}, n_{2}\right)}{2 \pi \sigma^{6} \sum_{n_{1}} \sum_{n_{2}} h_{g}}
\end{aligned}
\]
fspecial creates averaging filters using
\[
\text { ones }(n(1), n(2)) /(n(1) * n(2))
\]
fspecial creates unsharp filters using
\[
\frac{1}{(\alpha+1)}\left[\begin{array}{ccc}
-\alpha & \alpha-1 & -\alpha \\
\alpha-1 & \alpha+5 & \alpha-1 \\
-\alpha & \alpha-1 & -\alpha
\end{array}\right]
\]

See Also
conv2, edge, filter2, fsamp2, fwind1, fwind2, imfilter del2 in the MATLAB Function Reference

\section*{ftrans2}

Purpose

\section*{Syntax}

\section*{Description}

Design two-dimensional FIR filter using frequency transformation
\(h=f t r a n s 2(b, t)\)
\(h=f t r a n s 2(b)\)
\(\mathrm{h}=\mathrm{ftrans2}(\mathrm{~b}, \mathrm{t})\) produces the two-dimensional FIR filter h that corresponds to the one-dimensional FIR filter b using the transform \(t\). (ftrans2 returns \(h\) as a computational molecule, which is the appropriate form to use with filter2.) b must be a one-dimensional, odd-length (Type I) FIR filter such as can be returned by fir1, fir2, or remez in the Signal Processing Toolbox. The transform matrix \(t\) contains coefficients that define the frequency transformation to use. If \(t\) is \(m\)-by- \(n\) and \(b\) has length \(Q\), then \(h\) is size \(((m-1) *(Q-1) / 2+1)-\) by- \(((n-1) *(Q-1) / 2+1)\).
\(h=\) ftrans2(b) uses the McClellan transform matrix \(t\).
\(\mathrm{t}=\left[\begin{array}{cccc}1 & 2 & 1 ; 2-4 & 2 ; 121] / 8 ; ~\end{array}\right.\)
The transformation below defines the frequency response of the two-dimensional filter returned by ftrans2,
\[
H\left(\omega_{1}, \omega_{2}\right)=\left.B(\omega)\right|_{\cos \omega=T\left(\omega_{1}, \omega_{2}\right)}
\]
where \(B(\omega)\) is the Fourier transform of the one-dimensional filter b ,
\[
B(\omega)=\sum_{n=-N}^{N} b(n) e^{-j \omega n}
\]
and \(T\left(\omega_{1}, \omega_{2}\right)\) is the Fourier transform of the transformation matrix t .
\[
T\left(\omega_{1}, \omega_{2}\right)=\sum_{n_{2}} \sum_{n_{1}} t\left(n_{1}, n_{2}\right) e^{-j \omega_{1} n_{1}} e^{-j \omega_{2} n_{2}}
\]

The returned filter h is the inverse Fourier transform of \(H\left(\omega_{1}, \omega_{2}\right)\).
\[
h\left(n_{1}, n_{2}\right)=\frac{1}{(2 \pi)^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} H\left(\omega_{1}, \omega_{2}\right) e^{j \omega_{1} n_{1}} e^{j \omega_{2} n_{2}} d \omega_{1} d \omega_{2}
\]

\section*{Example}

Use ftrans2 to design an approximately circularly symmetric two-dimensional bandpass filter with passband between 0.1 and 0.6 (normalized frequency, where 1.0 corresponds to half the sampling frequency, or \(\pi\) radians):

1 Since ftrans2 transforms a one-dimensional FIR filter to create a two-dimensional filter, first design a one-dimensional FIR bandpass filter using the Signal Processing Toolbox function remez.
```

colormap(jet(64))
b = remez(10,[0 0.05 0.15 0.55 0.65 1],[0 0 1 1 0 0]);
[H,w] = freqz(b,1,128,'whole');
plot(w/pi-1,fftshift(abs(H)))

```


2 Use ftrans2 with the default McClellan transformation to create the desired approximately circularly symmetric filter.
```

h = ftrans2(b);
freqz2(h)

```

\section*{ftrans2}

See Also
conv2, filter2, fsamp2, fwind1, fwind2
Reference
[1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ, Prentice Hall, 1990, pp. 218-237.

\section*{Purpose}

Design two-dimensional FIR filter using one-dimensional window method

\section*{Syntax \\ Description}

\section*{Class Support}
h = fwind1(Hd,win)
h = fwind1(Hd,win1,win2)
h = fwind1(f1,f2,Hd,...)
fwind1 designs two-dimensional FIR filters using the window method. fwind1 uses a one-dimensional window specification to design a two-dimensional FIR filter based on the desired frequency response Hd. fwind1 works with one-dimensional windows only; use fwind2 to work with two-dimensional windows.
\(\mathrm{h}=\mathrm{fwind} 1\) (Hd,win) designs a two-dimensional FIR filter h with frequency response Hd . (fwind1 returns h as a computational molecule, which is the appropriate form to use with filter2.) fwind1 uses the one-dimensional window win to form an approximately circularly symmetric two-dimensional window using Huang's method. You can specify win using windows from the Signal Processing Toolbox, such as boxcar, hamming, hanning, bartlett, blackman, kaiser, or chebwin. If length (win) is \(n\), then \(h\) is \(n-b y-n\).

Hd is a matrix containing the desired frequency response sampled at equally spaced points between -1.0 and 1.0 (in normalized frequency, where 1.0 corresponds to half the sampling frequency, or \(\pi\) radians) along the \(x\) and \(y\) frequency axes. For accurate results, use frequency points returned by freqspace to create Hd. (See the entry for freqspace for more information.)
h = fwind1(Hd,win1,win2) uses the two one-dimensional windows win1 and win2 to create a separable two-dimensional window. If length (win1) is \(n\) and length (win2) is m, then \(h\) is m-by-n.
\(h=f w i n d 1(f 1, f 2, H d, \ldots)\) lets you specify the desired frequency response Hd at arbitrary frequencies (f 1 and f 2) along the \(x\) - and \(y\)-axes. The frequency vectors f 1 and f 2 should be in the range -1.0 to 1.0 , where 1.0 corresponds to half the sampling frequency, or \(\pi\) radians. The length of the windows controls the size of the resulting filter, as above.

The input matrix Hd can be of class double or of any integer class. All other inputs to fwind1 must be of class double. All outputs are of class double.

\section*{fwind 1}

\section*{Example}

Use fwind1 to design an approximately circularly symmetric two-dimensional bandpass filter with passband between 0.1 and 0.5 (normalized frequency, where 1.0 corresponds to half the sampling frequency, or \(\pi\) radians):

1 Create a matrix Hd that contains the desired bandpass response. Use freqspace to create the frequency range vectors f1 and f2.
```

[f1,f2] = freqspace(21,'meshgrid');
Hd = ones(21);
r = sqrt(f1.^2 + f2.^2);
Hd((r<0.1)|(r>0.5)) = 0;
colormap(jet(64))
mesh(f1,f2,Hd)

```


2 Design the filter using a one-dimensional Hamming window.
```

h = fwind1(Hd,hamming(21));
freqz2(h)

```


\section*{Algorithm}
fwind1 takes a one-dimensional window specification and forms an approximately circularly symmetric two-dimensional window using Huang's method,
\[
w\left(n_{1}, n_{2}\right)=\left.w(t)\right|_{t=\sqrt{n_{1}^{2}+n_{2}^{2}}}
\]
where \(w(t)\) is the one-dimensional window and \(w\left(n_{1}, n_{2}\right)\) is the resulting two-dimensional window.

Given two windows, fwind1 forms a separable two-dimensional window.
\[
w\left(n_{1}, n_{2}\right)=w_{1}\left(n_{1}\right) w_{2}\left(n_{2}\right)
\]
fwind1 calls fwind2 with Hd and the two-dimensional window. fwind2 computes h using an inverse Fourier transform and multiplication by the two-dimensional window.
\[
\begin{aligned}
& h_{d}\left(n_{1}, n_{2}\right)=\frac{1}{(2 \pi)^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} H_{d}\left(\omega_{1}, \omega_{2}\right) e^{j \omega_{1} n_{1}} e^{j \omega_{2} n_{2}} d \omega_{1} d \omega_{2} \\
& h\left(n_{1}, n_{2}\right)=h_{d}\left(n_{1}, n_{2}\right) w\left(n_{1}, n_{2}\right)
\end{aligned}
\]

\section*{fwind 1}

\section*{See Also}

Reference
conv2, filter2, fsamp2, freqspace, ftrans2, fwind2
[1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ, Prentice Hall, 1990.

\section*{Purpose}

Design two-dimensional FIR filter using two-dimensional window method
Syntax \(\quad\)\begin{tabular}{rl}
\(h\) & \(=f\) find2 \((H d\), win \()\) \\
\(h\) & \(=f\) fwind \(2(f 1, f 2, H d\), win \()\)
\end{tabular}

\section*{Class Support}

\section*{Example}

Use fwind2 to design two-dimensional FIR filters using the window method. fwind2 uses a two-dimensional window specification to design a two-dimensional FIR filter based on the desired frequency response Hd . fwind2 works with two-dimensional windows; use fwind1 to work with one-dimensional windows.
h = fwind2(Hd,win) produces the two-dimensional FIR filter h using an inverse Fourier transform of the desired frequency response Hd and multiplication by the window win. Hd is a matrix containing the desired frequency response at equally spaced points in the Cartesian plane. fwind2 returns h as a computational molecule, which is the appropriate form to use with filter2. h is the same size as win.

For accurate results, use frequency points returned by freqspace to create Hd . (See the entry for freqspace for more information.)
h = fwind2(f1,f2,Hd,win) lets you specify the desired frequency response Hd at arbitrary frequencies (f 1 and f2) along the \(x\) - and \(y\)-axes. The frequency vectors \(f 1\) and \(f 2\) should be in the range -1.0 to 1.0 , where 1.0 corresponds to half the sampling frequency, or \(\pi\) radians. h is the same size as win.

The input matrix Hd can be of class double or of any integer class. All other inputs to fwind2 must be of class double. All outputs are of class double.

Use fwind2 to design an approximately circularly symmetric two-dimensional bandpass filter with passband between 0.1 and 0.5 (normalized frequency, where 1.0 corresponds to half the sampling frequency, or \(\pi\) radians):

1 Create a matrix Hd that contains the desired bandpass response. Use freqspace to create the frequency range vectors \(f 1\) and \(f 2\).
```

[f1,f2] = freqspace(21,'meshgrid');
Hd = ones(21);
r = sqrt(f1.^2 + f2.^2);
Hd((r<0.1)|(r>0.5)) = 0;

```

\section*{fwind 2}
```

colormap(jet(64))
mesh(f1,f2,Hd)

```


2 Create a two-dimensional Gaussian window using fspecial.
win = fspecial('gaussian',21,2);
win = win ./ max(win(:)); \% Make the maximum window value be 1. mesh(win)

3 Design the filter using the window from step 2.
h = fwind2(Hd,win); freqz2(h)

\section*{fwind2}

\section*{Algorithm}

See Also

Reference
fwind2 computes \(h\) using an inverse Fourier transform and multiplication by the two-dimensional window win.
\[
\begin{aligned}
& h_{d}\left(n_{1}, n_{2}\right)=\frac{1}{(2 \pi)^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} H_{d}\left(\omega_{1}, \omega_{2}\right) e^{j \omega_{1} n_{1}} e^{j \omega_{2} n_{2}} d \omega_{1} d \omega_{2} \\
& h\left(n_{1}, n_{2}\right)=h_{d}\left(n_{1}, n_{2}\right) w\left(n_{1}, n_{2}\right)
\end{aligned}
\]
conv2, filter2, fsamp2, freqspace, ftrans2, fwind1
[1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ, Prentice Hall, 1990, pp. 202-213.
Purpose Get height of structuring element
Syntax H = getheight(SE)
Description \(H\) = getheight(SE) returns an array the same size as getnhood(SE) containing the height associated with each of the structuring element neighbors. H is all zeros for a flat structuring element.
Class Support SE is a STREL object. H is of class double.
Example se = strel(ones(3,3),magic(3)); getheight(se)
See Also strel, getnhood

Purpose
Syntax

Description

Get image data from axes
```

A = getimage(h)
[x,y,A] = getimage(h)
[...,A,flag] = getimage(h)
[...] = getimage

```
\(A=\) getimage \((h)\) returns the first image data contained in the Handle Graphics object h. h can be a figure, axes, image, or texture-mapped surface. A is identical to the image CData; it contains the same values and is of the same class (uint8 or double) as the image CData. If \(h\) is not an image or does not contain an image or texture-mapped surface, \(A\) is empty.
\([x, y, A]=\) getimage \((h)\) returns the image XData in \(x\) and the YData in \(y . X D a t a\) and YData are two-element vectors that indicate the range of the \(x\)-axis and \(y\)-axis.
[...,A,flag] = getimage (h) returns an integer flag that indicates the type of image \(h\) contains. This table summarizes the possible values for flag.
\begin{tabular}{l|l}
\hline Flag & Type of Image \\
\hline 0 & Not an image; A is returned as an empty matrix \\
\hline 1 & Indexed image \\
\hline 2 & \begin{tabular}{l}
Intensity image with values in standard range ([0,1] for \\
double arrays, [0,255] for uint8 arrays, [0,65535] for uint16 \\
arrays \()\)
\end{tabular} \\
\hline 3 & Intensity data, but not in standard range \\
\hline 4 & RGB image \\
\hline
\end{tabular}
[...] = getimage returns information for the current axes. It is equivalent to [...] = getimage(gca).

\section*{Class Support}

The output array A is of the same class as the image CData. All other inputs and outputs are of class double.

Example
This example illustrates obtaining the image data from an image displayed directly from a file.
imshow rice.png
I = getimage;

\section*{getline}

Purpose
Syntax

Description

Select polyline with mouse
```

[x,y] = getline(fig)
[x,y] = getline(ax)
[x,y] = getline
[x,y] = getline(...,'closed')

```
\([x, y]=\) getline(fig) lets you select a polyline in the current axes of figure fig using the mouse. Coordinates of the polyline are returned in \(X\) and \(Y\). Use normal button clicks to add points to the polyline. A shift-, right-, or double-click adds a final point and ends the polyline selection. Pressing Return or Enter ends the polyline selection without adding a final point. Pressing Backspace or Delete removes the previously selected point from the polyline.
\([x, y]=\) getline (ax) lets you select a polyline in the axes specified by the handle ax.
\([x, y]=\) getline is the same as \([x, y]=\) getline(gcf).
\([x, y]=\) getline(...,'closed') animates and returns a closed polygon.
See Also getpts, getrect

\section*{getneighbors}
\begin{tabular}{|c|c|}
\hline Purpose & Get structuring element neighbor locations and heights \\
\hline Syntax & [offsets, heights] = getneighbors(SE) \\
\hline \multirow[t]{3}{*}{Description} & [offsets, heights] = getneighbors(SE) returns the relative locations and corresponding heights for each of the neighbors in the structuring element object SE. \\
\hline & offsets is a P-by-N array where P is the number of neighbors in the structuring element and N is the dimensionality of the structuring element. Each row of offsets contains the location of the corresponding neighbor, relative to the center of the structuring element. \\
\hline & heights is a P-element column vector containing the height of each structuring element neighbor. \\
\hline Class Support & SE is a STREL object. The return values offsets and heights are arrays of double-precision values. \\
\hline \multirow[t]{13}{*}{Example} & se \(=\operatorname{strel}\left(\left[\begin{array}{lll}1 & 0 & 1\end{array}\right],\left[\begin{array}{ccc}5 & 0 & -5\end{array}\right]\right)\) \\
\hline & [offsets, heights] = getneighbors(se) \\
\hline & se \(=\) \\
\hline & Nonflat STREL object containing 2 neighbors. \\
\hline & Neighborhood: \\
\hline & 100 \\
\hline & Height: \\
\hline & 500 \\
\hline & offsets = \\
\hline & \(0-1\) \\
\hline & \(0 \quad 1\) \\
\hline & heights = \\
\hline & \(5-5\) \\
\hline See Also & strel, getnhood, getheight \\
\hline
\end{tabular}
Purpose Get structuring element neighborhood
Syntax nhood \(=\) getnhood(SE)
Description nhood \(=\) getnhood(SE) returns the neighborhood associated with the structuring element SE.
Class Support SE is a STREL object. nhood is a logical array.
Example se = strel(eye(5));

nhood = getnhood(se)
See Also strel, getneighbors

Purpose
Select points with mouse
Syntax \(\quad\)\begin{tabular}{rl}
{\([x, y]\)} & \(=\) getpts \((f i g)\) \\
{\([x, y]\)} & \(=\) getpts \((a x)\) \\
{\([x, y]\)} & \(=\) getpts
\end{tabular}

Description
\([x, y]=\) getpts(fig) lets you choose a set of points in the current axes of figure fig using the mouse. Coordinates of the selected points are returned in \(X\) and \(Y\).

Use normal button clicks to add points. A shift-, right-, or double-click adds a final point and ends the selection. Pressing Return or Enter ends the selection without adding a final point. Pressing Backspace or Delete removes the previously selected point.
\([x, y]=\) getpts (ax) lets you choose points in the axes specified by the handle ax.
\([x, y]=\) getpts is the same as \([x, y]=\) getpts (gcf).

\section*{See Also \\ getline, getrect}

\section*{Purpose \\ Select rectangle with mouse}
Syntax \(\quad\)\begin{tabular}{rl}
rect & \(=\operatorname{getrect}(f i g)\) \\
rect & \(=\operatorname{getrect}(\mathrm{ax})\) \\
rect & \(=\operatorname{getrect}(\mathrm{fig})\)
\end{tabular}

Description
rect = getrect(fig) lets you select a rectangle in the current axes of figure fig using the mouse. Coordinates of the rectangle are returned in \(X\) and \(Y\).

Use the mouse to click and drag the desired rectangle. rect is a four-element vector with the form [xmin ymin width height]. To constrain the rectangle to be a square, use a shift- or right-click to begin the drag.
rect = getrect(ax) lets you select a rectangle in the axes specified by the handle ax.

\section*{See Also \\ getline, getpts}
Purpose Extract sequence of decomposed structuring elements
Syntax

SEQ = getsequence(SE)
Description
Class Support
Example

The strel function uses decomposition for square structuring elements larger than 3-by-3. Use getsequence to extract the decomposed structuring elements.
```

se = strel('square',5)
seq = getsequence(se)
se =
Flat STREL object containing 25 neighbors.
Neighborhood:
1
1

1 1 |  |  |  |  |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 |

```
Decomposition: 2 STREL objects containing a total of 10 neighbors

Use imdilate with the 'full' option to see that dilating sequentially with the decomposed structuring elements really does form a 5 -by- 5 square:
```

imdilate(1,seq,'full')

```

\footnotetext{
See Also imdilate, imerode, strel
}

\section*{gray2ind}

\section*{Purpose \\ Convert an intensity image to an indexed image}
Syntax \(\quad\)\begin{tabular}{rl}
{\([X\), map \(]\)} & \(=\operatorname{gray2ind}(I, n)\) \\
{\([X\), map \(]\)} & \(=\operatorname{gray} 2 i n d(B W, n)\)
\end{tabular}

Description
gray2ind scales, then rounds, an intensity image to produce an equivalent indexed image.
[\(X\), map] = gray2ind \((I, n)\) converts the intensity image \(I\) to an indexed image \(X\) with colormap gray (\(n\)). If \(n\) is omitted, it defaults to 64 .
[\(X\), map] = gray2ind \((B W, n)\) converts the binary image \(B W\) to an indexed image \(X\) with colormap gray \((\mathrm{n})\). If n is omitted, it defaults to 2 .
n must be an integer between 1 and 65536 .

\section*{Class Support The input image I must be a real, nonsparse array of class logical, uint8, uint16, or double. It can have any dimension. The class of the output image \(x\) is uint8 if the colormap length is less than or equal to 256 ; otherwise it is uint16.}

\section*{See Also ind2gray}

\section*{grayslice}

\section*{Purpose}

Syntax

Description

\section*{Class Support}

Create indexed image from intensity image using multilevel thresholding
\[
\begin{aligned}
& X=\operatorname{grayslice}(I, n) \\
& X=\text { grayslice(} I, v)
\end{aligned}
\]
\(X\) = grayslice(\(I, n\)) thresholds the intensity image I using cutoff values \(\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}\), returning an indexed image in X .
\(X=\) grayslice \((I, v)\) thresholds the intensity image \(I\) using the values of \(v\), where \(v\) is a vector of values between 0 and 1 , returning an indexed image in \(X\).

You can view the thresholded image using imshow (X, map) with a colormap of appropriate length.

The input image I can be of class uint8, uint16, or double. Note that the threshold values are always between 0 and 1 , even if I is of class uint8 or uint16. In this case, each threshold value is multiplied by 255 or 65535 to determine the actual threshold to use.

The class of the output image \(X\) depends on the number of threshold values, as specified by \(n\) or length (\(v\)). If the number of threshold values is less than 256 , then \(X\) is of class uint8, and the values in \(X\) range from 0 to \(n\) or length (\(v\)). If the number of threshold values is 256 or greater, X is of class double, and the values in \(X\) range from 1 to \(n+1\) or length (\(v\)) +1 .

\section*{Example}
```

I = imread('snowflakes.png');
X = grayslice(I,16);
imview(I)
imview(X,jet(16))

```


See Also gray2ind

\section*{graythresh}

Purpose
Compute global image threshold using Otsu's method
Syntax

level = graythresh(I)
level = graythresh(I) computes a global threshold (level) that can be used to convert an intensity image to a binary image with im2bw.
level is a normalized intensity value that lies in the range [0, 1\(]\).
The graythresh function uses Otsu's method, which chooses the threshold to minimize the intraclass variance of the black and white pixels.

Multidimensional arrays are converted automatically to 2-D arrays using reshape. The graythresh function ignores any nonzero imaginary part of I.

Class Support The input image I can be of class uint8, uint16, or double and it must be nonsparse. The return value level is a double scalar.

\section*{Example}

See Also
im2bw
Reference
Otsu, N., "A Threshold Selection Method from Gray-Level Histograms," IEEE Transactions on Systems, Man, and Cybernetics, Vol. 9, No. 1, 1979, pp. 62-66.

\section*{Purpose} Enhance contrast using histogram equalization

\author{
Syntax \\ \section*{Description}
}
```

J = histeq(I,hgram)
J = histeq(I, n)
[J,T] = histeq(I,...)
newmap $=$ histeq(X,map,hgram)
newmap $=$ histeq(X,map)
[newmap,T] = histeq(X,...)

```
histeq enhances the contrast of images by transforming the values in an intensity image, or the values in the colormap of an indexed image, so that the histogram of the output image approximately matches a specified histogram.
\(J=\) histeq(I, hgram) transforms the intensity image I so that the histogram of the output intensity image \(J\) with length (hgram) bins approximately matches hgram. The vector hgram should contain integer counts for equally spaced bins with intensity values in the appropriate range: \([0,1]\) for images of class double, [0, 255] for images of class uint8, and [0,65535] for images of class uint16. histeq automatically scales hgram so that sum (hgram) = prod(size(I)). The histogram of \(J\) will better match hgram when length (hgram) is much smaller than the number of discrete levels in I.
\(J=\) histeq \((I, n)\) transforms the intensity image \(I\), returning in \(J\) an intensity image with \(n\) discrete gray levels. A roughly equal number of pixels is mapped to each of the \(n\) levels in \(J\), so that the histogram of \(J\) is approximately flat. (The histogram of \(J\) is flatter when \(n\) is much smaller than the number of discrete levels in I.) The default value for n is 64 .
\([J, T]=\) histeq \((\mathrm{I}, \ldots\)) returns the grayscale transformation that maps gray levels in the intensity image I to gray levels in J .
newmap \(=\) histeq (\(X\), map, hgram) transforms the colormap associated with the indexed image \(X\) so that the histogram of the gray component of the indexed image (\(X\), newmap) approximately matches hgram. The histeq function returns the transformed colormap in newmap. length (hgram) must be the same as size(map,1).
newmap \(=\) histeq (\(X\), map) transforms the values in the colormap so that the histogram of the gray component of the indexed image \(X\) is approximately flat. It returns the transformed colormap in newmap.
[newmap, T] = histeq \((\mathrm{X}, \ldots\)) returns the grayscale transformation T that maps the gray component of map to the gray component of newmap.

\section*{Class Support}

Example

For syntaxes that include an intensity image I as input, I can be of class uint8, uint16, or double, and the output image \(J\) has the same class as I. For syntaxes that include an indexed image \(X\) as input, \(X\) can be of class uint 8 or double; the output colormap is always of class double. Also, the optional output T (the gray-level transform) is always of class double.

Enhance the contrast of an intensity image using histogram equalization.
```

I = imread('tire.tif');
J = histeq(I);
imshow(I)
figure, imshow(J)

```


Display the resulting histograms.
```

imhist(I,64)
figure; imhist(J,64)

```


\section*{Algorithm}

See Also

When you supply a desired histogram hgram, histeq chooses the grayscale transformation \(T\) to minimize
\[
\left|c_{1}(T(k))-c_{0}(k)\right|
\]
where \(c_{0}\) is the cumulative histogram of \(\mathrm{A}, c_{1}\) is the cumulative sum of hgram for all intensities \(k\). This minimization is subject to the constraints that \(T\) must be monotonic and \(c_{1}(T(a))\) cannot overshoot \(c_{0}(a)\) by more than half the distance between the histogram counts at \(a\). histeq uses this transformation to map the gray levels in X (or the colormap) to their new values.
\[
b=T(a)
\]

If you do not specify hgram, histeq creates a flat hgram,
```

hgram = ones(1,n)*prod(size(A))/n;

```
and then applies the previous algorithm.
brighten, imadjust, imhist

\author{
Purpose \\ Convert hue-saturation-value (HSV) values to RGB color space \\ hsv2rgb is a function in MATLAB. To get help for this function, select MATLAB Help from the Help menu and view the online function reference page.
}

\section*{Purpose}

Syntax \(\quad P=\) iccread (filename)
Description
Read ICC profile
\(P=\) iccread(filename) reads the International Color Consortium (ICC) color profile data from the file specified in the text string filename. iccread can also read an ICC profile that is embedded in a TIFF file. To determine if a TIFF file contains an embedded ICC profile, use the imfinfo function to get information about the file and look for the ICCProfileOffset field.
iccread returns the profile data in the structure P. You can use this profile as the source or destination profile with the makecform function.

ICC profiles provide color management systems with the information necessary to convert color data between native device color spaces and device independent color spaces, called the Profile Connection Space (PCS).

The profile returned, P , is a 1-by- 1 structure array whose fields contain the data structures (called tags) defined in the specfication ICC.1:2001-04. The number of fields in \(P\) depends on the profile class and the choices made by the profile creator. iccread returns all the tags for a given profile, both public and private. However, private tags and certain public tags are left as encoded uint8 data.

The following table lists fields that are found in any profile structure generated by iccread. For more information about ICC profiles, visit the ICC web site, www.color.org.
\begin{tabular}{l|l|l}
\hline Field & Data Type & Description \\
\hline Filename & Text string & Profile name \\
\hline Header & \begin{tabular}{l}
1-by-1 struct \\
array
\end{tabular} & Profile header \\
\hline TagTable & \begin{tabular}{l}
n-by-3 cell \\
array
\end{tabular} & Profile tag table \\
\hline Copywright & Text string & Profile copyright notice \\
\hline Description & Text string & Profile description \\
\hline
\end{tabular}
\begin{tabular}{l|ll}
\hline Field & Data Type & Description \\
\hline MediaWhitepoint & double array & \begin{tabular}{l}
\(X Y Z\) tristimulus values of the \\
device's media white point
\end{tabular} \\
\hline PrivateTags & m-by-2 cell & \begin{tabular}{l}
Contents of all the private tags or \\
tags not defined in ICC.1:2001-04.
\end{tabular} \\
The tag signatures are in the first \\
column, and the contents of the tags \\
are in the second column. Note that \\
the contents of these tags are left in \\
the unsigned 8-bit encoding
\end{tabular},

Additionally, P might contain one or more of the following transforms:
- Three component matrix-based transform: A simple transform that is often used to transform between the RGB and \(X Y Z\) color spaces. If this transform is present, \(P\) contains a field called MatTRC.
- N-component LUT-based transform: A transform that is used for transforming between color spaces that have a more complex relationship. This type of transform is found in any of the following fields in P :
\begin{tabular}{llll}
AToB0 & BToA0 & Preview0 & Gamut \\
AToB1 & BToA1 & Preview1 & \\
AToB2 & BToA2 & Preview2 &
\end{tabular}

\section*{Example}

The example reads the ICC profile that describes a typical PC computer monitor.
```

prof = iccread('sRGB.icm');
prof =
Filename: 'sRGB.icm'
Header: [1x1 struct]
TagTable: {17x3 cell}
Copyright: 'Copyright (c) 1999 Hewlett-Packard Company'
Description: 'sRGB IEC61966-2.1 991203'
MediaWhitePoint: [0.9505 1 1.0891]
MediaBlackPoint: [0 0 0]
DeviceMfgDesc: 'IEC '

```
```

    DeviceModelDesc: 'sRGB IEC 61966-2.1 sRGB 991203
    ViewingCondDesc: 'Reference Viewing Condition in IEC61966-2.1'
    ViewingConditions: [1x1 struct]
Luminance: [76.0365 80 87.1246]
Measurement: [28\times1 uint8]
Technology: [4x1 uint8]
MatTRC: [1x1 struct]
PrivateTags: {}

```

To determine the source color space, view the ColorSpace field in the Header structure.
```

prof.Header.ColorSpace
ans =

```
 RGB

To determine the PCS of the profile, view the ConnectionSpace field in the Header structure.
prof.Header.ConnectionSpace
ans \(=\)

XYZ
See Also makecform

Purpose
Compute two-dimensional inverse discrete cosine transform

\section*{Syntax}
\[
\begin{aligned}
& B=\operatorname{idct2}(A) \\
& B=\operatorname{idct2}(A, m, n) \\
& B=\operatorname{idct2}(A,[m n])
\end{aligned}
\]

\section*{Description}

\section*{Class Support}

\section*{Algorithm}

See Also dct2, dctmtx, fft2, ifft2
References

The input matrix A can be of class double or of any numeric class. The output matrix \(B\) is of class double.
idct2 computes the two-dimensional inverse DCT using
\[
\begin{aligned}
& A_{m n}=\sum_{p=0}^{M-1} \sum_{q=0}^{N-1} \alpha_{p} \alpha_{q} B_{p q} \cos \frac{\pi(2 m+1) p}{2 M} \cos \frac{\pi(2 n+1) q}{2 N}, \quad \begin{array}{l}
0 \leq m \leq M-1 \\
0 \leq n \leq N-1
\end{array} \\
& \alpha_{p}=\left\{\begin{array}{ll}
1 / \sqrt{M}, & p=0 \\
\sqrt{2 / M}, & 1 \leq p \leq M-1
\end{array} \quad \alpha_{q}= \begin{cases}1 / \sqrt{N}, & q=0 \\
\sqrt{2 / N}, & 1 \leq q \leq N-1\end{cases} \right.
\end{aligned}
\]
\(B=i d c t 2(A)\) returns the two-dimensional inverse discrete cosine transform (DCT) of \(A\).
\(B=\operatorname{idct2}(A, m, n)\) or \(B=\operatorname{idct2}(A,[m n])\) pads \(A\) with 0 's to size \(m\)-by- \(n\) before transforming. If [m n] < size (A), idct2 crops A before transforming.

For any A, idct2(dct2(A)) equals A to within roundoff error.
20
[1] Jain, A. K., Fundamentals of Digital Image Processing, Englewood Cliffs, NJ, Prentice Hall, 1989, pp. 150-153.
[2] Pennebaker, W. B., and J. L. Mitchell, JPEG: Still Image Data Compression Standard, New York, Van Nostrand Reinhold, 1993.

\section*{Purpose Compute inverse fan-beam transform}
```

Syntax
I = ifanbeam(F,D)
I = ifambeam(..., param1, val1, param2,val2,...)
[I,H] = ifanbeam(...)

```

Description I = ifanbeam (F, D) reconstructs the image I from projection data in the two-dimensional array \(F\). Each column of \(F\) contains fan-beam projection data at one rotation angle. if anbeam assumes that the center of rotation is the center point of the projections, which is defined as \(\operatorname{ceil}(\operatorname{size}(F, 1) / 2)\).

The fan-beam spread angles are assumed to be the same increments as the input rotation angles split equally on either side of zero. The input rotation angles are assumed to be stepped in equal increments to cover [0:359] degrees.

D is the distance from the fan-beam vertex to the center of rotation.
I = ifanbeam(...,param1,val1,param2,val2,...) specifies parameters that control various aspects of the ifanbeam reconstruction, described in the following table. Parameter names can be abbreviated, and case does not matter. Default values are in braces (\{\}).
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline 'FanCoverage' & \begin{tabular}{l}
String specifying the range through which the beams are rotated. \\
\(\{\) 'cycle' \(\} —\) Rotate through the full range [0,360).
\end{tabular} \\
& \begin{tabular}{l}
'minimal' — Rotate the minimum range necessary to represent \\
the object.
\end{tabular} \\
\hline 'FanRotationIncrement' & \begin{tabular}{l}
Positive real scalar specifying the increment of the rotation angle \\
of the fan-beam projections, measured in degrees. See fanbeam \\
for details.
\end{tabular} \\
\hline 'FanSensorGeometry' & \begin{tabular}{l}
String specifying how sensors are positioned. See fanbeam for \\
details.
\end{tabular} \\
\hline
\end{tabular}

\section*{ifanbeam}
\begin{tabular}{l|l}
\hline Parameter & Description \\
\hline 'FanSensorSpacing' & \begin{tabular}{l}
Positive real scalar specifying the spacing of the fan-beam \\
sensors. Interpretation of the value depends on the setting of \\
'FanSensorGeometry '. See fanbeam for details.
\end{tabular} \\
\hline 'Filter' & String specifying the name of a filter. See iradon for details. \\
\hline 'FrequencyScaling' & \begin{tabular}{l}
Scalar in the range (0,1] that modifies the filter by rescaling its \\
frequency axis. See iradon for details.
\end{tabular} \\
\hline 'Interpolation' & \begin{tabular}{l}
String specifying an interpolation method. See iradon for details.
\end{tabular} \\
\hline 'OutputSize' & \begin{tabular}{l}
Positive scalar specifying the number of rows and columns in the \\
reconstructed image. \\
If 'OutputSize ' is not specified, ifanbeam determines the size \\
automatically. \\
If you specify ' OutputSize ', ifanbeam reconstructs a smaller or
\end{tabular} \\
\hline \begin{tabular}{l}
larger portion of the image, but does not change the scaling of the \\
data. \\
Note: If the projections were calculated with the fanbeam \\
function, the reconstructed image might not be the same size as \\
the original image.
\end{tabular} \\
\hline
\end{tabular}

Class Support

Example
Notes \begin{tabular}{l}
ifanbeam converts the fan-beam data to parallel beam projections and then \\
uses the filtered back projection algorithm to perform the inverse Radon \\
transform. The filter is designed directly in the frequency domain and then \\
multiplied by the FFT of the projections. The projections are zero-padded to a \\
power of 2 before filtering to prevent spatial domain aliasing and to speed up \\
the FFT.
\end{tabular}
\([\mathrm{I}, \mathrm{H}]=\) ifanbeam (...) returns the frequency response of the filter in the vector H .
ifanbeam converts the fan-beam data to parallel beam projections and then uses the filtered back projection algorithm to perform the inverse Radon transform. The filter is designed directly in the frequency domain and then multiplied by the FFT of the projections. The projections are zero-padded to a power of 2 before filtering to prevent spatial domain aliasing and to speed up the FFT.

All numeric input arguments must be of class double. The output arguments are of class double.
```

ph = phantom(128);

```
\(\mathrm{d}=100\);
\(F=\) fanbeam(ph,d);
I = ifanbeam(F,d,'FanSensorSpacing',0.5);
imview(ph); imview(I);

See Also
References
fan2para, fanbeam, iradon, para2fan, phantom, radon
[1] Kak, A. C., and M. Slaney, Principles of Computerized Tomographic Imaging, New York, NY, IEEE Press, 1988.

\author{
Purpose \\ Compute two-dimensional inverse fast Fourier transform \\ ifft2 is a function in MATLAB. To get help for this function, select MATLAB Help from the Help menu and view the online function reference pages.
}

\author{
Purpose \\ Compute N-dimensional inverse fast Fourier transform \\ ifftn is a function in MATLAB. To get help for this function, select MATLAB \\ Help from the Help menu and view the online function reference pages.
}

\section*{im2bw}

\section*{Purpose \\ Convert an image to a binary image, based on threshold}

\author{
Syntax \\ Description
}

BW = im2bw(I,level)
BW = im2bw(X,map,level)
BW = im2bw(RGB,level)
im2bw produces binary images from indexed, intensity, or RGB images. To do this, it converts the input image to grayscale format (if it is not already an intensity image), and then uses thresholding to convert this grayscale image to binary. The output binary image BW has values of 0 (black) for all pixels in the input image with luminance less than level and 1 (white) for all other pixels. (Note that you specify level in the range [0,1], regardless of the class of the input image.)

BW = im2bw(I, level) converts the intensity image I to black and white.
BW = im2bw(X,map,level) converts the indexed image X with colormap map to black and white.
\(B W=\) im2bw(RGB, level) converts the RGB image RGB to black and white.

Note The function graythresh can be used to compute the level argument automatically.

Class Support The input image can be of class uint8, uint16, or double and it must be nonsparse. The output image, BW, is of class logical.

\section*{Example}
```

load trees
BW = im2bw(X,map,0.4);
imview(X,map),imview(BW)

```


Image Courtesy of Susan Cohen

\author{
See Also graythresh, ind2gray, rgb2gray
}

\section*{Purpose Rearrange image blocks into columns}
```

Syntax
$B=i m 2 c o l\left(A,[m n], b l o c k \_t y p e\right)$
$B=i m 2 c o l(A,[m n])$
$B=i m 2 c o l(A, ' i n d e x e d ', \ldots)$

```

Description \(\quad B=i m 2 \operatorname{col}(A,[m n]\), block_type \()\) rearranges image blocks into columns. block_type is a string that can have one of these values. The default value is enclosed in braces (\(\}\)).
\begin{tabular}{|c|c|}
\hline Value & Description \\
\hline 'distinct' & Rearranges each distinct m-by-n block in the image A into a column of B. im2col pads A with 0 's, if necessary, so its size is an integer multiple of m-by-n. If A = [A11 A12; A21 A22], where each \(A_{i j}\) is m-by-n, then \(B=[A 11(:)\) A12(:) A21(:) A22(:)]. \\
\hline \{'sliding'\} & Converts each sliding m-by-n block of A into a column of B, with no zero padding. \(B\) has \(m * n\) rows and contains as many columns as there are m-by-n neighborhoods of \(A\). If the size of \(A\) is [\(\mathrm{mm} n \mathrm{nn}\)], then the size of \(B\) is \((m * n)-\) by- \(((m m-m+1) *(n n-n+1))\). \\
\hline
\end{tabular}

For the sliding block case, each column of B contains the neighborhoods of A reshaped as nhood (:) where nhood is a matrix containing an m-by-n neighborhood of \(A\). im2col orders the columns of \(B\) so that they can be reshaped to form a matrix in the normal way. For example, suppose you use a function, such as sum (B), that returns a scalar for each column of B. You can directly store the result in a matrix of size \((m m-m+1)\)-by- \((n n-n+1)\), using these calls.
```

B = im2col(A,[m n],'sliding');
C = reshape(sum(B),mm-m+1,nn-n+1);

```
\(B=\operatorname{im2col}(A\), 'indexed',..) processes \(A\) as an indexed image, padding with 0 's if the class of \(A\) is uint8, or 1's if the class of \(A\) is double.

Class Support The input image A can be numeric or logical. The output matrix B is of the same class as the input image.

\author{
See Also \\ blkproc, col2im, colfilt, nlfilter
}

\section*{im2double}

Purpose
Syntax \(\quad \begin{array}{ll}\text { I2 }=\operatorname{im2double}(I) \\ & \text { RGB2 }=\operatorname{im2double}(R G B) \\ & I=\operatorname{im2double}(B W) \\ & X 2=\operatorname{im2double}(X, \text { indexed })\end{array}\)

See Also
double, im2uint8, uint8

\section*{Purpose}

Convert image to Java image
im2java is a MATLAB function. To get help for this function, select MATLAB Help from the Help menu and view the online function reference pages.

\section*{im2java2d}

Purpose
Convert image to Java buffered image

\author{
Syntax \\ Description
}
jimage = im2java2d(I)
jimage \(=\) im2java2d (X,MAP)
jimage = im2java2d(I) converts the image I to an instance of the Java image class java.awt.image.BufferedImage. The image I can be an intensity (grayscale), RGB, or binary image.
jimage = im2java2d (X, MAP) converts the indexed image \(X\) with colormap MAP to an instance of the Java class java.awt.image. BufferedImage.

Note The im2java2d function works with the Java 2D API. The im2java function works with the Java Abstract Windowing Toolkit (AWT).

\section*{Class Support}

\section*{Example}

Intensity, indexed, and RGB input images can be of class uint8, uint16, or double. Binary input images must be of class logical.

This example reads an image into the MATLAB workspace and then uses im2java2d to convert it into an instance of the Java class java.awt.image.BufferedImage.
```

I = imread('moon.tif');
javaImage = im2java2d(I);
frame = javax.swing.JFrame;
icon = javax.swing.ImageIcon(javaImage);
label = javax.swing.JLabel(icon);
frame.getContentPane.add(label);
frame.pack
frame.show

```

\section*{Purpose}

\section*{Syntax}

Description

See Also

Convert image array to 16 -bit unsigned integers
```

I2 = im2uint16(I)
RGB2 = im2uint16(RGB)
I = im2uint16(BW)
X2 = im2uint16(X,'indexed')

```
im2uint16 takes an image as input and returns an image of class uint16. If the input image is of class uint16, the output image is identical to it. If the input image is of class double or uint8, im2uint16 returns the equivalent image of class uint16, rescaling or offsetting the data as necessary.

I2 \(=\) im2uint16(I) converts the intensity image I to uint16, rescaling the data if necessary.

RGB2 \(=\) im2uint16(RGB) converts the true-color image RGB to uint16, rescaling the data if necessary.

I = im2uint16(BW) converts the binary image BW to a uint16 intensity image, changing 1 -valued elements to 65535.

X2 = im2uint16(X,'indexed') converts the indexed image \(X\) to uint16, offsetting the data if necessary. Note that it is not always possible to convert an indexed image to uint16. If X is of class double, \(\max (\mathrm{X}(:))\) must be 65536 or less.

Note im2uint16 does not support binary images.
```

im2uint8, double, im2double, uint8, uint16, imapprox

```

\section*{im2uint8}

Purpose
\(\begin{array}{ll}\text { Syntax } & \text { I2 }=\operatorname{im2uint8(I)} \\ & \text { RGB2 }=\operatorname{im2uint8(RGB)} \\ & I=\operatorname{im2uint8(BW)} \\ & X 2=\operatorname{im2uint8}\left(X, \text { indexed' }^{\prime}\right)\end{array}\)

See Also
im2uint16, double, im2double, uint8, imapprox, uint16

\section*{Purpose \\ Compute absolute difference of two images}

\section*{Syntax \(\quad Z=\operatorname{imabsdiff}(X, Y)\)}

Description

\section*{Examples}

This example calculates the absolute difference between two uint8 arrays. Note that the absolute value prevents negative values from being rounded to zero in the result, as they are with imsubtract.
```

X = uint8([ 255 10 75; 44 225 100]);
Y = uint8([ 50 50 50; 50 50 50 ]);
Z = imabsdiff(X,Y)
Z =
205 40 25
6 175 50

```

Display the absolute difference between a filtered image and the original.
```

I = imread('cameraman.tif');
J = uint8(filter2(fspecial('gaussian'), I));
K = imabsdiff(I,J);
imshow(K,[]) % [] = scale data automatically

```

\section*{imabsdiff}

\section*{See Also}
imadd, imcomplement, imdivide, imlincomb, immultiply, imsubtract, ippl

\section*{Purpose}

\section*{Syntax}

Description

\section*{Examples}

Add two images, or add a constant to an image
\(Z=i m a d d(X, Y)\)
\(Z=i m a d d(X, Y)\) adds each element in array \(X\) with the corresponding element in array \(Y\) and returns the sum in the corresponding element of the output array \(Z . X\) and \(Y\) are real, nonsparse numeric arrays with the same size and class, or \(Y\) is a scalar double. The array returned, \(Z\), has the same size and class, or \(Y\) is a scalar double. \(Z\) has the same size and class as \(X\).

If \(X\) and \(Y\) are integer arrays, elements in the output that exceed the range of the integer type are truncated, and fractional values are rounded.

If \(X\) and \(Y\) are double arrays, you can use the expression \(X+Y\) instead of this function.

Note On Intel architecture processors, imadd can take advantage of the Intel Performance Primitives Library (IPPL), thus accelerating its execution time. IPPL is activated if arrays \(X, Y\), and \(Z\) are of class logical, uint8, or single and are of the same class, or if \(Y\) is a double scalar and arrays \(X\) and \(Z\) are uint8, int16, or single and are of the same class.

Add two uint8 arrays. Note the truncation that occurs when the values exceed 255.
```

X = uint8([ 255 0 75; 44 225 100]);
Y = uint8([ 50 50 50; 50 50 50 ]);
Z = imadd(X,Y)
Z =
255 50 125
94 255 150

```

Add two images together and specify an output class.
```

I = imread('rice.png');
J = imread('cameraman.tif');
K = imadd(I,J,'uint16');
imshow(K,[])

```

Add a constant to an image.
```

I = imread('rice.png');
J = imadd(I,50);
subplot(1,2,1), imshow(I)
subplot(1,2,2), imshow(J)

```

\section*{See Also imabsdiff, imcomplement, imdivide, imlincomb, immultiply, imsubtract, ippl}

\section*{Purpose Adjust image intensity values or colormap}

\author{
Syntax \\ Description
}
```

J = imadjust(I)
J = imadjust(I,[low_in; high_in],[low_out; high_out])
J = imadjust(...,gamma)
newmap = imadjust(map,[low_in high_in],[low_out high_out],gamma)
RGB2 = imadjust(RGB1,...)

```
\(J=\) imadjust(I) maps the values in intensity image I to new values in \(J\) such that \(1 \%\) of data is saturated at low and high intensities of I. This increases the contrast of the output image \(J\). This syntax is equivalent to imadjust(I, stretchlim(I)).

J = imadjust(I,[low_in; high_in],[low_out; high_out]) maps the values in intensity image I to new values in \(J\) such that values between low_in and high_in map to values between low_out and high_out. Values below low_in and above high_in are clipped; that is, values below low_in map to low_out, and those above high_in map to high_out. You can use an empty matrix ([]) for [low_in high_in] or for [low_out high_out] to specify the default of [0 1].

J = imadjust(I,[low_in; high_in],[low_out; high_out], gamma) maps the values in intensity image I to new values in \(J\), where gamma specifies the shape of the curve describing the relationship between the values in I and \(J\). If gamma is less than 1 , the mapping is weighted toward higher (brighter) output values. If gamma is greater than 1 , the mapping is weighted toward lower (darker) output values. If you omit the argument, gamma defaults to 1 (linear mapping).
newmap = imadjust(map,[low_in; high_in],[low_out; high_out],gamma) transforms the colormap associated with an indexed image. If low_in, high_in, low_out, high_out, and gamma are scalars, then the same mapping applies to red, green, and blue components. Unique mappings for each color component are possible when
low_in and high_in are both 1-by-3 vectors.
low_out and high_out are both 1-by-3 vectors, or gamma is a 1-by-3 vector.
The rescaled colormap newmap is the same size as map.

RGB2 \(=\) imadjust(RGB1, ...) performs the adjustment on each image plane (red, green, and blue) of the RGB image RGB1. As with the colormap adjustment, you can apply unique mappings to each plane.

Note If high_out < low_out, the output image is reversed, as in a photographic negative.

\section*{Class Support}

\section*{Example}

For syntax variations that include an input image (rather than a colormap), the input image can be of class uint8, uint16, or double. The output image has the same class as the input image. For syntax variations that include a colormap, the input and output colormaps are of class double.

Adjust a low-contrast grayscale image.
```

I = imread('pout.tif');
J = imadjust(I);
imview(I), imview(J)

```


Adjust the grayscale image, specifying the contrast limits.
```

K = imadjust(I,[0.3 0.7],[]);
imview(K)

```

Adjust an RGB image.
```

RGB1 = imread('peppers.png');

```
```

RGB2 = imadjust(RGB1,[.2 .3 0; .6 .7 1],[]);
imview(RGB1), imview(RGB2)

```


See Also brighten, histeq, stretchlim

Purpose

\section*{Syntax}

\section*{Description}

\section*{Class Support}

Algorithm
See Also

Approximate indexed image by one with fewer colors
```

[Y,newmap] = imapprox(X,map,n)
[Y,newmap] = imapprox(X,map,tol)
Y = imapprox(X,map,newmap)
[...] = imapprox(...,dither_option)

```
[Y , newmap] = imapprox (X , map, n) approximates the colors in the indexed image \(X\) and associated colormap map by using minimum variance quantization. imapprox returns indexed image \(Y\) with colormap newmap, which has at most n colors.
[Y, newmap] = imapprox(X,map,tol) approximates the colors in X and map through uniform quantization. newmap contains at most (floor (\(1 /\) tol) +1) ^3 colors. tol must be between 0 and 1.0.
\(\mathrm{Y}=\) imapprox (X, map, newmap) approximates the colors in map by using colormap mapping to find the colors in newmap that best match the colors in map.

Y = imapprox(..., dither_option) enables or disables dithering. dither_option is a string that can have one of these values. The default value is enclosed in braces (\(\}\)).
\begin{tabular}{ll}
\hline Value & Description \\
\hline \{'dither' \} & \begin{tabular}{l}
Dithers, if necessary, to achieve better color resolution \\
at the expense of spatial resolution.
\end{tabular} \\
\hline 'nodither' & \begin{tabular}{l}
Maps each color in the original image to the closest color \\
in the new map. No dithering is performed.
\end{tabular} \\
\hline
\end{tabular}

The input image \(X\) can be of class uint8, uint16, or double. The output image \(Y\) is of class uint8 if the length of newmap is less than or equal to 256. If the length of newmap is greater than \(256, \mathrm{Y}\) is of class double.
imapprox uses rgb2ind to create a new colormap that uses fewer colors.
cmunique, dither, rgb2ind

\section*{Purpose \\ Perform bottom-hat filtering}
\begin{tabular}{rl}
Syntax & IM2 \(=\) imbothat (IM, SE \()\) \\
& IM2 \(=\) imbothat (IM, NHOOD)
\end{tabular}

Description

\section*{Class Support}

IM can be numeric or logical and must be nonsparse. The output image has the same class as the input image. If the input is binary (logical), then the structuring element must be flat.

\section*{Example}

Top-hat filtering and bottom-hat filtering can be used together to enhance contrast in an image.

1 Read the image into the MATLAB workspace.
```

I = imread('pout.tif');
imshow(I)

```


\section*{imbothat}

2 Create disk-shaped structuring element, needed for morphological processing.
se = strel('disk',3);
3 Add the original image I to the top-hat filtered image, and then subtract the bottom-hat filtered image.
J = imsubtract(imadd(I,imtophat(I,se)), imbothat(I,se)); figure, imshow(J)

See Also imtophat, strel

Purpose
Syntax \(\quad\)\begin{tabular}{rl}
IM2 & \(=\) imclearborder (IM) \\
IM2 & \(=\) imclearborder (IM, CONN \()\)
\end{tabular}

Description
IM2 = imclearborder(IM)
IM2 = imclearborder(IM,CONN)

Suppress light structures connected to image border

IM2 = imclearborder(IM) suppresses structures that are lighter than their surroundings and that are connected to the image border. IM can be an intensity or binary image. The output image, IM2, is intensity or binary, respectively. The default connectivity is 8 for two dimensions, 26 for three dimensions, and conndef(ndims(BW), 'maximal') for higher dimensions.

Note For intensity images, imclearborder tends to reduce the overall intensity level in addition to suppressing border structures.

IM2 = imclearborder(IM,CONN) specifies the desired connectivity. CONN can have any of the following scalar values.
\begin{tabular}{l|l}
\hline Value & Meaning \\
\hline Two-dimensional connectivities \\
\hline 4 & 4-connected neighborhood \\
\hline 8 & 8-connected neighborhood \\
\hline Three-dimensional connectivities \\
\hline 6 & 6-connected neighborhood \\
\hline 18 & 18-connected neighborhood \\
\hline 26 & 26 -connected neighborhood \\
\hline
\end{tabular}

Connectivity can also be defined in a more general way for any dimension by using for CONN a 3-by-3-by- ... -by-3 matrix of 0's and 1's. The 1 -valued elements define neighborhood locations relative to the center element of CONN. Note that CONN must be symmetric about its center element.

Note A pixel on the edge of the input image might not be considered to be a border pixel if a nondefault connectivity is specified. For example, if conn = [\(0000 ; 1111 ; 0000\), elements on the first and last row are not considered to be border pixels because, according to that connectivity definition, they are not connected to the region outside the image.

\section*{Class Support}

\section*{Example}

IM can be a numeric or logical array of any dimension, and it must be nonsparse and real. IM2 has the same class as IM.

The following examples use this simple binary image to illustrate the effect of imclearborder when you specify different connectivities.
\(\mathrm{BW}=\)\begin{tabular}{rllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}

Using a 4-connected neighborhood, the pixel at \((5,2)\) is not considered connected to the border pixel \((4,1)\), so it is not cleared.
```

BWc1 = imclearborder(BW,4)

```

BWC1 \(=\)
\begin{tabular}{lllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}

Using an 8-connected neighborhood, pixel \((5,2)\) is considered connected to pixel \((4,1)\) so both are cleared.
```

BWc2 = imclearborder(BW,8)
BWc2 =

```
\begin{tabular}{lllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}

\section*{Algorithm}

See Also
Reference
imclearborder uses morphological reconstruction where
- Mask image is the input image.
- Marker image is zero everywhere except along the border, where it equals the mask image.
conndef
[1] Soille, P., Morphological Image Analysis: Principles and Applications, Springer, 1999, pp. 164-165.

Purpose
Syntax \(\quad \begin{aligned} & \text { IM2 }=\text { imclose }(I M, S E) \\ & \text { IM2 }=\text { imclose }(I M, \text { NHOOD })\end{aligned}\)
Description

Class Support

Example
Close an image structuring element neighborhood.

IM2 = imclose(IM, SE) performs morphological closing on the grayscale or binary image IM, returning the closed image, IM2. The structuring element, SE, must be a single structuring element object, as opposed to an array of objects.

IM2 = imclose(IM,NHOOD) performs closing with the structuring element strel (NHOOD), where NHOOD is an array of 0's and 1's that specifies the

IM can be any numeric or logical class and any dimension, and must be nonsparse. If IM is logical, then SE must be flat. IM2 has the same class as IM.

This example uses imclose to join the circles in the image together by filling in the gaps between them and by smoothening their outer edges.

1 Read the image into the MATLAB workspace and view it. originalBW = imread('circles.png');
imview(originalBW);

2 Create a disk-shaped structuring element. Use a disk structuring element to preserve the circular nature of the object. Specify a radius of 10 pixels so that the largest gap gets filled.
```

se = strel('disk',10);

```

3 Perform a morphological close operation on the image.
closeBW = imclose(originalBW,se); imview(closeBW)

\author{
See Also
}
imdilate, imerode, imopen, strel

\section*{imcomplement}

Purpose
Syntax
Description

\section*{Examples}

Complement image
IM2 = imcomplement(IM)

IM2 = imcomplement(IM) computes the complement of the image IM. IM can be a binary, intensity, or RGB image. IM2 has the same class and size as IM.

In the complement of a binary image, zeros become ones and ones become zeros; black and white are reversed. In the complement of an intensity or RGB image, each pixel value is subtracted from the maximum pixel value supported by the class (or 1.0 for double-precision images) and the difference is used as the pixel value in the output image. In the output image, dark areas become lighter and light areas become darker.

If IM is an intensity or RGB image of class double, you can use the expression 1 -IM instead of this function. If IM is a binary image, you can use the expression \(\sim\) IM instead of this function.

Create the complement of a uint8 array.
```

X = uint8([ 255 10 75; 44 225 100]);
X2 = imcomplement(X)
X2 =
0 245 180
211 30 155

```

Reverse black and white in a binary image.
```

bw = imread('text.png');

```
bw2 = imcomplement(bw);
subplot(1,2,1),imshow(bw)
subplot \((1,2,2)\), imshow(bw2)

Create the complement of an intensity image.
```

I = imread('glass.png');
J = imcomplement(I);
imview(I), imview(J)

```


See Also
imabsdiff, imadd, imdivide, imlincomb, immultiply, imsubtract

Purpose
Syntax
Description

Class Support
Example

Create a contour plot of image data
```

imcontour(I)
imcontour(I,n)
imcontour(I,v)
imcontour(x,y,...)
imcontour(...,LineSpec)
[C,h] = imcontour(...)

```
imcontour(I) draws a contour plot of the intensity image I, automatically setting up the axes so their orientation and aspect ratio match the image.
imcontour (\(I, n\)) draws a contour plot of the intensity image \(I\), automatically setting up the axes so their orientation and aspect ratio match the image. \(n\) is the number of equally spaced contour levels in the plot; if you omit the argument, the number of levels and the values of the levels are chosen automatically.
imcontour (I , v) draws a contour plot of I with contour lines at the data values specified in vector v . The number of contour levels is equal to length (v).
imcontour (\(\mathrm{x}, \mathrm{y}, \ldots\)) uses the vectors x and y to specify the \(x\) - and \(y\)-axis limits.
imcontour (..., LineSpec) draws the contours using the line type and color specified by LineSpec. Marker symbols are ignored.
[\(\mathrm{C}, \mathrm{h}\)] = imcontour (...) returns the contour matrix C and a vector of handles to the objects in the plot. (The objects are actually patches, and the lines are the edges of the patches.) You can use the clabel function with the contour matrix \(C\) to add contour labels to the plot.

The input image can be of class uint8, uint16, double, or logical.
```

I = imread('circuit.tif');

```
imcontour (I,3)

See Also
clabel, contour, LineSpec in the MATLAB Function Reference

\section*{Purpose Crop an image}
```

Syntax
I2 $=\operatorname{imcrop}(\mathrm{I})$
X2 $=$ imcrop $(X$, map $)$
RGB2 $=$ imcrop(RGB)
I2 $=$ imcrop (I, rect)
X2 = imcrop(X,map,rect)
RGB2 $=$ imcrop(RGB,rect)
[...] $=\operatorname{imcrop}(x, y, \ldots)$
[A,rect] $=$ imcrop(...)
[x,y,A,rect] = imcrop(...)

```

\section*{Description}
imcrop crops an image to a specified rectangle. In the syntaxes below, imcrop displays the input image and waits for you to specify the crop rectangle with the mouse.
```

I2 = imcrop(I)
X2 = imcrop(X,map)
RGB2 = imcrop(RGB)

```

If you omit the input arguments, imcrop operates on the image in the current axes.

To specify the rectangle,
- For a single-button mouse, press the mouse button and drag to define the crop rectangle. Finish by releasing the mouse button.
- For a two- or three-button mouse, press the left mouse button and drag to define the crop rectangle. Finish by releasing the mouse button.

If you hold down the Shift key while dragging, or if you press the right mouse button on a two- or three-button mouse, imcrop constrains the bounding rectangle to be a square.

When you release the mouse button, imcrop returns the cropped image in the supplied output argument. If you do not supply an output argument, imcrop displays the output image in a new figure.

You can also specify the cropping rectangle noninteractively, using these syntaxes
```

I2 = imcrop(I,rect)
X2 = imcrop(X,map,rect)
RGB2 = imcrop(RGB,rect)

```
rect is a four-element vector with the form [xmin ymin width height]; these values are specified in spatial coordinates.

To specify a nondefault spatial coordinate system for the input image, precede the other input arguments with two, two-element vectors specifying the XData and YData. For example:
```

[...] = imcrop(x,y,...)

```

If you supply additional output arguments, imcrop returns information about the selected rectangle and the coordinate system of the input image. For example:
```

[A,rect] = imcrop(...)
[x,y,A,rect] = imcrop(...)

```
\(A\) is the output image. \(x\) and \(y\) are the XData and YData of the input image.
Class Support The input image A can be of class logical, uint8, uint16, or double. The output image \(B\) is of the same class as \(A\). rect is always of class double.

Remarks

\section*{Example}
```

I = imread('circuit.tif');
I2 = imcrop(I,[75 68 130 112]);
imview(I), imview(I2)

```


\section*{See Also}
zoom

\section*{Purpose \\ Dilate image}
```

Syntax
IM2 = imdilate(IM, SE)
IM2 = imdilate(IM,NHOOD)
IM2 = imdilate(IM, SE, PACKOPT)
IM2 = imdilate(...,PADOPT)

```Description

Description
IM2 = imdilate(IM, SE) dilates the grayscale, binary, or packed binary image IM, returning the dilated image, IM2. The argument SE is a structuring element object, or array of structuring element objects, returned by the strel function.

If IM is logical and the structuring element is flat, imdilate performs binary dilation; otherwise, it performs grayscale dilation. If SE is an array of structuring element objects, imdilate performs multiple dilations of the input image, using each structuring element in SE in succession.

IM2 = imdilate(IM, NHOOD) dilates the image IM, where NHOOD is a matrix of 0 's and 1's that specifies the structuring element neighborhood. This is equivalent to the syntax imdilate (IM, strel(NHOOD)). The imdilate function determines the center element of the neighborhood by floor ((size (NHOOD)+1)/2).

IM2 = imdilate(IM, SE, PACKOPT) or imdilate(IM,NHOOD, PACKOPT) specifies whether IM is a packed binary image. PACKOPT can have either of the following values. Default value is enclosed in braces (\(\}\)).
\begin{tabular}{ll}
\hline Value & Description \\
\hline 'ispacked' & \begin{tabular}{l}
IM is treated as a packed binary image as produced by \\
bwpack. IM must be a 2-D uint32 array and SE must be \\
a flat 2-D structuring element. If the value of PACKOPT \\
is ' ispacked ', PADOPT must be ' same '.
\end{tabular} \\
\(\{\) 'notpacked' \(\}\) & IM is treated as a normal array. \\
\hline
\end{tabular}

IM2 \(=\) imdilate (..., PADOPT) specifies the size of the output image. PADOPT can have either of the following values. Default value is enclosed in braces (\(\}\)).
\begin{tabular}{ll}
\hline Value & Description \\
\hline \{'same' \} & \begin{tabular}{l}
Make the output image the same size as the input image. If \\
the value of PACKOPT is 'ispacked ', PADOPT must be 'same '.
\end{tabular} \\
\hline 'full' & Compute the full dilation. \\
\hline
\end{tabular}

PADOPT is analogous to the optional SHAPE argument to the conv2 and filter2 functions.

\section*{Class Support}

\section*{Examples}

IM can be logical or numeric and must be real and nonsparse. It can have any dimension. If IM is logical, SE must be flat. The output has the same class as the input. If the input is packed binary, then the output is also packed binary.

This example dilates a binary image with a vertical line structuring element.
```

bw = imread('text.png');
se = strel('line',11,90);
bw2 = imdilate(bw,se);
imshow(bw), title('Original')
figure, imshow(bw2), title('Dilated')

```


This example dilates a grayscale image with a rolling ball structuring element.
```

I = imread('cameraman.tif');

```
```

se = strel('ball',5,5);
I2 = imdilate(I,se);
imshow(I), title('Original')
figure, imshow(I2), title('Dilated')

```


To determine the domain of the composition of two flat structuring elements, dilate the scalar value 1 with both structuring elements in sequence, using the 'full' option.
```

se1 = strel('line',3,0)
se1 =
Flat STREL object containing 3 neighbors.
Neighborhood:
1 1 1
se2 = strel('line',3,90)
se2 =
Flat STREL object containing 3 neighbors.
Neighborhood:
1
1
1
composition = imdilate(1,[se1 se2],'full')

```
\begin{tabular}{ccc}
\multicolumn{3}{c}{ composition \(=\)} \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular}

\section*{Algorithm}

See Also bwpack, bwunpack, conv2, filter2, imclose, imerode, imopen, strel
References
imdilate automatically takes advantage of the decomposition of a structuring element object (if it exists). Also, when performing binary dilation with a structuring element object that has a decomposition, imdilate automatically uses binary image packing to speed up the dilation.

Dilation using bit packing is described in [2].
[1] Haralick, R.M., and L. G. Shapiro, Computer and Robot Vision, Vol. I, Addison-Wesley, 1992, pp. 158-205.
[2] van den Boomgaard and van Balen, "Image Transforms Using Bitmapped Binary Images," Computer Vision, Graphics, and Image Processing: Graphical Models and Image Processing, Vol. 54, No. 3, May, 1992, pp. 254-258.

\section*{Purpose} Divide one image into another, or divide an image by a constant

\section*{Syntax \(\quad Z=\) imdivide \((X, Y)\)}
\(Z=\) imdivide \((X, Y)\) divides each element in the array \(X\) by the corresponding element in array \(Y\) and returns the result in the corresponding element of the output array \(Z\). \(X\) and \(Y\) are real, nonsparse numeric arrays with the same size and class, or \(Y\) can be a scalar double. \(Z\) has the same size and class as \(X\) and \(Y\).

If \(X\) is an integer array, elements in the output that exceed the range of integer type are truncated, and fractional values are rounded.

If \(X\) and \(Y\) are double arrays, you can use the expression \(X . / Y\) instead of this function.

Note On Intel architecture processors, imdivide can take advantage of the Intel Performance Primitives Library (IPPL), thus accelerating its execution time. IPPL is activated only if arrays \(X\) and \(Y\) are of class uint8, int16, or single and are of the same size and class.

\section*{Example}

Divide two uint8 arrays. Note that fractional values greater than or equal to 0.5 are rounded up to the nearest integer.
```

X = uint8([ 255 10 75; 44 225 100]);
Y = uint8([ 50 20 50; 50 50 50 ]);
Z = imdivide(X,Y)
Z =
5 1 2
1 5 2

```

Estimate and divide out the background of the rice image.
```

I = imread('rice.png');
background = imopen(I,strel('disk',15));
Ip = imdivide(I,background);
imview(Ip,[])

```

Divide an image by a constant factor.

\section*{imdivide}
```

I = imread('rice.png');
J = imdivide(I,2);
subplot(1,2,1), imshow(I)
subplot(1,2,2), imshow(J)

```

\section*{See Also}
imabsdiff, imadd, imcomplement, imlincomb, immultiply, imsubtract, ippl

\section*{Purpose Erode image}
```

Syntax IM2 = imerode(IM,SE)
IM2 = imerode(IM,NHOOD)
IM2 = imerode(IM,SE,PACKOPT,M)
IM2 = imerode(...,PADOPT)

```

IM2 = imerode(IM, SE) erodes the grayscale, binary, or packed binary image IM, returning the eroded image IM2. The argument SE is a structuring element object or array of structuring element objects returned by the strel function.

If IM is logical and the structuring element is flat, imerode performs binary dilation; otherwise it performs grayscale erosion. If SE is an array of structuring element objects, imerode performs multiple erosions of the input image, using each structuring element in SE in succession.

IM2 = imerode(IM,NHOOD) erodes the image IM, where NHOOD is an array of O's and 1's that specifies the structuring element neighborhood. This is equivalent to the syntax imerode(IM, strel(NHOOD)). The imerode function determines the center element of the neighborhood by floor ((size (NHOOD) +1)/2)

IM2 = imerode(IM,SE,PACKOPT,M) or imerode(IM,NHOOD, PACKOPT,M) specifies whether IM is a packed binary image and, if it is, provides the row dimension \(M\) of the original unpacked image. PACKOPT can have either of the following values. Default value is enclosed in braces (\(\}\)).
\begin{tabular}{ll}
\hline Value & Description \\
\hline 'ispacked' & \begin{tabular}{l}
IM is treated as a packed binary image as produced by \\
bwpack. IM must be a 2-D uint32 array and SE must be a \\
flat 2-D structuring element.
\end{tabular} \\
\hline \{'notpacked' \(\}\) & IM is treated as a normal array. \\
\hline
\end{tabular}

If PACKOPT is 'ispacked', you must specify a value for \(M\).

IM2 \(=\) imerode (..., PADOPT \()\) specifies the size of the output image. PADOPT can have either of the following values. Default value is enclosed in braces (\(\}\)).
\begin{tabular}{l|l}
\hline Value & Description \\
\hline \{'same' \} & \begin{tabular}{l}
Make the output image the same size as the input image. If \\
the value of PACKOPT is 'ispacked ', PADOPT must be 'same '.
\end{tabular} \\
\hline 'full' & Compute the full erosion. \\
\hline
\end{tabular}

PADOPT is analogous to the SHAPE input to the CONV2 and FILTER2 functions.

Class Support

\section*{Examples}

IM can be numeric or logical and it can be of any dimension. If IM is logical and the structuring element is flat, the output image is logical; otherwise the output image has the same class as the input. If the input is packed binary, then the output is also packed binary.

This example erodes a binary image with a disk structuring element.
```

originalBW = imread('circles.png');
se = strel('disk',11);
erodedBW = imerode(originalBW,se);
imview(originalBW), imview(erodedBW)

```


This example erodes a grayscale image with a rolling ball.
```

I = imread('cameraman.tif');
se = strel('ball',5,5);

```
```

I2 = imerode(I,se);
imshow(I), title('Original')
figure, imshow(I2), title('Eroded')

```


\section*{Algorithm Notes}

\section*{See Also}

References
imerode automatically takes advantage of the decomposition of a structuring element object (if a decomposition exists). Also, when performing binary dilation with a structuring element object that has a decomposition, imerode automatically uses binary image packing to speed up the dilation.

Erosion using bit packing is described in [2].
bwpack, bwunpack, conv2, filter2, imclose, imdilate, imopen, strel
[1] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision, Vol. I, Addison-Wesley, 1992, pp. 158-205.
[2] van den Boomgaard and van Balen, "Image Transforms Using Bitmapped Binary Images," Computer Vision, Graphics, and Image Processing: Graphical Models and Image Processing, Vol. 54, No. 3, May, 1992, pp. 254-258.

\section*{imextendedmax}

\section*{Purpose \\ Extended-maxima transform}
Syntax \(\quad\)\begin{tabular}{rl}
BW & \(=\) imextendedmax \((I, H)\) \\
\(B W\) & \(=\) imextendedmax \((I, H, C O N N)\)
\end{tabular}

Description

Class Support I can be of any nonsparse numeric class and any dimension. BW has the same size as I and is always logical.

\section*{Example}

\author{
See Also \\ Reference \\ conndef, imextendedmin, imreconstruct \\ [1] Soille, P., Morphological Image Analysis: Principles and Applications, Springer-Verlag, 1999, pp. 170-171.
}
```

I = imread('glass.png');
BW = imextendedmax(I,80);
imview(I), imview(BW)

```


Original Image

Extended Maxima Image

\section*{imextendedmin}

\section*{Purpose \\ Extended-minima transform}
Syntax \(\quad\)\begin{tabular}{rl}
BW & \(=\) imextendedmin \((I, h)\) \\
\(B W\) & \(=\) imextendedmin \((I, h, C O N N)\)
\end{tabular}

Description

Class Support I can be of any nonsparse numeric class and any dimension. BW has the same size as I and is always logical.

\section*{Example}
```

I = imread('glass.png');
BW = imextendedmin(I,50);
imview(I), imview(BW)

```


Original Image

Extended Minima Image

\author{
See Also conndef, imextendedmax, imreconstruct \\ Reference \\ [1] Soille, P., Morphological Image Analysis: Principles and Applications, Springer-Verlag, 1999, pp. 170-171.
}

Purpose
Fill image regions

\section*{Syntax}
```

BW2 = imfill(BW,locations)
BW2 = imfill(BW,'holes')
I2 = imfill(I)
BW2 = imfill(BW)
[BW2 locations] = imfill(BW)
BW2 = imfill(BW,locations,CONN)
BW2 = imfill(BW,CONN,'holes')
I2 = imfill(I,CONN)

```

Description BW2 = imfill(BW, locations) performs a flood-fill operation on background pixels of the binary image \(B W\), starting from the points specified in locations. If locations is a P-by- 1 vector, it contains the linear indices of the starting locations. If locations is a P-by-ndims (BW) matrix, each row contains the array indices of one of the starting locations.

BW2 = imfill(BW, 'holes') fills holes in the binary image BW. A hole is a set of background pixels that cannot be reached by filling in the background from the edge of the image.

I2 = imfill(I) fills holes in the intensity image I. In this case, a hole is an area of dark pixels surrounded by lighter pixels.

Interactive Use BW2 = imfill(BW) displays the binary image BW on the screen and lets you select the starting locations using the mouse. Click the mouse button to add points. Press Backspace or Delete to remove the previously selected point. A shift-click, right-click, or double-click selects a final point and then starts the fill operation; pressing Return finishes the selection without adding a point.

Note imfill supports interactive use only for 2-D images.
[BW2, locations] = imfill(BW) lets you select the starting points selected using the mouse, returning the locations of points in locations. locations is a vector of linear indices into the input image.

\section*{Specifying Connectivity}

Class Support

By default, imfill uses 4-connected background neighbors for 2-D inputs and 6 -connected background neighbors for 3-D inputs. For higher dimensions the default background connectivity is determined by using conndef(NUM_DIMS, 'minimal'). You can override the default connectivity with these syntaxes:
```

BW2 = imfill(BW,LOCATIONS,CONN)
BW2 = imfill(BW,CONN,'holes')
I2 = imfill(I,CONN)

```

To override the default connectivity and interactively specify the starting locations, use this syntax:
```

BW2 = imfill(BW,0,CONN)

```

CONN can have any of the following scalar values.
\begin{tabular}{l|l}
\hline Value & Meaning \\
\hline Two-dimensional connectivities \\
\hline 4 & 4-connected neighborhood \\
\hline 8 & 8-connected neighborhood \\
\hline Three-dimensional connectivities \\
\hline 6 & 6-connected neighborhood \\
\hline 18 & 18-connected neighborhood \\
\hline 26 & 26 -connected neighborhood \\
\hline
\end{tabular}

Connectivity can be defined in a more general way for any dimension by using for CONN a 3-by-3-by- ... -by-3 matrix of 0's and 1's. The 1-valued elements define neighborhood locations relative to the center element of CONN. Note that CONN must be symmetric about its center element.

The input image can be numeric or logical, and it must be real and nonsparse. It can have any dimension. The output image has the same class as the input image.

\section*{Examples}

Fill in the background of a binary image from a specified starting location.
```

BW1 = logical([1 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0
100010010
1000011110
1 1 1 1 0 1 1 1
100 1 1 0 1 0
10001010
10 0 0 1 1 1 0]);

```
BW2 = imfill(BW1,[3 3],8)

Fill in the holes of a binary image.
```

BW4 = im2bw(imread('coins.png'));
BW5 = imfill(BW4,'holes');
imview(BW4), imview(BW5)

```


Original Image

Filled Image

Fill in the holes of an intensity image.
```

I = imread('tire.tif');
I2 = imfill(I,'holes');
imview(I), imview(I2)

```


Algorithm
See Also
Reference
imfill uses an algorithm based on morphological reconstruction [1].
bwselect, imreconstruct, roifill
[1] Soille, P., Morphological Image Analysis: Principles and Applications, Springer-Verlag, 1999, pp. 173-174.

\section*{imfilter}

\section*{Purpose Multidimensional image filtering}
```

Syntax $\quad B=$ imfilter $(A, H)$
$B=$ imfilter $(A, H$, option1,option2,...)

```

Description
\(B=\) imfilter \((A, H)\) filters the multidimensional array \(A\) with the multidimensional filter \(H\). The array A can be a nonsparse numeric array of any class and dimension. The result B has the same size and class as A.

Each element of the output \(B\) is computed using double-precision floating point. If \(A\) is an integer array, then output elements that exceed the range of the integer type are truncated, and fractional values are rounded.

B = imfilter(A,H,option1,option2,...) performs multidimensional filtering according to the specified options. Option arguments can have the following values.

\section*{Boundary Options}
\begin{tabular}{l|l}
\hline Option & Description \\
\hline\(X\) & \begin{tabular}{l}
Input array values outside the bounds of the array are \\
implicitly assumed to have the value \(X\). When no \\
boundary option is specified, imfilter uses \(X=0\).
\end{tabular} \\
\hline 'symmetric' & \begin{tabular}{l}
Input array values outside the bounds of the array are \\
computed by mirror-reflecting the array across the array \\
border.
\end{tabular} \\
\hline 'replicate' & \begin{tabular}{l}
Input array values outside the bounds of the array are \\
assumed to equal the nearest array border value.
\end{tabular} \\
\hline 'circular' & \begin{tabular}{l}
Input array values outside the bounds of the array are \\
computed by implicitly assuming the input array is \\
periodic.
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Size Options}
\begin{tabular}{l|l}
\hline Option & Description \\
\hline 'same ' & \begin{tabular}{l}
The output array is the same size as the input array. This \\
is the default behavior when no output size options are \\
specified.
\end{tabular} \\
\hline 'full' & \begin{tabular}{l}
The output array is the full filtered result, and so is \\
larger than the input array.
\end{tabular} \\
\hline Correlation and Convolution Options
\end{tabular}\(|\)\begin{tabular}{ll}
\hline Option & Description \\
\hline 'corr' & \begin{tabular}{l}
imfilter performs multidimensional filtering using \\
correlation, which is the same way that filter2 performs \\
filtering. When no correlation or convolution option is \\
specified, imfilter uses correlation.
\end{tabular} \\
\hline 'conv' & \begin{tabular}{l}
imfilter performs multidimensional filtering using \\
convolution.
\end{tabular} \\
\hline
\end{tabular}
\(\mathrm{N}-\mathrm{D}\) convolution is related to \(\mathrm{N}-\mathrm{D}\) correlation by a reflection of the filter matrix.

Note On Intel architecture processors, imfilter can take advantage of the Intel Performance Primitives Library (IPPL), thus accelerating its execution time. IPPL is activated only if A and \(H\) are both two-dimensional and A is of class uint8, int16, or single.

\section*{Examples}

Read a color image into the workspace and view it.
```

originalRGB = imread('peppers.png');
imview(originalRGB)

```

Create a filter, \(h\), that can be used to approximate linear camera motion.
```

h = fspecial('motion', 50, 45);

```

Apply the filter, using imfilter, to the image rgb to create a new image, rgb2.

\section*{imfilter}
```

filteredRGB = imfilter(originalRGB, h);
imview(filteredRGB)

```

Note that imfilter is more memory efficient than some other filtering operations in that it outputs an array of the same data type as the input image array. In this example, the output is an array of uint8.
\begin{tabular}{ccrl}
\begin{tabular}{l}
whos rgb2 \\
Name
\end{tabular} & Size & Bytes & Class \\
& & & \\
h & \(37 \times 37\) & 10952 & double array \\
rgb & \(384 \times 512 \times 3\) & 589824 & uint8 array \\
rgb2 & \(384 \times 512 \times 3\) & 589824 & uint8 array
\end{tabular}

This example specifies the replicate boundary option.
boundaryReplicateRGB = imfilter(originalRGB, h, 'replicate'); imview(boundaryReplicateRGB)

\section*{See Also}
conv2, convn, filter2, fspecial, ippl

\author{
Purpose \\ Information about graphics file \\ imfinfo is a MATLAB function. To get help for this function, select MATLAB \\ Help from the Help menu and view the online function reference pages.
}

Purpose
Display a histogram of image data

\section*{Syntax}

\section*{Description}
```

imhist(I,n)
imhist(X,map)
[counts,x] = imhist(...)

```
imhist(I) displays a histogram for the intensity image I above a grayscale colorbar. The number of bins in the histogram is specified by the image type. If I is a grayscale image, imhist uses a default value of 256 bins. If I is a binary image, imhist uses 2 bins.
imhist (\(I, n\)) displays a histogram where \(n\) specifies the number of bins used in the histogram. \(n\) also specifies the length of the colorbar. If I is a binary image, n can only have the value 2 .
imhist (\(X\), map) displays a histogram for the indexed image \(X\). This histogram shows the distribution of pixel values above a colorbar of the colormap map. The colormap must be at least as long as the largest index in X. The histogram has one bin for each entry in the colormap.
[counts, \(x\)] = imhist (...) returns the histogram counts in counts and the bin locations in \(x\) so that stem (\(x\), counts) shows the histogram. For indexed images, it returns the histogram counts for each colormap entry; the length of counts is the same as the length of the colormap.

Note For intensity images, the n bins of the histogram are each half-open intervals of width \(A /(n-1)\). In particular, the \(p\) th bin is the half-open interval \(A(p-1.5) /(n-1) \leq x<A(p-0.5) /(n-1)\). The scale factor \(A\) depends on the image class. \(A\) is 1 if the intensity image is double, \(A\) is 255 if the intensity image is uint8, and \(A\) is 65535 if the intensity image is uint16.

Class Support
Example

The input image can be of class logical, uint8, uint16, or double.
```

I = imread('pout.tif');
imhist(I)

```


\section*{See Also}
histeq
hist in the MATLAB Function Reference

Purpose H-maxima transform
\begin{tabular}{rl}
Syntax & I2 \(=\operatorname{imhmax}(\mathrm{I}, \mathrm{h})\) \\
\(\mathrm{I} 2=\operatorname{imhmax}(\mathrm{I}, \mathrm{h}, \mathrm{CONN})\)
\end{tabular}

\section*{Class Support}

I2 = imhmax (I, h) suppresses all maxima in the intensity image I whose height is less than \(h\), where \(h\) is a scalar.

Regional maxima are connected components of pixels with the same intensity value, \(t\), whose external boundary pixels all have a value less than \(t\).

By default, imhmax uses 8-connected neighborhoods for 2-D images, and 26 -connected neighborhoods for 3-D images. For higher dimensions, imhmax uses conndef(ndims(I), 'maximal').

I2 \(=\) imhmax (\(\mathrm{I}, \mathrm{h}, \mathrm{CONN}\)) computes the H-maxima transform, where CONN specifies the connectivity. CONN can have any of the following scalar values.
\begin{tabular}{l|l}
\hline Value & Meaning \\
\hline Two-dimensional connectivities \\
\hline 4 & 4-connected neighborhood \\
\hline 8 & 8-connected neighborhood \\
\hline Three-dimensional connectivities \\
\hline 6 & 6-connected neighborhood \\
\hline 18 & 18-connected neighborhood \\
\hline 26 & 26-connected neighborhood \\
\hline
\end{tabular}

Connectivity can be defined in a more general way for any dimension by using for CONN a 3-by-3-by- ...-by-3 matrix of 0's and 1's. The 1 -valued elements define neighborhood locations relative to the center element of CONN. Note that CONN must be symmetric about its center element.

I can be of any nonsparse numeric class and any dimension. I2 has the same size and class as I.

\section*{imhmax}

\section*{Example}

See Also
Reference
```

a = zeros(10,10);
a(2:4,2:4) = 3; % maxima 3 higher than surround
a(6:8,6:8) = 8; % maxima 8 higher than surround
b = imhmax(a,4); % only the maxima higher than 4 survive.

```
conndef, imhmin, imreconstruct
[1] Soille, P., Morphological Image Analysis: Principles and Applications, Springer-Verlag, 1999, pp. 170-171.

\section*{Purpose H-minima transform}
\begin{tabular}{rl}
Syntax & I2 \(=\operatorname{imhmin}(\mathrm{I}, \mathrm{h})\) \\
\(\mathrm{I} 2=\operatorname{imhmin}(\mathrm{I}, \mathrm{h}, \mathrm{CONN})\)
\end{tabular}

\section*{Description}

I2 \(=\) imhmin(\(\mathrm{I}, \mathrm{h})\) suppresses all minima in the intensity image I whose depth is less than h , where h is a scalar.

Regional minima are connected components of pixels with the same intensity value, \(t\), whose external boundary pixels all have a value greater than \(t\).

By default, imhmin uses 8-connected neighborhoods for 2-D images, and 26 -connected neighborhoods for 3-D images. For higher dimensions, imhmin uses conndef(ndims(I), 'maximal').

I2 = imhmin(\(\mathrm{I}, \mathrm{h}, \mathrm{CONN}\)) computes the H-minima transform, where CONN specifies the connectivity. CONN can have any of the following scalar values.
\begin{tabular}{l|l}
\hline Value & Meaning \\
\hline Two-dimensional connectivities \\
\hline 4 & 4-connected neighborhood \\
\hline 8 & 8-connected neighborhood \\
\hline Three-dimensional connectivities \\
\hline 6 & 6-connected neighborhood \\
\hline 18 & 18-connected neighborhood \\
\hline 26 & 26-connected neighborhood \\
\hline
\end{tabular}

Connectivity can be defined in a more general way for any dimension by using for CONN a 3-by-3-by- ...-by-3 matrix of 0's and 1's. The 1 -valued elements define neighborhood locations relative to the center element of CONN. Note that CONN must be symmetric about its center element.

\section*{Class Support}

I can be of any nonsparse numeric class and any dimension. I2 has the same size and class as I.

Example

See Also
Reference

Create a sample image with two regional minima.
```

a = 10*ones(10,10);
a(2:4,2:4) = 7;
a(6:8,6:8) = 2
a =

10	10	10	10	10	10	10	10	10	10
10	7	7	7	10	10	10	10	10	10
10	7	7	7	10	10	10	10	10	10
10	7	7	7	10	10	10	10	10	10
10	10	10	10	10	10	10	10	10	10
10	10	10	10	10	2	2	2	10	10
10	10	10	10	10	2	2	2	10	10
10	10	10	10	10	2	2	2	10	10
10	10	10	10	10	10	10	10	10	10
10	10	10	10	10	10	10	10	10	10

```

Suppress all minima below a specified value. Note how the region with pixel valued 7 disappears in the transformed image.
```

b = imhmin(a,4)
b =

```
\begin{tabular}{rrrrrrrrrr}
10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 \\
10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 \\
10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 \\
10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 \\
10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 \\
10 & 10 & 10 & 10 & 10 & 6 & 6 & 6 & 10 & 10 \\
10 & 10 & 10 & 10 & 10 & 6 & 6 & 6 & 10 & 10 \\
10 & 10 & 10 & 10 & 10 & 6 & 6 & 6 & 10 & 10 \\
10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 \\
10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10
\end{tabular}
conndef, imhmax, imreconstruct
[1] Soille, P., Morphological Image Analysis: Principles and Applications, Springer-Verlag, 1999, pp. 170-171.

\section*{imimposemin}

\section*{Purpose Impose minima}
\begin{tabular}{rl}
Syntax & I2 \(=\operatorname{imimposemin}(\mathrm{I}, \mathrm{BW})\) \\
I2 \(=\operatorname{imimposemin}(\mathrm{I}, \mathrm{H}, \mathrm{CONN})\)
\end{tabular}

Description

Class Support
I can be of any nonsparse numeric class and any dimension. BW must be a nonsparse numeric array with the same size as I. I2 has the same size and class as I.

\section*{imimposemin}

\section*{Example}

Modify an image so that it only has regional minima at one location.
1 Read an image and display it. This image is called the mask image. mask = imread('glass.png'); imshow(mask)

2 Create the marker image that will be used to process the mask image.
The example creates a binary image that is the same size as the mask image and sets a small area of the binary image to 1 . These pixels define the location in the mask image where a regional minimum will be imposed.
marker = false(size(mask));
marker(65:70,65:70) = true;
To show where these pixels of interest fall on the original image, this code superimposes the marker over the mask. The small white square marks the spot. This code is not essential to the impose minima operation.
```

J = mask;
J(marker) = 255;
figure, imshow(J); title('Marker Image Superimposed on Mask');

```


3 Impose the regional minimum on the input image using the imimposemin function.
The imimposemin function uses morphological reconstruction of the mask image with the marker image to impose the minima at the specified location. Note how all the dark areas of the original image, except the marked area, are lighter.
K = imimposemin(mask,marker);
figure, imshow(K);

4 To illustrate how this operation removes all minima in the original image except the imposed minimum, compare the regional minima in the original image with the regional minimum in the processed image. These calls to imregionalmin return binary images that specify the locations of all the regional minima in both images.
```

BW = imregionalmin(mask);
figure, imshow(BW); title('Regional Minima in Original Image')
BW2 = imregionalmin(K);
figure, imshow(BW2), title('Regional Minima After Processing');

```


Regional Minima in Original Image

Algorithm
See Also conndef, imreconstruct, imregionalmin

Purpose
Compute linear combination of images
```

Syntax
Description
Z = imlincomb(K1,A1,K2,A2,...,Kn,An) computes
$K 1 * A 1+K 2 * A 2+\ldots+K n * A n$

```
where K1, K2, through Kn are real, double scalars and A1, A2, through An are real, nonsparse, numeric arrays with the same class and size. \(Z\) has the same class and size as A1.
```

Z = imlincomb(K1,A1,K2,A2,...,Kn,An,K) computes
K1*A1 + K2*A2 + ... + Kn*An + K

```
where imlincomb adds K, a real, double scalar, to the sum of the products of K1 through Kn and A1 through An.

Z = imlincomb(..., output_class) lets you specify the class of Z.
output_class is a string containing the name of a numeric class.
When performing a series of arithmetic operations on a pair of images, you can achieve more accurate results if you use imlincomb to combine the operations, rather than nesting calls to the individual arithmetic functions, such as imadd. When you nest calls to the arithmetic functions, and the input arrays are of an integer class, each function truncates and rounds the result before passing it to the next function, thus losing accuracy in the final result. imlincomb computes each element of the output \(Z\) individually, in double-precision floating point. If \(Z\) is an integer array, imlincomb truncates elements of \(Z\) that exceed the range of the integer type and rounds off fractional values.

On Intel architecture processors, imlincomb can take advantage of the Intel Performance Primitives Library (IPPL), thus accelerating its execution time. IPPL is activated only in the following cases:
```

Z = imlincomb( 1.0, A1, 1.0, A2)
Z = imlincomb( 1.0, A1,-1.0, A2)
Z = imlincomb(-1.0, A1, 1.0, A2)

```
```

Z = imlincomb( 1.0 , A1, K)

```
where A1, A2, and Z are of class uint8, int16, or single and are of the same class.

\section*{Examples}

\section*{Example 1}

Scale an image by a factor of 2.
```

I = imread('cameraman.tif');
J = imlincomb(2,I);
imview(J)

```

\section*{Example 2}

Form a difference image with the zero value shifted to 128.
```

I = imread('cameraman.tif');
J = uint8(filter2(fspecial('gaussian'), I));
K = imlincomb(1,I, -1,J,128); % K(r,c) = I(r,c) - J(r,c) + 128
imview(K)

```

\section*{Example 3}

Add two images with a specified output class.
```

I = imread('rice.png');
J = imread('cameraman.tif');
K = imlincomb(1,I,1,J,'uint16');
imview(K,[])

```

\section*{Example 4}

To illustrate how imlincomb performs all the arithmetic operations before truncating the result, compare the results of calculating the average of two arrays, X and Y , using nested arithmetic functions and then using imlincomb.

In the version that uses nested arithmetic functions, imadd adds 255 and 50 and truncates the result to 255 before passing it to imdivide. The average returned in \(Z(1,1)\) is 128.
```

X = uint8([ 255 10 75; 44 225 100]);
Y = uint8([ 50 20 50; 50 50 50 ]);
Z = imdivide(imadd(X,Y),2)
Z =

```
\begin{tabular}{rrr}
128 & 15 & 63 \\
47 & 128 & 75
\end{tabular}
imlincomb performs the addition and division in double precision and only truncates the final result. The average returned in \(\mathrm{Z2}(1,1)\) is 153 .
```

Z2 = imlincomb(.5, X, . 5, Y)
Z2 =
153 15 63
47 138 75

```

See Also
imadd, imcomplement, imdivide, immultiply, imsubtract

\section*{Purpose}

\section*{Syntax \\ Description}

\section*{Remarks}

\section*{Class Support}

\section*{Example}

See Also

Make a movie of a multiframe indexed image
mov = immovie(X,map)
mov = immovie(RGB)
mov = immovie(X, map) returns the movie structure array mov from the images in the multiframe indexed image \(X\) with the colormap map. As it creates the movie array, it displays the movie frames on the screen. You can play the movie using the MATLAB movie function. For details about the movie structure array, see the reference page for getframe.

X comprises multiple indexed images, all having the same size and all using the colormap map. X is an m-by-n-by-1-by-k array, where k is the number of images.
mov = immovie(RGB) returns the movie structure array mov from the images in the multiframe, true-color image RGB.

RGB comprises multiple true-color images, all having the same size. RGB is an \(m\)-by-n-by-3-by-k array, where k is the number of images.

You can also use the MATLAB function avifile to make movies from images. The avifile function creates AVI files. In addition, you can convert an existing MATLAB movie into an AVI file by using the movie2avi function.

An indexed image can be uint8, uint16, double, or logical. A true-color image can be uint8, uint16, or double. mov is a MATLAB movie structure.
```

load mri
mov = immovie(D,map);
movie(mov,3)

```
avifile, getframe, montage, movie, movie2avi

\section*{immultiply}

Purpose

\section*{Syntax}

Description

Multiply two images, or multiply an image by a constant
Z = immultiply (X, Y)
\(Z=\) immultiply \((X, Y)\) multiplies each element in array \(X\) by the corresponding element in array \(Y\) and returns the product in the corresponding element of the output array \(Z\).

If \(X\) and \(Y\) are real numeric arrays with the same size and class, then \(Z\) has the same size and class as \(X\). If \(X\) is a numeric array and \(Y\) is a scalar double, then \(Z\) has the same size and class as \(X\).

If \(X\) is logical and \(Y\) is numeric, then \(Z\) has the same size and class as \(Y\). If \(X\) is numeric and \(Y\) is logical, then \(Z\) has the same size and class as \(X\).
immultiply computes each element of \(Z\) individually in double-precision floating point. If \(X\) is an integer array, then elements of \(Z\) exceeding the range of the integer type are truncated, and fractional values are rounded.

If \(X\) and \(Y\) are double arrays, you can use the expression \(X\). * \(Y\) instead of this function.

Note On Intel architecture processors, immultiply can take advantage of the Intel Performance Primitives Library (IPPL), thus accelerating its execution time. IPPL is activated only if arrays \(X, Y\), and \(Z\) are of class logical, uint8, or single, and are of the same class.

Multiply an image by itself. Note how the example converts the class of the image from uint 8 to uint16 before performing the multiplication to avoid truncating the results.
```

I = imread('moon.tif');
I16 = uint16(I);
J = immultiply(I16,I16);
imshow(I), figure, imshow(J)

```

Scale an image by a constant factor:
```

I = imread('moon.tif');

```
```

J = immultiply(I,0.5);
subplot(1,2,1), imshow(I)
subplot(1,2,2), imshow(J)

```

See also imabsdiff, imadd, imcomplement, imdivide, imlincomb, imsubtract, ippl

Purpose Add noise to an image
Syntax \(\quad\)\begin{tabular}{l}
\(J=\) imnoise (I, type) \\
\(J\) \\
\(J\)
\end{tabular}

Description
\(J=\) imnoise (I, type) adds noise of a given type to the intensity image I. type is a string that can have one of these values.
\begin{tabular}{l|l}
\hline Value & Description \\
\hline 'gaussian' & Gaussian white noise \\
\hline 'localvar' & \begin{tabular}{l}
Zero-mean Gaussian white noise with an \\
intensity-dependent variance
\end{tabular} \\
\hline 'poisson' & Poisson noise \\
\hline 'salt \& pepper' & On and off pixels \\
\hline 'speckle' & Multiplicative noise \\
\hline
\end{tabular}
\(J=\) imnoise(I,type, parameters) accepts an algorithm type plus additional modifying parameters particular to the type of algorithm chosen. If you omit these arguments, imnoise uses default values for the parameters. Here are examples of the noise types and their parameters:
- \(J=\) imnoise(\(I\), 'gaussian', \(m, v\)) adds Gaussian white noise of mean \(m\) and variance \(v\) to the image \(I\). The default is zero mean noise with 0.01 variance.
- \(J=\) imnoise (I, 'localvar', V) adds zero-mean, Gaussian white noise of local variance \(V\) to the image \(I\). \(V\) is an array of the same size as \(I\).
- J = imnoise(I,'localvar',image_intensity, var) adds zero-mean, Gaussian noise to an image I, where the local variance of the noise, var, is a function of the image intensity values in I. The image_intensity and var arguments are vectors of the same size, and plot(image_intensity, var) plots the functional relationship between noise variance and image intensity. The image_intensity vector must contain normalized intensity values ranging from 0 to 1 .
- \(J\) = imnoise (I, 'poisson') generates Poisson noise from the data instead of adding artificial noise to the data. In order to respect Poisson statistics, the
intensities of unit8 and uint16 images must correspond to the number of photons (or any other quanta of information). Double-precision images are used when the number of photons per pixel can be much larger than 65535 (but less than \(10^{\wedge} 12\)); the intensity values vary between 0 and 1 and correspond to the number of photons divided by \(10^{\wedge} 12\).
- J = imnoise(I, ' salt \& pepper ', d) adds salt and pepper noise to the image I, where d is the noise density. This affects approximately \(d * \operatorname{prod}(\operatorname{size}(\mathrm{I})\)) pixels. The default is 0.05 noise density.
- \(J\) = imnoise(I, 'speckle', v) adds multiplicative noise to the image I, using the equation \(J=I+n * I\), where \(n\) is uniformly distributed random noise with mean 0 and variance \(v\). The default for \(v\) is 0.04 .

Note The mean and variance parameters for 'gaussian', 'localvar', and 'speckle' noise types are always specified as if the image were of class double in the range [0,1]. If the input image is of class uint 8 or uint 16 , the imnoise function converts the image to double, adds noise according to the specified type and parameters, and then converts the noisy image back to the same class as the input.

Class Support
I can be of class uint8, uint16, or double. The output image \(J\) is of the same class as I. If I has more than two dimensions it is treated as a multidimensional intensity image and not as an RGB image.

\section*{Example}
```

I = imread('eight.tif');
J = imnoise(I,'salt \& pepper',0.02);
imshow(I)
figure, imshow(J)

```

\section*{imnoise}

See Also
rand, randn in the MATLAB Function Reference

\section*{Purpose \\ Open an image}
Syntax \(\quad\)\begin{tabular}{rl}
IM2 & \(=\operatorname{imopen}(\mathrm{IM}\), SE \()\) \\
IM2 & \(=\operatorname{imopen}(\mathrm{IM}\), NHOOD \()\)
\end{tabular}

Description

Class Support
IM can be any numeric or logical class and any dimension, and must be nonsparse. If IM is logical, then SE must be flat. IM2 has the same class as IM.

\section*{Example}

This example uses imopen to filter out the smaller objects in an image.
1 Read the image into the MATLAB workspace and display it.
I = imread('snowflakes.png');
imview(I)

2 Create a disk-shaped structuring element with a radius of 5 pixels.
se = strel('disk',5);
3 Remove snowflakes having a radius less than 5 pixels by opening it with the disk-shaped structuring element created in step 2.
```

I_opened = imopen(I,se);
imview(I_opened,[])

```

\section*{imopen}

See Also
imclose, imdilate, imerode, strel

\section*{Purpose Determine pixel color values}
```

Syntax P = impixel(I)
P = impixel(X,map)
P = impixel(RGB)
P = impixel(I,c,r)
P = impixel(X,map,c,r)
P = impixel(RGB,c,r)
[c,r,P] = impixel(...)
P = impixel(x,y,I,xi,yi)
P = impixel(x,y,X,map,xi,yi)
P = impixel(x,y,RGB,xi,yi)
[xi,yi,P] = impixel(x,y,...)

```

\section*{Description}
impixel returns the red, green, and blue color values of specified image pixels. In the syntaxes below, impixel displays the input image and waits for you to specify the pixels with the mouse.
```

P = impixel(I)
P = impixel(X,map)
P = impixel(RGB)

```

If you omit the input arguments, impixel operates on the image in the current axes.

Use normal button clicks to select pixels. Press Backspace or Delete to remove the previously selected pixel. A shift-click, right-click, or double-click adds a final pixel and ends the selection; pressing Return finishes the selection without adding a pixel.

When you finish selecting pixels, impixel returns an m-by-3 matrix of RGB values in the supplied output argument. If you do not supply an output argument, impixel returns the matrix in ans.

You can also specify the pixels noninteractively, using these syntaxes.
```

P = impixel(I, c,r)
P = impixel(X,map,c,r)
P = impixel(RGB,c,r)

```
\(r\) and \(c\) are equal-length vectors specifying the coordinates of the pixels whose RGB values are returned in \(P\). The kth row of \(P\) contains the RGB values for the pixel (\(\mathrm{r}(\mathrm{k}\)), \(\mathrm{c}(\mathrm{k})\)).

If you supply three output arguments, impixel returns the coordinates of the selected pixels. For example,
\[
[c, r, P]=\text { impixel }(\ldots)
\]

To specify a nondefault spatial coordinate system for the input image, use these syntaxes.
```

P = impixel(x,y,I,xi,yi)
P = impixel(x,y,x,map,xi,yi)
P = impixel(x,y,RGB,xi,yi)

```
\(x\) and \(y\) are two-element vectors specifying the image XData and YData. \(x i\) and yi are equal-length vectors specifying the spatial coordinates of the pixels whose RGB values are returned in P. If you supply three output arguments, impixel returns the coordinates of the selected pixels.
\[
[x i, y i, P]=\operatorname{impixel}(x, y, \ldots)
\]

\section*{Class Support}

\section*{Remarks}

The input image can be of class uint8, uint16, double, or logical. All other inputs and outputs are of class double.
impixel works with indexed, intensity, and RGB images. impixel always returns pixel values as RGB triplets, regardless of the image type:
- For an RGB image, impixel returns the actual data for the pixel. The values are either uints integers or double floating-point numbers, depending on the class of the image array.
- For an indexed image, impixel returns the RGB triplet stored in the row of the colormap that the pixel value points to. The values are double floating-point numbers.
- For an intensity image, impixel returns the intensity value as an RGB triplet, where \(\mathrm{R}=\mathrm{G}=\mathrm{B}\). The values are either uint8 integers or double floating-point numbers, depending on the class of the image array.
Example

 RGB = imread('peppers.png');
 c = [12 146 410];
 \(r=\left[\begin{array}{lll}104 & 156 & 129] ;\end{array}\right.\)
 pixels = impixel(RGB,c,r)
 pixels =
 \(62 \quad 34 \quad 63\)
 \(16654 \quad 60\)
 \(59 \quad 28 \quad 47\)
See Also improfile, pixval

Purpose
```

Syntax

```
c = improfile
```

c = improfile
c = improfile(n)
c = improfile(n)
c = improfile(I,xi,yi)
c = improfile(I,xi,yi)
c = improfile(I,xi,yi,n)
c = improfile(I,xi,yi,n)
[cx,cy,c] = improfile(...)
[cx,cy,c] = improfile(...)
[cx,cy,c,xi,yi] = improfile(...)
[cx,cy,c,xi,yi] = improfile(...)
[...] = improfile(x,y,I,xi,yi)
[...] = improfile(x,y,I,xi,yi)
[...] = improfile(x,y,I,xi,yi,n)
[...] = improfile(x,y,I,xi,yi,n)
[...] = improfile(...,method)

```
```

[...] = improfile(...,method)

```
```


## Description

Compute pixel-value cross-sections along line segments
improfile computes the intensity values along a line or a multiline path in an image. improfile selects equally spaced points along the path you specify, and then uses interpolation to find the intensity value for each point. improfile works with grayscale intensity images and RGB images.

If you call improfile with one of these syntaxes, it operates interactively on the image in the current axes.

```
c = improfile
c = improfile(n)
```

n specifies the number of points to compute the intensity value for. If you do not provide this argument, improfile chooses a value for $n$, roughly equal to the number of pixels the path traverses.

You specify the line or path using the mouse, by clicking points in the image. Press Backspace or Delete to remove the previously selected point. A shift-click, right-click, or double-click adds a final point and ends the selection; pressing Return finishes the selection without adding a point. When you finish selecting points, improfile returns the interpolated data values in c. c is an $n$-by- 1 vector if the input is a grayscale intensity image, or an n-by-1-by- 3 array if the input is an RGB image.

If you omit the output argument, improfile displays a plot of the computed intensity values. If the specified path consists of a single line segment, improfile creates a two-dimensional plot of intensity values versus the distance along the line segment; if the path consists of two or more line segments, improfile creates a three-dimensional plot of the intensity values versus their $x$ - and $y$-coordinates.
You can also specify the path noninteractively, using these syntaxes.

```
c = improfile(I,xi,yi)
c = improfile(I,xi,yi,n)
```

xi and yi are equal-length vectors specifying the spatial coordinates of the endpoints of the line segments.

You can use these syntaxes to return additional information.

```
[cx,cy,c] = improfile(...)
[cx,cy,c,xi,yi] = improfile(...)
```

cx and cy are vectors of length n , containing the spatial coordinates of the points at which the intensity values are computed.
To specify a nondefault spatial coordinate system for the input image, use these syntaxes.

```
[...] = improfile(x,y,I,xi,yi)
[...] = improfile(x,y,I,xi,yi,n)
```

$x$ and $y$ are two-element vectors specifying the image XData and YData.
[...] = improfile(..., method) uses the specified interpolation method. method is a string that can have one of these values. The default value is enclosed in braces ( $\}$ ).

Value	Description
\{'nearest'\}	Nearest-neighbor interpolation
'bilinear'	Bilinear interpolation
'bicubic'	Bicubic interpolation

Class Support The input image can be uint8, uint16, double, or logical. All other inputs and outputs must be double.

Example

```
I = imread('liftingbody.png');
x = [lll 427 416 77];
y = [96 462 37 33];
improfile(I, x,y),grid on;
```



See Also
impixel, pixval
interp2 in the MATLAB Function Reference

Purpose<br>Read image from graphics file<br>imread is a MATLAB function. To get help for this function, select MATLAB<br>Help from the Help menu and view the online function reference page.

## imreconstruct

## Purpose Morphological reconstruction

Syntax $\quad$| IM | $=$ imreconstruct (MARKER, MASK) |
| ---: | :--- |
| IM | $=$ imreconstruct (MARKER, MASK, CONN) |

Description
IM = imreconstruct(MARKER,MASK) performs morphological reconstruction of the image MARKER under the image MASK. MARKER and MASK can be two intensity images or two binary images with the same size. The returned image IM is an intensity or binary image, respectively. MARKER must be the same size as MASK, and its elements must be less than or equal to the corresponding elements of MASK.

By default, imreconstruct uses 8-connected neighborhoods for 2-D images and 26 -connected neighborhoods for 3-D images. For higher dimensions, imreconstruct uses conndef(ndims(I), 'maximal').

IM = imreconstruct (MARKER,MASK, CONN) performs morphological reconstruction with the specified connectivity. CONN can have any of the following scalar values.

Value	Meaning
Two-dimensional connectivities	
4	4-connected neighborhood
8	8-connected neighborhood
Three-dimensional connectivities	
6	6-connected neighborhood
18	18-connected neighborhood
26	26 -connected neighborhood

Connectivity can be defined in a more general way for any dimension by using for CONN a 3-by-3-by- ... -by-3 matrix of 0's and 1's. The 1 -valued elements define neighborhood locations relative to the center element of CONN. Note that CONN must be symmetric about its center element.

Morphological reconstruction is the algorithmic basis for several other Image Processing Toolbox functions, including imclearborder, imextendedmax, imextendedmin, imfill, imhmax, imhmin, and imimposemin.

Class Support	MARKER and MASK must be nonsparse numeric or logical arrays with the same   class and any dimension. IM is of the same class as MARKER and MASK.
Algorithm	imreconstruct uses the fast hybrid grayscale reconstruction algorithm   described in [1].
See Also	imclearborder, imextendedmax, imextendedmin, imfill, imhmax, imhmin,   imimposemin
Reference	[1] Vincent, L., "Morphological Grayscale Reconstruction in Image Analysis:   Applications and Efficient Algorithms," IEEE Transactions on Image   Processing, Vol. 2, No. 2, April, 1993, pp. 176-201.

## imregionalmax

## Purpose <br> Find regional maxima

Syntax $\quad$| BW | $=$ imregionalmax (I) |
| ---: | :--- |
| BW | $=$ imregionalmax (I,CONN) |

Description
BW = imregionalmax(I) finds the regional maxima of I. imregionalmax returns the binary image BW that identifies the locations of the regional maxima in I. BW is the same size as I. In BW, pixels that are set to 1 identify regional maxima; all other pixels are set to 0 .

Regional maxima are connected components of pixels with the same intensity value, $t$, whose external boundary pixels all have a value less than $t$.

By default, imregionalmax uses 8-connected neighborhoods for 2-D images and 26 -connected neighborhoods for 3-D images. For higher dimensions, imregionalmax uses conndef(ndims(I),'maximal').

BW = imregionalmax(I,CONN) computes the regional maxima of I using the specified connectivity. CONN can have any of the following scalar values.

Value	Meaning
Two-dimensional connectivities	
4	4-connected neighborhood
8	8-connected neighborhood
Three-dimensional connectivities	
6	6-connected neighborhood
18	18-connected neighborhood
26	26 -connected neighborhood

Connectivity can be defined in a more general way for any dimension by using for CONN a 3-by-3-by- ...-by-3 matrix of 0's and 1's. The 1 -valued elements define neighborhood locations relative to the center element of CONN. Note that CONN must be symmetric about its center element.

Class Support I can be any nonsparse, numeric class and any dimension. BW is logical.
Example Create a sample image with several regional maxima.

```
A = 10*ones(10,10);
A(2:4,2:4) = 22;
A(6:8,6:8) = 33;
A(2,7) = 44;
A(3,8) = 45;
A(4,9) = 44;
A =
\begin{tabular}{llllllllll}
10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 \\
10 & 22 & 22 & 22 & 10 & 10 & 44 & 10 & 10 & 10 \\
10 & 22 & 22 & 22 & 10 & 10 & 10 & 45 & 10 & 10 \\
10 & 22 & 22 & 22 & 10 & 10 & 10 & 10 & 44 & 10 \\
10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 \\
10 & 10 & 10 & 10 & 10 & 33 & 33 & 33 & 10 & 10 \\
10 & 10 & 10 & 10 & 10 & 33 & 33 & 33 & 10 & 10 \\
10 & 10 & 10 & 10 & 10 & 33 & 33 & 33 & 10 & 10 \\
10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 \\
10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10
\end{tabular}
```

Find the regional maxima.

```
regmax = imregionalmax(A)
regmax =
\begin{tabular}{llllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}
```

[^2]
## imregionalmin

Purpose
Syntax

Description

Class Support

Find regional minima

```
BW = imregionalmin(I)
BW = imregionalmin(I,CONN)
```

$B W=$ imregionalmin(I) computes the regional minima of I. The output binary image BW has value 1 corresponding to the pixels of I that belong to regional minima and 0 otherwise. $B W$ is the same size as $I$.

Regional minima are connected components of pixels with the same intensity value, $t$, whose external boundary pixels all have a value greater than $t$.

By default, imregionalmin uses 8-connected neighborhoods for 2-D images and 26-connected neighborhoods for 3-D images. For higher dimensions, imregionalmin uses conndef(ndims(I), 'maximal').

BW = imregionalmin (I , CONN) specifies the desired connectivity. CONN can have any of the following scalar values.

Value	Meaning
Two-dimensional connectivities	
4	4-connected neighborhood
8	8-connected neighborhood
Three-dimensional connectivities	
6	6-connected neighborhood
18	18-connected neighborhood
26	26 -connected neighborhood

Connectivity can be defined in a more general way for any dimension by using for CONN a 3-by-3-by- ...-by-3 matrix of 0's and 1's. The 1 -valued elements define neighborhood locations relative to the center element of CONN. Note that CONN must be symmetric about its center element.

I can be any nonsparse, numeric class and any dimension. BW is logical.

Example

A = 10*ones $(10,10)$;
$A(2: 4,2: 4)=3 ; \%$ minima 3 lower than surround
$A(6: 8,6: 8)=8 ; \%$ minima 8 lower than surround
A $=$
$B=$ imregionalmin(A)
$B=$

See Also conndef, imreconstruct, imregionalmax

## Purpose Resize an image

```
Syntax
\(B=\) imresize (A, m)
\(B=\) imresize(A,m,method)
B = imresize(A,[mrows ncols],method)
\(B=\) imresize(...,method, \(n\))
B = imresize(..., method,h)
```


## Description

$B=$ imresize $(A, m)$ returns an image $B$ that is $m$ times the size of $A$, using nearest-neighbor interpolation. A can be an indexed image, grayscale image, $R G B$, or binary image. If $m$ is between 0 and $1.0, B$ is smaller than $A$. If $m$ is greater than 1.0, B is larger than A.
$B=$ imresize ( $A, m, m e t h o d)$ returns an image that is $m$ times the size of $A$ using the interpolation method specified by method. method is a string that can have one of these values. The default value is enclosed in braces ( $\}$ ).

Value	Description
\{'nearest' $\}$	Nearest-neighbor interpolation
'bilinear'	Bilinear interpolation
'bicubic'	Bicubic interpolation

$B=$ imresize(A, [mrows ncols], method) returns an image of the size specified by [mrows ncols]. If the specified size does not produce the same aspect ratio as the input image has, the output image is distorted.

When the specified output size is smaller than the size of the input image, and method is 'bilinear' or 'bicubic', imresize applies a lowpass filter before interpolation to reduce aliasing. The default filter size is 11-by-11.

You can specify a different order for the default filter using

```
B = imresize(...,method,n)
```

n is an integer scalar specifying the size of the filter, which is n -by- n . If n is 0 (zero), imresize omits the filtering step.

You can also specify your own filter using this syntax.
B = imresize(...,method,h)
$h$ is any two-dimensional FIR filter (such as those returned by ftrans2, fwind1, fwind2, or fsamp2).

## Class Support

See Also

The input image A can be numeric or logical and it must be nonsparse. The output image $B$ is of the same class as the input image.
imrotate, imtransform, tformarray
interp2 in the MATLAB Function Reference

Purpose Rotate an image
Syntax $\quad \begin{aligned} B & =\operatorname{imrotate}(A, \text { angle }) \\ B & =\operatorname{imrotate}(A, \text { angle }, \text { method }) \\ B & =\operatorname{imrotate}(A, \text { angle }, \text { method }, \text { bbox })\end{aligned}$
Description $\quad B=$ imrotate ( $A$, angle) rotates the image $A$ by angle degrees in a counterclockwise direction, using the nearest-neighbor interpolation. To rotate the image clockwise, specify a negative angle.
$B=$ imrotate $(A$, angle, method) rotates the image $A$ by angle degrees in a counterclockwise direction, using the interpolation method specified by method. method is a string that can have one of these values. The default value is enclosed in braces ( $\}$ ).

Value	Description
\{'nearest'\}	Nearest-neighbor interpolation
'bilinear'	Bilinear interpolation
'bicubic'	Bicubic interpolation   Note: Bicubic interpolation can produce pixel values   outside the original range.

$B=$ imrotate (A, angle, method, bbox) rotates the image A through angle degrees. The bbox argument specifies the bounding box of the returned image. bbox is a string that can have one of these values. The default value is enclosed in braces ( $\}$ ).

Value	Description
'crop'	Output image B includes only the central portion of the   rotated image and is the same size as A.
$\left\{^{\text {' loose' \} }}\right.$	Output image B includes the whole rotated image and is   generally larger than the input image A. imrotate sets   pixels in areas outside the original image to zero.

## Class Support The input image A can be numeric or logical and it must be nonsparse. The

 output image $B$ is of the same class as the input image.
## Example

This example reads solar spectra image, stored in FITS format, and rotates the the image to bring it into horizontal alignment. A rotation of -1 degree is all that is required.

```
I = fitsread('solarspectra.fts');
I = mat2gray(I);
J = imrotate(I,-1,'bilinear','crop');
imshow(I)
figure, imshow(J)
```



Original Image


Rotated Image

[^3]Purpose
Display an image

## Syntax

## Description

```
imshow(I,n)
imshow(I,[low high])
imshow(BW)
imshow(X,map)
imshow(RGB)
imshow(...,display_option)
imshow(x,y,A,...)
imshow filename
h = imshow(...)
```

imshow ( $I, n$ ) displays the intensity image $I$ with $n$ discrete levels of gray. If you omit n, imshow uses 256 gray levels on 24-bit displays, or 64 gray levels on other systems.
imshow(I, [low high]) displays I as a grayscale intensity image, specifying the data range for $I$. imshow displays the value low (and any value less than low) as black and displays the value high (and any value greater than high) as white. Values in between are displayed as intermediate shades of gray using the default number of gray levels. If you use an empty matrix ([ ]) for [ low high], imshow uses [min(I(:)) max(I(:))]; that is, the minimum value in I is displayed as black, and the maximum value is displayed as white.
imshow (BW) displays the binary image BW. imshow displays pixels with the value 0 (zero) as black and pixels with the value 1 as white.
imshow ( $X$, map) displays the indexed image $X$ with the colormap map.
imshow (RGB) displays the true-color image RGB.
imshow(..., display_option) displays the image, where display_option specifies how imshow handles the sizing of the image. display_option is a string that can have either of these values. Either option string can be abbreviated. If you do not supply this argument, imshow determines whether to call truesize based on the setting of the 'ImshowTruesize' preference.

Value	Description
'notruesize'	Call the truesize function, which maps each pixel in   the image to one screen pixel.
'truesize'	Do not call the truesize function.

imshow ( $\mathrm{x}, \mathrm{y}, \mathrm{A}, \ldots$ ) uses the two-element vectors x and y to establish a nondefault spatial coordinate system. $x$ and $y$ specify the MATLAB Handle Graphics image object properties XData and YData.
imshow filename displays the image stored in the graphics file filename. imshow calls imread to read the image from the file, but the image data is not stored in the MATLAB workspace. The file must be in the current directory or on the MATLAB path.
$\mathrm{h}=\mathrm{imshow}(\ldots)$ returns the handle to the image object created by imshow.
Class Support The input image can be of class logical, uint8, uint16, or double, and it must be nonsparse.

## Remarks

See Also
You can use the iptsetpref function to set several toolbox preferences that modify the behavior of imshow. For example:

- 'ImshowBorder ' controls whether imshow displays the image with a border around it.
- 'ImshowAxesVisible' controls whether imshow displays the image with the axes box and tick labels.
- 'ImshowTruesize' controls whether imshow calls the truesize function.

Note that the display_option argument to imshow enables you to override the 'ImshowTruesize' preference.

For more information about these preferences, see the reference entry for iptsetpref.
getimage, imread, iptgetpref, iptsetpref, subimage, truesize, warp image, imagesc in the MATLAB Function Reference

Purpose

## Syntax

Description

## Examples

Subtract two uint8 arrays. Note that negative results are rounded to 0.

```
X = uint8([255 10 75; 44 225 100]);
Y = uint8([50 50 50; 50 50 50]);
Z = imadd(X,Y)
Z =
 205 0 25
 0 175 50
```

Estimate and subtract the background of an image:

```
I = imread('rice.png');
background = imopen(I,strel('disk',15));
Ip = imsubtract(I,background);
imview(Ip,[])
```

Subtract a constant value from an image:

```
I = imread('rice.png');
Iq = imsubtract (I,50);
imview(I), imview(Iq)
```

See Also
imabsdiff, imadd, imcomplement, imdivide, imlincomb, immultiply, ippl

## Purpose <br> Perform top-hat filtering

Syntax	IM2	$=$ imtophat (IM, SE)
	IM2	$=$ imtophat $($ IM, NHOOD $)$

Description
IM2 = imtophat(IM, SE) performs morphological top-hat filtering on the grayscale or binary input image IM using the structuring element SE, where SE is returned by strel. SE must be a single structuring element object, not an array containing multiple structuring element objects.
IM2 = imtophat( IM,NHOOD), where NHOOD is an array of 0's and 1's that specifies the size and shape of the structuring element, is the same as imptophat(IM, strel(NHOOD)).

## Class Support

IM can be numeric or logical and must be nonsparse. The output image IM2 has the same class as the input image. If the input is binary (logical), the structuring element must be flat.

## Example You can use top-hat filtering to correct uneven illumination when the

 background is dark. This example uses top-hat filtering with a disk-shaped structuring element to remove the uneven background illumination from an image.1 Read an image into the MATLAB workspace.

```
I = imread('rice.png');
imshow(I)
```



2 Create the structuring element and perform top-hat filtering of the image.

```
se = strel('disk',12);
J = imtophat(I,se);
figure, imshow(J)
```



3 Use imadjust to improve the visibility of the result.
K = imadjust(J);
figure, imshow(K)


See Also imbothat, strel

## imtransform

## Purpose

Apply 2-D spatial transformation to image
Syntax

```
B = imtransform(A,TFORM)
B = imtransform(A,TFORM,INTERP)
[B,XDATA,YDATA] = imtransform(...)
[B,XDATA,YDATA] = imtransform(...,param1,val1,param2,val2,...)
```


## Description

$B=$ imtransform(A, TFORM) transforms the image A according to the 2-D spatial transformation defined by TFORM, which is a spatial transformation structure (TFORM) as returned by maketform or cp2tform. If ndims (A) > 2, such as for an RGB image, then the same 2-D transformation is automatically applied to all 2-D planes along the higher dimensions.

When you use this syntax, imtransform automatically shifts the origin of your output image to make as much of the transformed image visible as possible. If you are using imtransform to do image registration, this syntax is not likely to give you the results you expect; you might want to set 'XData' and 'YData' explicitly.
$B$ = imtransform(A, TFORM, INTERP) specifies the form of interpolation to use. INTERP can have one of these values. The default value is enclosed in braces (\{\}).

Value	Description
'bicubic'	Bicubic interpolation
\{'bilinear' $\}$	Bilinear interpolation
'nearest'	Nearest-neighbor interpolation

Alternatively, INTERP can be a RESAMPLER structure returned by makeresampler. This option allows more control over how resampling is performed.
[B,XDATA, YDATA] = imtransform(...) returns the location of the output image $B$ in the output X-Y space. XDATA and YDATA are two-element vectors. The elements of XDATA specify the $x$-coordinates of the first and last columns of $B$. The elements of YDATA specify the $y$-coordinates of the first and last rows of $B$. Normally, imtransform computes XDATA and YDATA automatically so that B
contains the entire transformed image A. However, you can override this automatic computation; see below.
[B,XDATA, YDATA] = imtransform(..., param1, val1,param2,val2,...) specifies parameters that control various aspects of the spatial transformation. This table lists all the parameters you can specify. Note that parameter names can be abbreviated and are not case sensitive.

Parameter	Description
UData'   VData'	Both of these parameters are two-element real vectors. 'UData' and 'VData' specify the spatial location of the image $A$ in the $2-\mathrm{D}$ input space $\mathrm{U}-\mathrm{V}$. The two elements of 'UData' give the $u$-coordinates (horizontal) of the first and last columns of A, respectively. The two elements of 'VData' give the $v$-coordinates (vertical) of the first and last rows of A, respectively.   The default values for 'UData' and 'VData' are [1 size(A,2)] and [1 size(A,1)], respectively.
'XData'   'YData'	Both of these parameters are two-element real vectors. 'XData' and 'YData' specify the spatial location of the output image B in the 2-D output space $\mathrm{X}-\mathrm{Y}$. The two elements of 'XData' give the $x$-coordinates (horizontal) of the first and last columns of B, respectively. The two elements of 'YData' give the $y$-coordinates (vertical) of the first and last rows of $B$, respectively.
	If 'XData' and 'YData' are not specified, imtransform estimates values for them that will completely contain the entire transformed output image.


Parameter	Description
'XYScale'	A one- or two-element real vector. The first   element of 'XYScale' specifies the width of each   output pixel in X-Y space. The second element (if   present) specifies the height of each output pixel.   If 'XYScale' has only one element, then the same   value is used for both width and height.   If 'XYScale' is not specified but 'Size ' is, then   'XYScale' is computed from 'Size ', 'XData',   and 'YData'. If neither 'XYScale' nor 'Size' is   provided, then the scale of the input pixels is
used for 'XYScale'.	


Parameter	Description
'FillValues '	An array containing one or several fill values. Fill values are used for output pixels when the corresponding transformed location in the input image is completely outside the input image boundaries. If A is 2-D, 'FillValues ' must be a scalar. However, if A's dimension is greater than two, then 'FillValues' can be an array whose size satisfies the following constraint:   size(fill_values,k) must equal either size ( $\mathrm{A}, \mathrm{k}+2$ ) or 1 .   For example, if A is a uint8 RGB image that is 200-by-200-by-3, then possibilities for 'FillValues' include $0 \quad$ Fill with black [0;0;0] Fill with black 255 Fill with white [255;255;255] Fill with white [0;0;255] Fill with blue [255;255;0] Fill with yellow

Notes

- When you do not specify the output-space location for B using 'XData' and 'YData', imtransform estimates them automatically using the function findbounds. For some commonly used transformations, such as affine or projective, for which a forward mapping is easily computable, findbounds is fast. For transformations that do not have a forward mapping, such as the polynomial ones computed by cp2tform, findbounds can take significantly longer. If you can specify 'XData' and 'YData' directly for such transformations, imtransform might run noticeably faster.
- The automatic estimate of 'XData' and 'YData' using findbounds is not guaranteed in all cases to completely contain all the pixels of the transformed input image.
- The output values XDATA and YDATA might not exactly equal the input 'XData' and 'YData' parameters. This can happen either because of the need for an integer number of rows and columns, or if you specify values for 'XData', 'YData', 'XYScale', and 'Size' that are not entirely consistent. In either case, the first element of XDATA and YDATA always equals the first element of 'XData' and 'YData', respectively. Only the second elements of XDATA and YDATA might be different.
- imtransform assumes spatial-coordinate conventions for the transformation TFORM. Specifically, the first dimension of the transformation is the horizontal or $x$-coordinate, and the second dimension is the vertical or $y$-coordinate. Note that this is the reverse of the array subscripting convention in MATLAB.
- TFORM must be a 2-D transformation to be used with imtransform. For arbitrary-dimensional array transformations, see tformarray.


## Class Support

## Example

The input image A can be of any nonsparse numeric class, real or complex, or it can be of class logical. The class of $B$ is the same as the class of $A$.

## Example 1

Apply a horizontal shear to an intensity image.

```
I = imread('cameraman.tif');
tform = maketform('affine',[1 0 0; .5 1 0; 0 0 1]);
J = imtransform(I,tform);
imshow(I), figure, imshow(J)
```


## Example 2

A projective transformation can map a square to a quadrilateral. In this example, set up an input coordinate system so that the input image fills the unit square and then transform the image into the quadrilateral with vertices (0 0), (10), (11), (01) to the quadrilateral with vertices (-4 2), (-8 3), (-3 -5), (6 3). Fill with gray and use bicubic interpolation. Make the output size the same as the input size.

```
I = imread('cameraman.tif');
udata = [0 1]; vdata = [0 1]; % input coordinate system
tform = maketform('projective',[0 0; 1 0; 1 1; 0 1],...
 [-4 2; -8 -3; -3 -5; 6 3]);
[B,xdata,ydata] = imtransform(I, tform, 'bicubic', ...
```

```
'udata', udata,...
'vdata', vdata,...
'size', size(I),...
'fill', 128);
```

subplot(1,2,1), imshow(udata, vdata, I), axis on
subplot(1,2,2), imshow(xdata,ydata,B), axis on

## Example 3

Register an aerial photo to an orthophoto.
Read in the aerial photo.

```
unregistered = imread('westconcordaerial.png');
```

figure, imshow(unregistered)

Read in the orthophoto.
figure, imshow('westconcordorthophoto.png')
Load control points that were previously picked.
load westconcordpoints
Create a transformation structure for a projective transformation.

```
t_concord = cp2tform(input_points,base_points,'projective');
```

Get the width and height of the orthophoto and perform the transformation.

```
info = imfinfo('westconcordorthophoto.png');
registered = imtransform(unregistered,t_concord,...
 'XData',[1 info.Width], 'YData',[1 info.Height]);
figure, imshow(registered)
```


## See Also

cp2tform, imresize, imrotate, maketform, makeresampler, tformarray

Purpose
Display image in the Image Viewer

```
Syntax
Description
```

```
imview(I)
```

imview(I)
imview(RGB)
imview(RGB)
imview(X,map)
imview(X,map)
imview(I,range)
imview(I,range)
imview(filename)
imview(filename)
imview(...,'InitialMagnification',initial_mag)
imview(...,'InitialMagnification',initial_mag)
h = imview(...)
h = imview(...)
imview close all
imview close all
imview(I) displays the intensity image I.
imview (RGB) displays the true-color image RGB.

```
imview (X , map) displays the indexed image X with colormap map.
imview (I, range) displays the intensity image I, where range is a two-element vector [LOW HIGH] that controls the black-to-white range in the displayed image. imview displays the value LOW (and any value less than LOW) as black, and the value HIGH (and any value greater than HIGH) as white. Values in between are displayed as intermediate shades of gray. range can also be empty ([]), in which case imview displays the minimum value of I as black and the maximum value of I as white. In other words, imview(I, []) is equivalent to imview(I,[min(I(:)) max(I(:))]).
imview(filename) displays the image contained in the file specified by filename. The file must contain an image that can be read by imread. If the file contains multiple images, the first one is displayed.

With no input arguments, imview displays a file chooser dialog box so you can select an image file interactively.
\(\mathrm{H}=\) imview (...) returns a handle H to the tool. close (H) closes the image viewer.
imview close all closes all image viewers.
imview(...,'InitialMagnification', initial_mag) displays the image, specifying the Initialmagnification parameter that controls the initial magnification used to display the image. The value of this parameter, initial_mag, can have either of the following values.
\begin{tabular}{l|l}
\hline Value & Description \\
\hline 100 & \begin{tabular}{l}
Display image at 100\% magnification; that is, every \\
image pixel maps to one screen pixel
\end{tabular} \\
\hline 'fit' & Scale entire image to fit in the Image Viewer window \\
\hline
\end{tabular}

By default, the initial magnification is set to the value returned by iptgetpref('ImviewInitialMagnification').

Class Support The input image can be of class logical, uint8, uint16, or double.

\section*{Examples}

This example opens a file specified as a text string and displays it.
```

imview('board.tif')

```

This example opens an indexed image and displays it.
```

[X,map] = imread('trees.tif');
imview(X,map)

```

This example brings the intensity image in the file specified into the MATLAB workspace and displays it.
```

I = imread('cameraman.tif');
imview(I)

```

This example displays an image with a specified range and returns a handle to the Image Viewer. The example uses the close function to close the Image Viewer.
```

h = imview(I,[0 80]);
close(h)

```

\section*{Notes Managing Multiple Image Viewer Windows}

If you have multiple Image Viewer windows open and you want to close all of them, use this command:
```

imview close all

```

You can also close all open Image Viewer windows by choosing Close All from the Window menu on the MATLAB Desktop. Note, however, that this will close all windows listed in the Window menu, not just Image Viewer windows.

You can also use the Window menu to navigate to a particular Image Viewer that you have open.

\section*{Managing Memory Usage}

To increase the amount of memory available to the Image Viewer, create a file named ' java.opts' and put it in your MATLAB startup directory. By default, MATLAB gives the Java Virtual Machine 64 MB.

The java.opts file should contain a line like this one, which gives the Java Virtual Machine 128 MB:
-Xmx128m
To avoid virtual memory "thrashing," set the -Xmx option to no more than 66\% real RAM.

On UNIX systems, create the java. opts file in a directory where you intend to start MATLAB and move to that directory before starting MATLAB.

On Windows systems,
1 Create the java. opts file in a directory where you intend to start MATLAB.
2 Create a shortcut to MATLAB.
3 Right-click the shortcut and select Properties.
4 In the Properties dialog box, specify the name of the directory in which you created the java.opts file as the MATLAB startup directory.

The MATLAB desktop and the Image Viewer share Java Virtual Machine memory. If you are having trouble viewing large images, consider running MATLAB with the -nodesktop mode enabled. This should allow you to use the Image Viewer to view large images.
See Also imread, imshow

\author{
Purpose \\ Write image to graphics file \\ imwrite is a function in MATLAB. To get help for this function, select MATLAB Help from the Help menu and view the online function reference page.
}

\section*{Purpose}

\section*{Syntax \\ I = ind2gray (X, map)}

Description

Class Support

\section*{Example}

Convert an indexed image to an intensity image

I = ind2gray (X, map) converts the image \(X\) with colormap map to an intensity image I. ind2gray removes the hue and saturation information from the input image while retaining the luminance.
\(X\) can be of class uint8, uint16, or double. I is of class double.
```

load trees
I = ind2gray(X,map);
imshow(X,map)
figure,imshow(I)

```


Image Courtesy of Susan Cohen
ind2gray converts the colormap to NTSC coordinates using rgb2ntsc, and sets the hue and saturation components (\(I\) and \(Q\)) to zero, creating a gray colormap. ind2gray then replaces the indices in the image \(X\) with the corresponding grayscale intensity values in the gray colormap.
gray2ind, imshow, rgb2ntsc
Purpose Convert an indexed image to an RGB image
Syntax RGB = ind2rgb(X,map)
Description RGB = ind2rgb (\(\mathrm{X}, \mathrm{map}\)) converts the matrix X and corresponding colormap map to RGB (true-color) format.
Class Support \(X\) can be of class uint8, uint16, or double. RGB is an m-by-n-by-3 array of class double.
See Also ind2gray, rgb2ind

\section*{Purpose}
\begin{tabular}{ll}
Syntax & TF \(=\) ippl \\
& {\([\) TF B] \(=\) ippl }
\end{tabular}

TF = ippl
[TF B] = ippl

Notes

See Also

Check for presence of the Intel Performance Primitives Library (IPPL)

The Intel Performance Primitives Library (IPPL) provides a collection of basic functions used in signal and image processing. The IPPL takes advantage of the parallelism of the Single-Instruction, Multiple-Data (SIMD) instructions that make up the core of the MMX technology and Streaming SIMD Extensions. These instructions are available only on the Intel architecture processors. IPPL is used by some of the Image Processing Toolbox functions to accelerate their execution time.

TF = ippl returns true (1) if IPPL is available and false (0) otherwise.
[TF B] = ippl returns an additional column cell array B. Each row of B contains a string describing a specific IPPL module.

When IPPL is available, the Image Processing Toolbox image arithmetic functions (imabsdiff, imadd, imsubtract, imdivide, immultiply, and imlincomb) and the imfilter function take advantage of it. Toolbox functions that use these functions also benefit.

IPPL is utilized only for some data types and only under specific conditions. See the help sections of the functions listed above for detailed information on when IPPL is activated.

The IPPL function is likely to change.
imabsdiff, imadd, imdivide, imfilter, imlincomb, immultiply, imsubtract

Purpose Display index of Image Processing Toolbox demos

\section*{Syntax iptdemos}

Description iptdemos displays the HTML page that lists all the Image Processing demos. iptdemos displays the page in the MATLAB Help browser.

\section*{Purpose \\ Return Image Processing Toolbox preferences}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{Syntax} & prefs = iptgetpref \\
\hline & value \(=\) iptgetpref(prefname) \\
\hline Description & prefs = iptgetpref without an input argument containing all the Image Processing Toolbox prefe values. Each field in the structure has the name Toolbox preference. See iptsetpref for a list. \\
\hline & value \(=\) iptgetpref(prefname) returns the valu Toolbox preference specified by the string prefnam complete list of valid preference names. Preferenc sensitive and can be abbreviated. \\
\hline \multirow[t]{3}{*}{Example} & value = iptgetpref('ImshowAxesVisible') \\
\hline & value = \\
\hline & off \\
\hline See Also & imshow, iptsetpref \\
\hline
\end{tabular}

\section*{iptsetpref}

Purpose

\author{
Syntax \\ Description
}

Set Image Processing Toolbox preferences or display valid values
iptsetpref(prefname)
iptsetpref(prefname, value)
iptsetpref(prefname) displays the valid values for the Image Processing Toolbox preference specified by prefname.
iptsetpref(prefname, value) sets the Image Processing Toolbox preference specified by the string prefname to the value specified by value. The setting persists until the end of the current MATLAB session, or until you change the setting. (To make the value persist between sessions, put the command in your startup.m file.)

This table describes the available preferences. Note that the preference names are case insensitive and can be abbreviated. The default value is enclosed in braces (\{\}).
\begin{tabular}{|c|c|}
\hline Preference Name & Description \\
\hline \multirow[t]{4}{*}{'ImshowBorder '} & Controls whether imshow includes a border around the image in the figure window. \\
\hline & \{'loose' \} - Include a border between the image and the edges of the figure window, thus leaving room for axes labels, titles, etc. \\
\hline & 'tight ' - Adjust the figure size so that the image entirely fills the figure. \\
\hline & Note: There can still be a border if the image is very small, or if there are other objects besides the image and its axes in the figure. \\
\hline \multirow[t]{3}{*}{'ImshowAxesVisible'} & Controls whether imshow includes visible axes and tick labels in the figure window. \\
\hline & 'on ' - Include axes box and tick labels. \\
\hline & \{'off'\} - Do not include axes box and tick labels. \\
\hline
\end{tabular}

Purpose
Compute inverse Radon transform

\section*{Syntax}

\section*{Description}
```

I = iradon(R,theta)
I = iradon(R,theta,interp,filter,frequency_scaling,output_size)
[I,H] = iradon(...)

```
\(I=\) iradon(\(R\), theta) reconstructs the image \(I\) from projection data in the two-dimensional array R. The columns of \(R\) are parallel beam projection data. iradon assumes that the center of rotation is the center point of the projections, which is defined as ceil(size (\(\mathrm{R}, 1\))/2).
theta describes the angles (in degrees) at which the projections were taken. It can be either a vector containing the angles or a scalar specifying D_theta, the incremental angle between projections. If theta is a vector, it must contain angles with equal spacing between them. If theta is a scalar specifying D_theta, the projections were taken at angles theta \(=m * D _t h e t a\), where \(m=0,1,2, \ldots, \operatorname{size}(R, 2) 1\). If the input is the empty matrix ([]), D_theta defaults to \(180 / \operatorname{size}(R, 2)\).
iradon uses the filtered back-projection algorithm to perform the inverse Radon transform. The filter is designed directly in the frequency domain and then multiplied by the FFT of the projections. The projections are zero-padded to a power of 2 before filtering to prevent spatial domain aliasing and to speed up the FFT.
```

I = iradon(P,theta,interp,filter,frequency_scaling,output_size)

``` specifies parameters to use in the inverse Radon transform. You can specify any combination of the last four arguments. iradon uses default values for any of these arguments that you omit.
interp specifies the type of interpolation to use in the back projection. The available options are listed in order of increasing accuracy and computational complexity. The default value is enclosed in braces (\{\}).
\begin{tabular}{ll}
\hline Value & Description \\
\hline 'nearest' & Nearest-neighbor interpolation \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Value & Description \\
\hline \{'linear'\} & Linear interpolation \\
\hline 'spline' & Spline interpolation \\
\hline
\end{tabular}
filter specifies the filter to use for frequency domain filtering. filter can be any of the strings that specify standard filters. The default value is enclosed in braces (\{\}).
\begin{tabular}{l|l}
\hline Value & Description \\
\hline \{ 'Ram-Lak ' \} & \begin{tabular}{l}
Cropped Ram-Lak or ramp filter. The frequency \\
response of this filter is | f \| . Because this filter is \\
sensitive to noise in the projections, one of the filters \\
listed below might be preferable. These filters multiply \\
the Ram-Lak filter by a window that deemphasizes \\
high frequencies.
\end{tabular} \\
\hline 'Shepp-Logan ' & \begin{tabular}{l}
Multiplies the Ram-Lak filter by a sinc function
\end{tabular} \\
\hline 'Cosine ' & Multiplies the Ram-Lak filter by a cosine function \\
\hline 'Hamming' & Multiplies the Ram-Lak filter by a Hamming window \\
\hline 'Hann' & Multiplies the Ram-Lak filter by a Hann window \\
\hline
\end{tabular}
frequency_scaling is a scalar in the range \((0,1]\) that modifies the filter by rescaling its frequency axis. The default is 1 . If frequency_scaling is less than 1 , the filter is compressed to fit into the frequency range [0,frequency_scaling], in normalized frequencies; all frequencies above frequency_scaling are set to 0 .
output_size is a scalar that specifies the number of rows and columns in the reconstructed image. If output_size is not specified, the size is determined from the length of the projections.
\[
\mathrm{n}=2^{*} \mathrm{floor}(\operatorname{size}(\mathrm{R}, 1) /(2 * \operatorname{sqrt}(2)))
\]

If you specify output_size, iradon reconstructs a smaller or larger portion of the image but does not change the scaling of the data. If the projections were
calculated with the radon function, the reconstructed image might not be the same size as the original image.
[\(\mathrm{I}, \mathrm{H}]\) = iradon(...) returns the frequency response of the filter in the vector H.

Class Support

Example

Algorithm

See Also
References

All input arguments must be of class double. Output arguments are of class double.
```

P = phantom(128);
R = radon(P,0:179);
I = iradon(R,0:179,'nearest','Hann');
imview(P), imview(I)

```

iradon uses the filtered back projection algorithm to perform the inverse Radon transform. The filter is designed directly in the frequency domain and then multiplied by the FFT of the projections. The projections are zero-padded to a power of 2 before filtering to prevent spatial domain aliasing and to speed up the FFT.
fan2para, fanbeam, ifanbeam, para2fan, phantom, radon
[1] Kak, A. C., and M. Slaney, Principles of Computerized Tomographic Imaging, New York, NY, IEEE Press, 1988.
Purpose Return true for a binary image
Note This function is obsolete and may be removed in future versions. Use islogical instead.
Syntax flag = isbw(A)
Description flag \(=\) isbw(A) returns 1 if \(A\) is a binary image and 0 otherwise.
The input image \(A\) is considered to be a binary image if it is a nonsparse logical array.
Class Support The input image A can be any MATLAB array.
See Also isind, isgray, isrgb

Purpose Return true for flat structuring element

\section*{Syntax \(\quad\) TF \(=\) isflat \((S E)\)}

Description

Class Support SE is a STREL object. TF is a double-precision value.
See Also strel

\section*{Purpose \\ Return true for intensity image}

Note This function is obsolete and may be removed in future versions.

\section*{Syntax \\ flag = isgray(A)}

Description
flag = isgray (A) returns 1 if \(A\) is a grayscale intensity image and 0 otherwise.
isgray uses these criteria to decide whether A is an intensity image:
- If \(A\) is of class double, all values must be in the range \([0,1]\), and the number of dimensions of \(A\) must be 2 .
- If A is of class uint16 or uint8, the number of dimensions of A must be 2.

Note A four-dimensional array that contains multiple intensity images returns 0 , not 1 .

\section*{Class Support The input image A can be of class logical, uint8, uint16, or double. \\ See Also isbw, isind, isrgb}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{Purpose} & Return true for an indexed image \\
\hline & Note This function is obsolete and may be removed \\
\hline Syntax & flag \(=\) isind(A) \\
\hline \multirow[t]{2}{*}{Description} & \begin{tabular}{l}
flag \(=\) isind \((A)\) returns 1 if \(A\) is an indexed image \\
isind uses these criteria to determine if A is an index \\
- If A is of class double, all values in A must be integ to 1 , and the number of dimensions of \(A\) must be 2 . \\
- If \(A\) is of class uint8 or uint16, the number of dime
\end{tabular} \\
\hline & Note A four-dimensional array that contains multip returns 0 , not 1 . \\
\hline Class Support & A can be of class logical, uint8, uint16, or double. \\
\hline See Also & isbw, isgray, isrgb \\
\hline
\end{tabular}
Purpose Return true for an RGB image
Note This function is obsolete and may be removed in future versions.
Syntax flag \(=\) isrgb \((A)\)
Description flag \(=\) isrgb (A) returns 1 if \(A\) is an RGB true-color image and 0 otherwise.isrgb uses these criteria to determine whether \(A\) is an RGB image:
- If A is of class double, all values must be in the range [0,1], and A must be m-by-n-by-3.
- If A is of class uint16 or uint8, A must be m-by-n-by-3.
Note A four-dimensional array that contains multiple RGB images returns 0, not 1 .
Class Support
See Also isbw, isgray, isind

\section*{lab2double}

\section*{Purpose}

Syntax labd = lab2double(lab)
Description

\section*{Class Support}

See Also
Convert \(L^{*} a^{*} b^{*}\) data to double as lab. tables. is double.
labd = lab2double(lab) converts an M-by-3 or M-by-N-by-3 array of \(L^{*} a^{*} b^{*}\) color values to class double. The output array labd has the same size

The Image Processing Toolbox follows the convention that double-precision \(L^{*} a^{*} b^{*}\) arrays contain 1976 CIE \(L^{*} a^{*} b^{*}\) values. \(L^{*} a^{*} b^{*}\) arrays that are uint8 or uint 16 follow the convention in the ICC profile specification (ICC.1:2001-4, www.color.org) for representing \(L^{*} a^{*} b^{*}\) values as unsigned 8 -bit or 16 -bit integers. The ICC encoding convention is illustrated by these
\begin{tabular}{l|l|l}
\hline Value (L*) & uint8 Value & uint16 Value \\
\hline 0.0 & 0 & 0 \\
\hline 100.0 & 255 & 65280 \\
\hline \(100.0+(25500 / 65280)\) & None & 65535 \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Value (a* or \(\mathbf{b}^{*}\)) & uint8 Value & uint16 Value \\
\hline-128.0 & 0 & 0 \\
\hline 0.0 & 128 & 32768 \\
\hline 127.0 & 255 & 65280 \\
\hline \(127.0+(255 / 256)\) & None & 65535 \\
\hline
\end{tabular}
lab is a uint8, uint16, or double array that must be real and nonsparse. labd
applycform, lab2uint8, lab2uint16, makecform, whitepoint, xyz2double, xyz2uint16

\section*{Purpose \\ Convert \(L^{*} a^{*} b^{*}\) data to uint16}

Syntax lab16 = lab2uint16(lab)
Description lab16 = lab2uint16(lab) converts an M-by-3 or M-by-N-by-3 array of \(L^{*} a * b^{*}\) color values to uint16. lab16 has the same size as lab.

The Image Processing Toolbox follows the convention that double-precision \(L^{*} a^{*} b^{*}\) arrays contain 1976 CIE \(L^{*} a^{*} b^{*}\) values. \(L^{*} a^{*} b^{*}\) arrays that are uint8 or uint16 follow the convention in the ICC profile specification (ICC.1:2001-4, www.color.org) for representing \(L^{*} a^{*} b^{*}\) values as unsigned 8 -bit or 16 -bit integers. The ICC encoding convention is illustrated by these tables.
\begin{tabular}{l|l|l}
\hline Value (L*) & uint8 Value & uint16 Value \\
\hline 0.0 & 0 & 0 \\
\hline 100.0 & 255 & 65280 \\
\hline \(100.0+(25500 / 65280)\) & None & 65535 \\
\hline & & \\
\hline Value (a* or b*) & uint8 Value & uint16 Value \\
\hline-128.0 & 0 & 0 \\
\hline 0.0 & 128 & 32768 \\
\hline 127.0 & 255 & 65280 \\
\hline \(127.0+(255 / 256)\) & None & 65535 \\
\hline
\end{tabular}

\section*{Class Support}

See Also
lab can be a uint8, uint16, or double array that must be real and nonsparse. lab16 is of class uint16.
applycform, lab2double, lab2uint8, makecform, whitepoint, xyz2double, xyz2uint16

\section*{lab2uint8}

\section*{Purpose}

Syntax lab8 = lab2uint8(lab)
Description

\section*{Class Support}

See Also
Convert \(L^{*} a^{*} b^{*}\) data to uint8 tables. is uint8.
lab8 = lab2uint8(lab) converts an M-by-3 or M-by-N-by-3 array of \(L^{*} a^{*} b^{*}\) color values to uint8. lab8 has the same size as lab.

The Image Processing Toolbox follows the convention that double-precision \(L^{*} a^{*} b^{*}\) arrays contain 1976 CIE \(L^{*} a^{*} b^{*}\) values. \(L^{*} a^{*} b^{*}\) arrays that are uint8 or uint16 follow the convention in the ICC profile specification (ICC.1:2001-4, www.color.org) for representing \(L^{*} a^{*} b^{*}\) values as unsigned 8 -bit or 16 -bit integers. The ICC encoding convention is illustrated by these
\begin{tabular}{l|l|l}
\hline Value (L*) & uint8 Value & uint16 Value \\
\hline 0.0 & 0 & 0 \\
\hline 100.0 & 255 & 65280 \\
\hline \(100.0+(25500 / 65280)\) & None & 65535 \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Value (a* or \(\mathbf{b}^{*}\)) & uint8 Value & uint16 Value \\
\hline-128.0 & 0 & 0 \\
\hline 0.0 & 128 & 32768 \\
\hline 127.0 & 255 & 65280 \\
\hline \(127.0+(255 / 256)\) & None & 65535 \\
\hline
\end{tabular}
lab is a uint8, uint16, or double array that must be real and nonsparse. lab8
applycform, lab2double, lab2uint16, makecform, whitepoint, xyz2double, xyz2uint16

\section*{label2rgb}

\section*{Purpose \\ Convert a label matrix into an RGB image}

\author{
Syntax \\ \section*{Description}
}

RGB = label2rgb(L)
RGB \(=\) label2rgb(L,map)
RGB = label2rgb(L,map,zerocolor)
RGB = label2rgb(L,map,zerocolor,order)
RGB = label2rgb(L) converts a label matrix \(L\), such as those returned by bwlabel or watershed, into an RGB color image for the purpose of visualizing the labeled regions. The label2rgb function determines the color to assign to each object based on the number of objects in the label matrix and range of colors in the colormap. The label2rgb function picks colors from the entire range.

RGB = label2rgb(L, map) defines the colormap map to be used in the RGB image. map can have any of the following values:
- \(n\)-by- 3 colormap matrix
- String containing the name of a MATLAB colormap function, such as 'jet' or 'gray' (See colormap for a list of supported colormaps.)
- Function handle of a colormap function, such as @jet or @gray

If you do not specify map, the default value is ' jet'.
RGB = label2rgb(L, map, zerocolor) defines the RGB color of the elements labeled 0 (zero) in the input label matrix \(L\). As the value of zerocolor, specify an RGB triple or one of the strings listed in this table.
\begin{tabular}{l|l}
\hline Value & Color \\
\hline ' \(b^{\prime}\) & Blue \\
\hline ' \(c^{\prime}\) & Cyan \\
\hline\(' g^{\prime}\) & Green \\
\hline ' \(k\) ' & Black \\
\hline\(' m '\) & Magenta \\
\hline\(' r '\) & Red \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Value & Color \\
\hline ' \(w\) ' & White \\
\hline ' \(y\) ' & Yellow \\
\hline
\end{tabular}

If you do not specify zerocolor, the default value for zero-labeled elements is [lll \(\left.\begin{array}{lll}1 & 1 & 1\end{array}\right]\) (white).

RGB = label2rgb(L, map, zerocolor, order) controls how label2rgb assigns colormap colors to regions in the label matrix. If order is 'noshuffle' (the default), label2rgb assigns colormap colors to label matrix regions in numerical order. If order is 'shuffle', label2rgb assigns colormap colors pseudorandomly.

\section*{Class Support}

The input label matrix \(L\) can have any nonsparse, numeric class. It must contain finite, nonnegative integers. The output of label2rgb is of class uint8.

\section*{Example}

See Also
```

I = imread('rice.png');
figure, imshow(I), title('original image')
BW = im2bw(I, graythresh(I));
L = bwlabel(BW);
RGB = label2rgb(L);
RGB2 = label2rgb(L, 'spring', 'c', 'shuffle');
imview(RGB), imview(RGB2)

```

bwlabel, bwlabeln, ismember, watershed

\section*{Purpose Create a color transformation structure}

\author{
Syntax \\ \section*{Description}
}
```

C = makecform(type)
C = makecform(type, 'whitepoint', WP)
C = makecform('icc', src_profile, dest_profile)
C = makecform('icc', src_profile, dest_profile,
'SourceRenderingIntent', src_intent, 'DestRenderingIntent',
dest_intent)
C = makecform('clut', profile, LUTtype)
C = makecform('mattrc', MatTrc, 'Direction', direction)

```
\(C=\) makecform(type) creates the color transformation structure \(C\) that defines the color space conversion specified by type. To perform the transformation, pass the color transformation structure as an argument to the applycform function.

The type argument specifies one of the conversions listed in the following table. makecform supports conversions between members of the family of device-independent color spaces defined by the CIE, Commission Internationale de l'Éclairage (International Commission on Illumination). In addition, makecform supports conversions to and from the \(s R G B\) standard. For a list of the abbreviations used by the Image Processing Toolbox for each color space, see the Remarks section of this reference page.
\begin{tabular}{ll}
\hline Type & Description \\
\hline 'lab2lch' & Convert from \(L^{*} a^{*} b^{*}\) to the \(L^{*} c h\) color space. \\
\hline 'lab2srgb'1 & Convert from \(L^{*} a^{*} b^{*}\) to the \(\operatorname{srgb}\) color space. \\
\hline 'lab2xyz'1 & Convert from \(L^{*} a^{*} b^{*}\) to the \(X Y Z\) color space. \\
\hline 'lch2lab' & Convert from \(L^{*} c h\) to the \(L^{*} a^{*} b^{*}\) color space. \\
\hline 'srgb2lab'1 & Convert from \(\operatorname{srg} b\) to the \(L^{*} a^{*} b^{*}\) color space. \\
\hline 'srgb2xyz' & Convert from \(\operatorname{srg} b\) to the \(X Y Z\) color space. \\
\hline 'upvpl2xyz' & Convert from \(u^{\prime} v^{\prime} L\) to the \(X Y Z\) color space. \\
\hline 'uvl2xyz' & Convert from \(u v L\) to the \(X Y Z\) color space. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Type & Description \\
\hline 'xyl2xyz' & Convert from \(x y Y\) to the \(X Y Z\) color space. \\
\hline 'xyz2lab'1 & Convert from \(X Y Z\) to the \(L^{*} a^{*} b^{*}\) color space. \\
\hline 'xyz2srgb' & Convert from \(X Y Z\) to the \(s r g b\) color space. \\
\hline 'xyz2upvpl' & Convert from \(X Y Z\) to the \(u^{\prime} v^{\prime} L\) color space. \\
\hline 'xyz2uvl' & Convert from \(X Y Z\) to the \(u v L\) color space. \\
\hline 'xyz2xyl' & Convert from \(X Y Z\) to the \(x y Y\) color space. \\
\hline
\end{tabular}
\({ }^{1}\) For the 'xyz2lab', 'lab2xyz', 'srgb2lab', and 'lab2srgb' transforms, you can optionally specify the value of the reference illuminant, known as the white point. Use the syntax
```

C = makecform(type,'WhitePoint', WP)

```
where WP is a 1-by-3 vector of \(X Y Z\) values scaled so that \(Y=1\). The default is the CIE illuminant D50 as specified in the International Color Consortium specification ICC.1:2001-04. You can use the whitepoint function to create the WP vector.

C = makecform('icc', src_profile, dest_profile) creates a color transform based on two ICC profiles. src_profile and dest_profile are ICC profile structures returned by iccread.

C = makecform('icc', src_profile, dest_profile, 'SourceRenderingIntent', src_intent, 'DestRenderingIntent', DEST_INTENT) creates a color transform based on two ICC color profiles, src_profile and dest_profile, specifying rendering intent arguments for the source, src_intent, and the destination, dest_intent, profiles.
Rendering intents specify the style of reproduction that should be used when these profiles are combined. For most devices, the range of reproducible colors is much smaller than the range of colors represented by the PCS. Rendering intents define gamut mapping techniques. Possible values for these rendering
intents are listed below. Each rendering intent has distinct aesthetic and color-accuracy tradeoffs.
\(\left.\begin{array}{ll}\hline \text { Value } & \text { Description } \\ \hline \text { 'AbsoluteColorimetric' } & \begin{array}{l}\text { Maps all out-of-gamut colors to the nearest } \\ \text { gamut surface while maintaining the } \\ \text { relationship of all in-gamut colors. This } \\ \text { absolute rendering contains color data that } \\ \text { is relative to a perfectly reflecting diffuser. }\end{array} \\ \hline \text { 'Perceptual' (default) } & \begin{array}{l}\text { Employs vendor-specific gamut mapping } \\ \text { techniques for optimizing the range of } \\ \text { producible colors of a given device. The } \\ \text { objective is to provide the most aesthetically } \\ \text { pleasing result even though the relationship } \\ \text { of the in-gamut colors might not be } \\ \text { maintained. This media-relative rendering } \\ \text { contains color data that is relative to the } \\ \text { device's white point. }\end{array} \\ \hline \text { 'RelativeColorimetric' } & \begin{array}{l}\text { Maps all out-of-gamut colors to the nearest } \\ \text { gamut surface while maintaining the } \\ \text { relationship of all in-gamut colors. This } \\ \text { media-relative rendering contains color data } \\ \text { that is relative to the device's white point. }\end{array} \\ \hline & \begin{array}{l}\text { Employs vendor-specific gamut mapping } \\ \text { techniques for maximizing the saturation of } \\ \text { device colors. This rendering is generally } \\ \text { used for simple business graphics such as } \\ \text { bar graphs and pie charts. This } \\ \text { media-relative rendering contains color data }\end{array} \\ \text { that is relative to the device's white point. }\end{array}\right]\)

C = makecform('clut', profile, LUTtype) creates the color transformation structure C based on a color lookup table (CLUT) contained in an ICC color profile. profile is an ICC profile structure returned by iccread. LUTtype
specifies which clut in the profile structure is to be used. It can be one of these strings.
\begin{tabular}{ll}
\hline LUT Type & Description \\
\hline 'AToBO' & \begin{tabular}{l}
Contains the components of a 16- or 8-bit LUTtag \\
that transforms device colors to PCS colors using the \\
perceptual rendering.
\end{tabular} \\
\hline 'AToB1' & \begin{tabular}{l}
Contains the components of a 16- or 8-bit LUTtag \\
that transforms device colors to PCS colors using the \\
relative rendering.
\end{tabular} \\
\hline 'AToB2' & \begin{tabular}{l}
Contains the components of a 16- or 8-bit LUTtag \\
that transforms device colors to PCS colors using the \\
saturation rendering.
\end{tabular} \\
\hline 'BToAO' & \begin{tabular}{l}
Contains the components of a 16- or 8-bit LUTtag \\
that transforms PCS colors to device colors using the \\
perceptual rendering.
\end{tabular} \\
\hline 'BToA1' & \begin{tabular}{l}
Contains the components of a 16- or 8-bit LUTtag \\
that transforms PCS colors to device colors using the \\
colorimetric rendering.
\end{tabular} \\
\hline 'BToA2' & \begin{tabular}{l}
Contains the components of a 16- or 8-bit LUTtag \\
that transforms PCS colors to device colors using the \\
saturation rendering.
\end{tabular} \\
\hline 'Gamut ' & \begin{tabular}{l}
Contains the components of a 16- or 8-bit LUTtag \\
that determines which PCS colors are out of gamut \\
for a given device.
\end{tabular} \\
\hline 'PreviewO ' & \begin{tabular}{l}
Contains the components of a 16- or 8-bit Preview \\
LUTtag that transforms PCS colors to the PCS colors \\
available for soft proofing using the perceptual \\
rendering.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline LUT Type & Description \\
\hline 'Preview1' & \begin{tabular}{l}
Contains the components of a 16- or 8-bit Preview \\
LUTtag that transforms PCS colors to the PCS colors \\
available for soft proofing using the relative \\
colorimetric rendering.
\end{tabular} \\
\hline 'Preview2' & \begin{tabular}{l}
Contains the components of a 16- or 8-bit Preview \\
LUTtag that transforms PCS colors to the PCS colors \\
available for soft proofing using the saturation \\
rendering.
\end{tabular} \\
\hline
\end{tabular}

C = makecform('mattrc', MatTrc, 'Direction', direction) creates the color transformation structure C based on a Matrix/Tone Reproduction Curve (MatTRC) model, contained in an ICC color profile. direction can be either 'forward ' or 'inverse' and specifies whether the MatTRC is to be applied in the forward or inverse direction. For more information, see section 6.3.1.2 of the International Color Consortium specification ICC.1:2001-04 (www.color.org).

\section*{Remarks}

The Image Processing Toolbox uses the following abbreviations to represent color spaces.
\begin{tabular}{l|l}
\hline Abbreviation & Description \\
\hline xyz & 1931 CIE XYZ tristimulus values \\
\hline xyl & 1931 CIE xyY chromaticity values \\
\hline uvl & 1960 CIE uvL values \\
\hline upvpl & 1976 CIE the \(u^{\prime} v^{\prime} L\) values \\
\hline lab & 1976 CIE \(L^{*} a^{*} b^{*}\) values \\
\hline lch & \begin{tabular}{l}
Polar transformation of CIE \(L^{*} a^{*} b^{*}\) values, \\
where \(\mathrm{c}=\) chroma and \(\mathrm{h}=\) hue
\end{tabular} \\
\hline srgb & \begin{tabular}{l}
Standard computer monitor RGB values, (IEC \\
\(61966-2-1)\)
\end{tabular} \\
\hline
\end{tabular}
```

Example Convert RGB image to L**a* ' , assuming input image is uint8.
rgb = imread('peppers.png');
cform = makecform('srgb2lab');
lab = applycform(rgb,cform);

```

\author{
See Also
}
```

applycform, lab2double, lab2uint16, lab2uint8, whitepoint, xyz2double, xyz2uint16

```

\section*{Purpose}

Construct a lookup table for use with applylut
Syntax \(\quad\)\begin{tabular}{rl}
lut & \(=\operatorname{makelut}(f u n, n)\) \\
lut & \(=\operatorname{makelut}(f u n, n, P 1, P 2, \ldots)\)
\end{tabular}

Class Support
lut is returned as a vector of class double.

\section*{Example}

In this example, the function returns 1 (true) if the number of 1's in the neighborhood is 2 or greater, and returns 0 (false) otherwise. makelut then uses the function to construct a lookup table for 2-by-2 neighborhoods.
```

f = inline('sum(x(:)) >= 2');
lut = makelut(f,2)
lut =

```
0
0
0
1
0
1
1
1
0
1
1
1

See Also
applylut

\section*{Purpose Create resampling structure}

Syntax \(\quad\) R = makeresampler(interpolant, padmethod)
Description
R = makeresampler(interpolant, padmethod) creates a separable resampler structure for use with tformarray and imtransform.

The interpolant argument specifies the interpolating kernel that the separable resampler uses. In its simplest form, interpolant can have any of the following strings as a value.
\begin{tabular}{l|l}
\hline Interpolant & Description \\
\hline 'cubic' & Cubic interpolation \\
\hline 'linear' & Linear interpolation \\
\hline 'nearest' & Nearest-neighbor interpolation \\
\hline
\end{tabular}

If you are using a custom interpolating kernel, you can specify interpolant as a cell array in either of these forms:
\{half_width, positive_half\} half_width is a positive scalar designating the half width of a symmetric interpolating kernel. positive_half is a vector of values regularly sampling the kernel on the closed interval [0 positive_half].
\{half_width, interp_fcn\} interp_fcn is a function handle that returns interpolating kernel values, given an array of input values in the interval [0 positive_half].

To specify the interpolation method independently along each dimension, you can combine both types of interpolant specifications. The number of elements in the cell array must equal the number of transform dimensions. For example, if you specify this value for interpolant
```

{'nearest', 'linear', {2 KERNEL_TABLE}}

```
the resampler uses nearest-neighbor interpolation along the first transform dimension, linear interpolation along the second dimension, and a custom table-based interpolation along the third.

The padmethod argument controls how the resampler interpolates or assigns values to output elements that map close to or outside the edge of the input array. The following table lists all the possible values of padmethod.
\begin{tabular}{l|l}
\hline Pad Method & Description \\
\hline 'bound' & \begin{tabular}{l}
Assigns values from the fill value array to points that \\
map outside the array and repeats border elements of \\
the array for points that map inside the array (same as \\
'replicate '). When interpolant is 'nearest ', this \\
pad method produces the same results as 'fill'. \\
'bound' is like 'fill', but avoids mixing fill values \\
and input image values.
\end{tabular} \\
\hline 'circular' & \begin{tabular}{l}
Pads array with circular repetition of elements within \\
the dimension. Same as padarray.
\end{tabular} \\
\hline 'fill' & \begin{tabular}{l}
Generates an output array with smooth-looking edges \\
(except when using nearest-neighbor interpolation). \\
For output points that map near the edge of the input \\
array (either inside or outside), it combines input \\
image and fill values. When interpolant is 'nearest ', \\
this pad method produces the same results as 'bound '.
\end{tabular} \\
\hline 'replicate' & \begin{tabular}{l}
Pads array by repeating border elements of array. \\
Same as padarray.
\end{tabular} \\
\hline 'symmetric' & \begin{tabular}{l}
Pads array with mirror reflections of itself. Same as \\
padarray.
\end{tabular} \\
\hline
\end{tabular}

In the case of 'fill', 'replicate', 'circular', or 'symmetric', the resampling performed by tformarray or imtransform occurs in two logical steps:

1 Pad the array A infinitely to fill the entire input transform space.

\section*{Custom Resamplers}

2 Evaluate the convolution of the padded A with the resampling kernel at the output points specified by the geometric map.

Each nontransform dimension is handled separately. The padding is virtual, (accomplished by remapping array subscripts) for performance and memory efficiency. If you implement a custom resampler, you can implement these behaviors.

The syntaxes described above construct a resampler structure that uses the separable resampler function that ships with the Image Processing Toolbox. It is also possible to create a resampler structure that uses a user-written resampler by using this syntax:
```

R = makeresampler(PropertyName,PropertyValue,...)

```

The makeresampler function supports the following properties.
\begin{tabular}{l|l}
\hline Property & Description \\
\hline 'Type' & \begin{tabular}{l}
Can have the value 'separable ' or ' custom ' and must always be supplied. \\
If 'Type ' is 'separable', the only other properties that can be specified are \\
'Interpolant' and 'PadMethod ', and the result is equivalent to using the \\
makeresampler(interpolant, padmethod) syntax. If 'Type ' is 'custom ', \\
you must specify the 'NDims ' and 'ResampleFcn ' properties and, optionally, \\
the 'CustomData ' property.
\end{tabular} \\
\hline 'PadMethod' & \begin{tabular}{l}
See the padmethod argument for more information.
\end{tabular} \\
\hline 'Interpolant' & \begin{tabular}{l}
See the interpolant argument for more information. \\
\hline 'NDims'
\end{tabular} \begin{tabular}{l}
Positive integer indicating the dimensionality the custom resampler can \\
handle. Use a value of Inf to indicate that the custom resampler can handle \\
any dimension. If 'Type ' is 'custom ', NDims is required.
\end{tabular} \\
\hline
\end{tabular}

\section*{makeresampler}
\begin{tabular}{|c|c|}
\hline Property & Description \\
\hline 'ResampleFcn' & \begin{tabular}{l}
Handle to a function that performs the resampling. The function is called with the following interface. \\
\(B=r e s a m p l e _f c n\left(A, M, T D I M S _A, T D I M S _B, F S I Z E _A, F S I Z E _B, F, R\right)\) \\
See the help for tformarray for information about the inputs A, TDIMS_A, TDIMS_B, and \(F\). The argument \(M\) is an array that maps the transform subscript space of \(B\) to the transform subscript space of \(A\). If \(A\) has \(N\) transform dimensions (\(N=\) length (TDIMS_A)) and B has \(P\) transform dimensions (\(P=\) length(TDIMS_B)), then ndims \((M)=P+1\), if \(N>1\) and \(P\) if \(N==1\), and size \((M, P+1)=N\). \\
The first P dimensions of \(M\) correspond to the output transform space, permuted according to the order in which the output transform dimensions are listed in TDIMS_B. (In general TDIMS_A and TDIMS_B need not be sorted in ascending order, although such a limitation might be imposed by specific resamplers.) Thus, the first P elements of size (M) determine the sizes of the transform dimensions of \(B\). The input transform coordinates to which each point is mapped are arrayed across the final dimension of \(M\), following the order given in TDIMS_A. \(M\) must be double. FSIZE_A and FSIZE_B are the full sizes of A and B, padded with 1's as necessary to be consistent with TDIMS_A, TDIMS_B, and size(A).
\end{tabular} \\
\hline 'CustomData' & User-defined. \\
\hline
\end{tabular}
```

Example
Stretch an image in the $y$-direction using a separable resampler that applies cubic interpolation in the $y$-direction and nearest-neighbor interpolation in the $x$-direction. (This is equivalent to, but faster than, applying bicubic interpolation.)

```
```

A = imread('moon.tif');

```
A = imread('moon.tif');
resamp = makeresampler({'nearest','cubic'},'fill');
resamp = makeresampler({'nearest','cubic'},'fill');
stretch = maketform('affine',[1 0; 0 1.3; 0 0]);
stretch = maketform('affine',[1 0; 0 1.3; 0 0]);
B = imtransform(A,stretch,resamp);
B = imtransform(A,stretch,resamp);
See Also imtransform, tformarray
```

14-324

## Purpose <br> Create geometric transformation structure

Syntax $\quad T=$ maketform (transformtype, $\ldots$ )

Description

## Transform

Types

Affine
T = maketform('affine', A) builds a TFORM struct T for an N-dimensional affine transformation. A is a nonsingular real $(\mathrm{N}+1)$-by- $(\mathrm{N}+1)$ or $(\mathrm{N}+1)$-by- N matrix. If $A$ is $(N+1)$-by- $(N+1)$, the last column of $A$ must be $[\operatorname{zeros}(N, 1) ; 1]$. Otherwise, $A$ is augmented automatically, such that its last column is [zeros ( $\mathrm{N}, 1$ ) ; 1]. The matrix A defines a forward transformation such that tformfwd $(U, T)$, where $U$ is a 1 -by-N vector, returns a 1-by-N vector $X$, such that $X=U * A(1: N, 1: N)+A(N+1,1: N)$. $T$ has both forward and inverse transformations.

T = maketform('affine' $, \mathrm{U}, \mathrm{X}$ ) builds a TFORM struct T for a two-dimensional affine transformation that maps each row of $U$ to the corresponding row of $X$.

The $U$ and $X$ arguments are each 3-by-2 and define the corners of input and output triangles. The corners cannot be collinear.

## Projective

T = maketform('projective', A) builds a TFORM struct for an N-dimensional projective transformation. $A$ is a nonsingular real $(\mathrm{N}+1)$-by- $(\mathrm{N}+1)$ matrix.
$A(N+1, N+1)$ cannot be 0 . The matrix A defines a forward transformation such that tformfwd $(U, T)$, where $U$ is a 1-by-N vector, returns a 1-by-N vector $X$, such that $X=W(1: N) / W(N+1)$, where $W=[U 1]$ * A. The transformation structure $T$ has both forward and inverse transformations.

T = maketform('projective', U,X) builds a TFORM struct T for a two-dimensional projective transformation that maps each row of $U$ to the corresponding row of $X$. The $U$ and $X$ arguments are each 4 -by- 2 and define the corners of input and output quadrilaterals. No three corners can be collinear.

## Custom

T = maketform('custom', NDIMS_IN,NDIMS_OUT, ...
FORWARD_FCN, INVERSE_FCN, TDATA) builds a custom TFORM struct T based on user-provided function handles and parameters. NDIMS_IN and NDIMS_OUT are the numbers of input and output dimensions. FORWARD_FCN and INVERSE_FCN are function handles to forward and inverse functions. Those functions must support the following syntaxes:

Forward function: $\quad X=$ FORWARD_FCN $(U, T)$
Inverse function: $\quad U=$ INVERSE_FCN $(X, T)$
where $U$ is a P-by-NDIMS_IN matrix whose rows are points in the transformation's input space, and X is a $P$-by-NDIMS_OUT matrix whose rows are points in the transformation's output space. The TDATA argument can be any MATLAB array and is typically used to store parameters of the custom transformation. It is accessible to FORWARD_FCN and INVERSE_FCN via the tdata field of T. Either FORWARD_FCN or INVERSE_FCN can be empty, although at least INVERSE_FCN must be defined to use T with tformarray or imtransform.

## Box

T = maketform('box',tsize, LOW, HIGH) or
T = maketform('box', INBOUNDS, OUTBOUNDS) builds an N -dimensional affine

TFORM struct T . The tsize argument is an N -element vector of positive integers. LOW and HIGH are also N-element vectors. The transformation maps an input box defined by the opposite corners ones ( $1, \mathrm{~N}$ ) and tsize or, alternatively, by corners $\operatorname{INBOUNDS}(1,:)$ and $\operatorname{INBOUND}(2,:)$ to an output box defined by the opposite corners LOW and HIGH or OUTBOUNDS ( $1,:$ ) and OUTBOUNDS ( $2,:$ ). LOW(K) and HIGH(K) must be different unless tsize ( $K$ ) is 1 , in which case the affine scale factor along the Kth dimension is assumed to be 1.0. Similarly, INBOUNDS $(1, K)$ and $\operatorname{INBOUNDS}(2, K)$ must be different unless OUTBOUNDS $(1, K)$ and OUTBOUNDS $(2, K)$ are the same, and vice versa. The 'box' TFORM is typically used to register the row and column subscripts of an image or array to some world coordinate system.

## Composite

T = maketform('composite', T1, T2, ..., TL) or
T = maketform('composite', [T1 T2 ... TL]) builds a TFORM struct T whose forward and inverse functions are the functional compositions of the forward and inverse functions of T1, T2, ..., TL.

For example, if $L=3$, then $\operatorname{tformfwd}(U, T)$ is the same as tformfwd(tformfwd(tformfwd (U, T3), T2) , T1). The components T1 through TL must be compatible in terms of the numbers of input and output dimensions. Thas a defined forward transform function only if all the component transforms have defined forward transform functions. T has a defined inverse transform function only if all the component functions have defined inverse transform functions.

## Example

Make and apply an affine transformation.

```
T = maketform('affine',[.5 0 0; .5 2 0; 0 0 1]);
tformfwd([10 20],T)
I = imread('cameraman.tif');
I2 = imtransform(I,T);
imshow(I2)
```

See Also tformfwd, tforminv, fliptform, imtransform, tformarray

Purpose
Syntax $\quad \begin{aligned} & I=\operatorname{mat} 2 g r a y(A,[\operatorname{amin} \operatorname{amax}]) \\ & \quad I=\operatorname{mat} 2 g r a y(A)\end{aligned}$

## Description

Class Support

## Example

Convert a matrix to a grayscale intensity image 1.0 in I. maximum values in $A$.

I = mat2gray (A, [amin amax]) converts the matrix A to the intensity image I. The returned matrix I contains values in the range 0 (black) to 1.0 (full intensity or white). amin and amax are the values in A that correspond to 0 and

I = mat2gray (A) sets the values of amin and amax to the minimum and

The input array A and the output image I are of class double.

```
I = imread('rice.png');
J = filter2(fspecial('sobel'),I);
K = mat2gray(J);
imview(I), imview(K)
```



See Also
gray2ind
Purpose Compute the mean of the elements of a matrix
Syntax ..... $B=\operatorname{mean2}(A)$
Description $B=$ mean2 $(A)$ computes the mean of the values in $A$.
Class Support The input image A can be numeric or logical. The output image B is a scalar of class double.
Algorithm
mean2 computes the mean of an array $A$ using mean(A(:)).
See Also ..... std2mean, std in the MATLAB Function Reference

## medfilt2

Purpose
Perform two-dimensional median filtering

Syntax<br>Description

## Class Support

## Remarks

The input image A can be of class logical, uint8, uint16, or double (unless the 'indexed ' syntax is used, in which case A cannot be of class uint16). The output image $B$ is of the same class as $A$.

Note For information about performance considerations, see ordfilt2.

```
B = medfilt2(A,[m n])
B = medfilt2(A)
B = medfilt2(A,'indexed',...)
```

Median filtering is a nonlinear operation often used in image processing to reduce "salt and pepper" noise. Median filtering is more effective than convolution when the goal is to simultaneously reduce noise and preserve edges.
$B=m e d f i l t 2(A,[m n])$ performs median filtering of the matrix $A$ in two dimensions. Each output pixel contains the median value in the m-by-n neighborhood around the corresponding pixel in the input image. medfilt2 pads the image with 0's on the edges, so the median values for the points within [ m n ]/2 of the edges might appear distorted.
$B=$ medfilt2(A) performs median filtering of the matrix $A$ using the default 3-by-3 neighborhood.

B = medfilt2(A, 'indexed',...) processes A as an indexed image, padding with 0's if the class of A is uint8, or 1's if the class of A is double.

If the input image $A$ is of an integer class, all the output values are returned as integers. If the number of pixels in the neighborhood (i.e., $m * n$ ) is even, some of the median values might not be integers. In these cases, the fractional parts are discarded. Logical input is treated similarly.

For example, suppose you call medfilt2 using 2-by-2 neighborhoods, and the input image is a uint8 array that includes this neighborhood.

## Example

## Algorithm

See Also
Reference
medfilt2 returns an output value of 4 for this neighborhood, although the true median is 4.5.

This example adds salt and pepper noise to an image, then restores the image using medfilt2.

```
I = imread('eight.tif');
J = imnoise(I,'salt & pepper',0.02);
K = medfilt2(J);
imview(J), imview(K)
```


medfilt2 uses ordfilt2 to perform the filtering.
filter2, ordfilt2, wiener2
[1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ, Prentice Hall, 1990, pp. 469-476.

Purpose
Display multiple image frames as a rectangular montage

Syntax $\quad$| montage $(I)$ |  |
| :--- | :--- |
|  | montage $(B W)$ |
|  | montage $(X$, map $)$ |
|  | montage $($ RGB $)$ |
|  | $h=\operatorname{montage}(\ldots)$ |

Description

Class Support The input image can be of class logical, uint8, uint16, or double.
Example
montage displays all the frames of a multiframe image array in a single image object, arranging the frames so that they roughly form a square.
montage (I) displays the k frames of the intensity image array I. I is m-by-n-by-1-by-k.
montage (BW) displays the $k$ frames of the binary image array $B W$. $B W$ is m-by-n-by-1-by-k.
montage ( $X$, map) displays the $k$ frames of the indexed image array $X$, using the colormap map for all frames. $X$ is m-by-n-by-1-by-k.
montage (RGB) displays the $k$ frames of the true-color image array RGB. RGB is m-by-n-by-3-by-k.
$\mathrm{h}=$ montage $(\ldots)$ returns the handle to the image object.
load mri
montage (D, map)


See Also
immovie

Purpose
Perform general sliding-neighborhood operations

## Syntax

```
B = nlfilter(A,[m n],fun)
B = nlfilter(A,[m n],fun,P1,P2,...)
B = nlfilter(A,'indexed',...)
```

Description $\quad B=n l f i l t e r(A,[m n]$, fun) applies the function fun to each $m$-by- $n$ sliding block of $A$. fun is a function that accepts an m-by-n matrix as input and returns a scalar result.

$$
c=\operatorname{fun}(x)
$$

c is the output value for the center pixel in the m-by-n block $x$. nlfilter calls fun for each pixel in A. nlfilter zero-pads the m-by-n block at the edges, if necessary.
$B=$ nlfilter (A,[m n],fun, P1, P2, ...) passes the additional parameters P1, P2,... to fun.
$B=$ nlfilter (A,'indexed',. .) processes $A$ as an indexed image, padding with 1 's if $A$ is of class double and 0 's if $A$ is of class uint 8.

## Class Support

## Remarks

## Example

See Also blkproc, colfilt

14-334

Purpose	Normalized two-dimensional cross-correlation
Syntax	C = normxcorr2(TEMPLATE, A)
Description	$C=$ normxcorr2(TEMPLATE, A) computes the normalized cross-correlation of
the matrices TEMPLATE and A. The matrix A must be larger than the matrix	
TEMPLATE for the normalization to be meaningful. The values of TEMPLATE	
cannot all be the same. The resulting matrix C contains the correlation	
coefficients, which can range in value from -1.0 to 1.0.	

## See Also

References
corrcoef
[1] Lewis, J. P., "Fast Normalized Cross-Correlation," Industrial Light \& Magic,
[http://www.idiom.com/~zilla/Papers/nvisionInterface/nip.html](http://www.idiom.com/~zilla/Papers/nvisionInterface/nip.html)
[2] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision, Volume II, Addison-Wesley, 1992, pp. 316-317.

## Purpose

```
Syntax rgbmap = ntsc2rgb(yiqmap)
RGB = ntsc2rgb(YIQ)
```


## Description

rgbmap = ntsc2rgb(yiqmap) converts the m-by-3 NTSC (television) color values in yiqmap to RGB color space. If yiqmap is m-by-3 and contains the NTSC luminance $(Y)$ and chrominance ( $I$ and $Q$ ) color components as columns, then rgbmap is an m-by-3 matrix that contains the red, green, and blue values equivalent to those colors. Both rgbmap and yiqmap contain intensities in the range 0 to 1.0 . The intensity 0 corresponds to the absence of the component, while the intensity 1.0 corresponds to full saturation of the component.

RGB $=n t s c 2 r g b(Y I Q)$ converts the NTSC image YIQ to the equivalent true-color image RGB.
ntsc2rgb computes the RGB values from the NTSC components using

$$
\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]=\left[\begin{array}{rrr}
1.000 & 0.956 & 0.621 \\
1.000 & -0.272 & -0.647 \\
1.000 & -1.106 & 1.703
\end{array}\right]\left[\begin{array}{c}
Y \\
I \\
Q
\end{array}\right]
$$

Class Support The input image or colormap must be of class double. The output is of class double.

See Also rgb2ntsc, rgb2ind, ind2rgb, ind2gray

Purpose
Perform two-dimensional order-statistic filtering

Syntax<br>Description

## Class Support

Remarks

```
B = ordfilt2(A,order,domain)
B = ordfilt2(A,order,domain,S)
B = ordfilt2(...,padopt)
```

B = ordfilt2(A,order,domain) replaces each element in A by the orderth element in the sorted set of neighbors specified by the nonzero elements in domain.
$B=$ ordfilt2(A,order,domain,S), where $S$ is the same size as domain, uses the values of $S$ corresponding to the nonzero values of domain as additive offsets.

B = ordfilt2(..., padopt) controls how the matrix boundaries are padded. extended at the boundaries.

The class of A can be logical, uint8, uint16, or double. The class of B is the same as the class of A, unless the additive offset form of ordfilt2 is used, in which case the class of $B$ is double.
domain is equivalent to the structuring element used for binary image

Set padopt to 'zeros' (the default) or 'symmetric'. If padopt is 'zeros', A is padded with 0 's at the boundaries. If padopt is ' symmetric ', $A$ is symmetrically operations. It is a matrix containing only 1's and 0's; the 1's define the neighborhood for the filtering operation.

For example, $\mathrm{B}=\mathrm{ordfilt2}(\mathrm{~A}, 5$, ones $(3,3)$ ) implements a 3-by-3 median filter; $B=\operatorname{ordfilt2}(A, 1$, ones $(3,3))$ implements a 3 -by- 3 minimum filter; and $B=\operatorname{ordfilt}(A, 9$, ones $(3,3))$ implements a 3-by-3 maximum filter. $B=$ ordfilt2 $\left(A, 1,\left[\begin{array}{llllll}0 & 1 & 0 ; 101 ; ~ & 1 & 0\end{array}\right]\right)$ replaces each element in $A$ by the minimum of its north, east, south, and west neighbors.

The syntax that includes S (the matrix of additive offsets) can be used to implement grayscale morphological operations, including grayscale dilation and erosion.

## Performance Considerations

When working with large domain matrices that do not contain any zero-valued elements, ordfilt2 can achieve higher performance if A is in an integer data
format (uint8, int8, uint16, int16). The gain in speed is larger for uint8 and int8 than for the 16 -bit data types. For 8 -bit data formats, the domain matrix must contain seven or more rows. For 16-bit data formats, the domain matrix must contain three or more rows and 520 or more elements.

## See Also <br> medfilt2

Reference
[1] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision, Volume I, Addison-Wesley, 1992.
[2] Huang, T.S., G.J.Yang, and G.Y.Tang. "A fast two-dimensional median filtering algorithm.", IEEE transactions on Acoustics, Speech and Signal Processing, Vol ASSP 27, No. 1, February 1979.

## Purpose <br> Convert optical transfer function to point-spread function

Syntax	```PSF = otf2psf(0TF) PSF = otf2psf(OTF,OUTSIZE)```	
Description	PSF = otf2psf(OTF) computes the inverse Fast Fourier Transform the optical transfer function (OTF) array and creates a point-spread (PSF), centered at the origin. By default, the PSF is the same size as	
	PSF = otf2psf(OTF,OUTSIZE) converts the OTF array into a PSF array OUTSIZE specifies the size of the output point-spread function. The size output array must not exceed the size of the OTF array in any dimen	
	To center the PSF at the origin, otf2psf circularly shifts the values output array down (or to the right) until the ( 1,1 ) element reaches th position, then it crops the result to match dimensions specified by OU	
	Note that this function is used in image convolution/deconvolution w operations involve the FFT.	
Class Support	OTF can be any nonsparse, numeric array. PSF is of class double.	
Example	PSF = fspecial('gaussian', 13, 1) ;	
	OTF = psf2otf(PSF,[31 31]); \% PSF --> OTF	
	PSF2 = otf2psf(OTF,size(PSF)); \% OTF --> PSF2 subplot(1,2,1); surf(abs(OTF)); title('\|OTF	'); axis square; axis tight
	subplot(1,2,2); surf(PSF2); title('Corresponding PSF'); axis square; axis tight	
See Also	psf2otf, circshift, padarray	

## Purpose Pad an array

## Syntax

```
B = padarray(A,padsize)
B = padarray(A,padsize,padval)
B = padarray(A,padsize,padval,direction)
B = padarray(A,padsize,method,direction)
```


## Description

$B=$ padarray (A, padsize) pads array A with padsize(k) number of 0's along the kth dimension of A. padsize should be a vector of positive integers.

B = padarray (A, padsize, padval) pads array A with padval(a scalar)instead of with 0's.

B = padarray(A,padsize, padval,direction) pads A in the direction specified by the string direction. direction can be one of the following strings. The default value is enclosed in braces (\{\}).

Value	Meaning
\{'both' \}	Pads before the first element and after the last array   element along each dimension. This is the default.
'post'	Pad after the last array element along each dimension.
'pre'	Pad before the first array element along each dimension.

$B=$ padarray (A, padsize, method, direction) pads array A using the specified padding method. method specifies the method used to determine the values of the elements added as padding. You can use the following strings to specify the method used to determine pad values.

Value	Meaning
'circular'	Pad with circular repetition of elements within the   dimension.
'replicate'	Pad by repeating border elements of array.
'symmetric'	Pad array with mirror reflections of itself.

## padarray

## Class Support When padding with a constant value, A can be numeric or logical. When

 padding using the 'circular', 'replicate', or 'symmetric' methods, A can be of any class. B is of the same class as A.
## Example

Add three elements of padding to the beginning of a vector. The padding elements contain mirror copies of the array.

```
b = padarray([1 2 3 4],3,'symmetric','pre')
b =
```

3	2	1	1	2	3	4

Add three elements of padding to the end of the first dimension of the array and two elements of padding to the end of the second dimension. Use the value of the last array element as the padding value.

```
B = padarray([1 2; 3 4],[3 2],'replicate','post')
B =
\begin{tabular}{llll}
1 & 2 & 2 & 2 \\
3 & 4 & 4 & 4 \\
3 & 4 & 4 & 4 \\
3 & 4 & 4 & 4 \\
3 & 4 & 4 & 4
\end{tabular}
```

Add three elements of padding to each dimension of a three-dimensional array. Each pad element contains the value 0 .

```
A = [1 2; 3 4];
B = [5 6; 7 8];
C = cat(3,A,B)
C(:,:,1) =
 1 2
 3 4
C(:,:,2) =
 5 6
 7 8
```

$$
\begin{aligned}
& \text { D = padarray (C,[3 3], 0,'both') } \\
& \text { D(:,:,1) = } \\
& \begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 3 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} \\
& D(:,:, 2)=\left[\begin{array}{llll}
0 & & & \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 5 \\
0 & 0 & 0 & 7 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
& 0 & 0
\end{array}\right. \\
& \begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}
\end{aligned}
$$

See Also circshift, imfilter

Purpose
Compute fan-beam projections from parallel-beam tomography data

Syntax

```
F = para2fan(P,D)
I = para2fan(...,param1,val1,param2,val2,...)
[F,fan_positions,fan_rotation_angles] = fan2para(...)
```

Description $\quad F=$ para2fan $(P, D)$ computes the fan-beam data (sinogram) $F$ from the parallel-beam data (sinogram) P. Each column of P contains the parallel-beam sensor samples at one rotation angle. $D$ is the distance in pixels from the center of rotation to the center of the sensors.

The sensors are assumed to have a one-pixel spacing. The parallel-beam rotation angles are assumed to be spaced equally to cover $[0,180]$ degrees. The calculated fan-beam rotation angles cover [ 0,360 ) with the same spacing as the parallel-beam rotation angles. The calculated fan-beam angles are equally spaced with the spacing set to the smallest angle implied by the sensor spacing.

I = para2fan(...,param1,val1,param2,val2,...) specifies parameters that control various aspects of the para2fan conversion. Parameter names can be abbreviated, and case does not matter. Default values are enclosed in braces like this: \{default\}. Parameters include

Parameter	Description
'FanCoverage'	String specifying the range through which the beams are   rotated.
	Possible values: \{'cycle' \} or 'minimal'
	See ifanbeam for details.
'FanRotationIncrement'	Positive real scalar specifying the rotation angle increment of   the fan-beam projections in degrees.
	If 'FanCoverage' is 'cycle ', 'FanRotationIncrement ' must   be a factor of 360.
	If 'FanRotationIncrement ' is not specified, then it is set to   the same spacing as the parallel-beam rotation angles.


Parameter	Description
'FanSensorGeometry '	Text string specifying how sensors are positioned. Possible values: \{'arc'\} or 'line' See fanbeam for details.
'FanSensorSpacing '	Positive real scalar specifying the spacing of the fan beams. Interpretation of the value depends on the setting of 'FanSensorGeometry':   If 'FanSensorGeometry' is 'arc', the value defines the angular spacing in degrees. Default value is 1.   If 'FanSensorGeometry ' is 'line ', the value defines the linear spacing in pixels.   If 'FanSensorSpacing' is not specified, the default is the smallest value implied by 'ParallelSensorSpacing' such that   If 'FanSensorGeometry' is 'arc', 'FanSensorSpacing' is 180/PI*ASIN(PSPACE/D)   where PSPACE is the value of 'ParallelSensorSpacing'.   If 'FanSensorGeometry' is 'line ', 'FanSensorSpacing' is D*ASIN(PSPACE/D)
'Interpolation'	Text string specifying the type of interpolation used between the parallel-beam and fan-beam data. ```'nearest' - Nearest-neighbor \{'linear'\} - Linear 'spline ' - Piecewise cubic spline 'pchip ' — Piecewise cubic Hermite (PCHIP) 'cubic' - Same as 'pchip'```


Parameter	Description
'ParallelCoverage'	Text string specifying the range of rotation. 'cycle' - Parallel data covers 360 degrees \{'halfcycle'\} — Parallel data covers 180 degrees
'ParallelRotationIncrement'	Positive real scalar specifying the parallel-beam rotation angle increment, measured in degrees. Parallel beam angles are calculated to cover $[0,180)$ degrees with increment PAR_ROT_INC, where PAR_ROT_INC is the value of 'ParallelRotationIncrement'. 180/PAR_ROT_INC must be an integer.   If 'ParallelRotationIncrement' is not specified, the increment is assumed to be the same as the increment of the fan-beam rotation angles.
'ParallelSensorSpacing '	Positive real scalar specifying the spacing of the parallel-beam sensors in pixels. The range of sensor locations is implied by the range of fan angles and is given by   [D*sin(min(FAN_ANGLES)), D*sin(max(FAN_ANGLES))]   If 'ParallelSensorSpacing' is not specified, the spacing is assumed to be uniform and is set to the minimum spacing implied by the fan angles and sampled over the range implied by the fan angles.
[F,fan_positions,fan_rotation_angles] = fan2para(...) If 'FanSensorGeometry' is 'arc', fan_positions contains the fan-beam sensor measurement angles. If 'FanSensorGeometry' is 'line', fan_positions contains the fan-beam sensor positions along the line of sensors. fan_rotation_angles contains rotation angles.	
Class Support $\begin{aligned} & \text { All numeric } \\ & \text { are of class d }\end{aligned}$	nput arguments must be of class double. The output arguments uble.
Example   Generate par $\begin{aligned} & \mathrm{ph}=\mathrm{pha} \\ & \text { theta }= \end{aligned}$	allel-beam projections $\begin{aligned} & \text { tom (128) ; } \\ & \text { :180; } \end{aligned}$

```
[P,xp] = radon(ph,theta);
imshow(theta,xp,P,[],'n'), axis normal
title('Parallel-Beam Projections')
xlabel('0 (degrees)')
ylabel('x''')
colormap(hot), colorbar
```

Convert to fan-beam projections

```
[F,Fpos,Fangles] = para2fan(P, 100);
figure, imshow(Fangles,Fpos,F,[],'n'), axis normal
title('Fan-Beam Projections')
xlabel('0 (degrees)')
ylabel('Sensor Locations (degrees)')
colormap(hot), colorbar
```


## See Also

fan2para, fanbeam, iradon, ifanbeam, phantom, radon

## phantom

Purpose
Generate a head phantom image
Syntax $\quad \begin{array}{ll}P=\operatorname{phantom}(\operatorname{def}, n) \\ & P=\operatorname{phantom}(E, n) \\ & {[P, E]=\operatorname{phantom}(\ldots)}\end{array}$
Description
$P=$ phantom(def, $n$ ) generates an image of a head phantom that can be used to test the numerical accuracy of radon and iradon or other two-dimensional reconstruction algorithms. $P$ is a grayscale intensity image that consists of one large ellipse (representing the brain) containing several smaller ellipses (representing features in the brain).
def is a string that specifies the type of head phantom to generate. Valid values are

- 'Shepp-Logan ' - Test image used widely by researchers in tomography
- 'Modified Shepp-Logan' (default) - Variant of the Shepp-Logan phantom in which the contrast is improved for better visual perception
n is a scalar that specifies the number of rows and columns in $P$. If you omit the argument, n defaults to 256 .
$P=$ phantom $(E, n)$ generates a user-defined phantom, where each row of the matrix E specifies an ellipse in the image. $E$ has six columns, with each column containing a different parameter for the ellipses. This table describes the columns of the matrix.

Column	Parameter	Meaning
Column 1	A	Additive intensity value of the   ellipse
Column 2	a	Length of the horizontal semiaxis of   the ellipse
Column 3	b	Length of the vertical semiaxis of   the ellipse
Column 4	xo	$x$-coordinate of the center of the   ellipse


Column	Parameter	Meaning
Column 5	yo	$y$-coordinate of the center of the   ellipse
Column 6	phi	Angle (in degrees) between the   horizontal semiaxis of the ellipse   and the $x$-axis of the image

For purposes of generating the phantom, the domains for the $x$ - and $y$-axes span $[-1,1]$. Columns 2 through 5 must be specified in terms of this range. $[P, E]=$ phantom (...) returns the matrix E used to generate the phantom.

## Class Support

Remarks

All inputs and all outputs must be of class double.
For any given pixel in the output image, the pixel's value is equal to the sum of the additive intensity values of all ellipses that the pixel is a part of. If a pixel is not part of any ellipse, its value is 0 .

The additive intensity value A for an ellipse can be positive or negative; if it is negative, the ellipse will be darker than the surrounding pixels. Note that, depending on the values of $A$, some pixels can have values outside the range [0,1].

## Example

```
P = phantom('Modified Shepp-Logan',200);
imshow(P)
```



Reference

See Also
radon, iradon

Purpose
Display information about image pixels

Syntax<br>Description

```
pixval on
pixval off
pixval
pixval(fig,option)
pixval(ax,option)
pixval(H,option)
```

pixval on turns on interactive display of information about image pixels in the current figure. pixval installs a black bar at the bottom of the figure, which displays the ( $\mathrm{x}, \mathrm{y}$ ) coordinates for whatever pixel the cursor is currently over and the color information for that pixel. If the image is binary or intensity, the color information is a single intensity value. If the image is indexed or RGB, the color information is an RGB triplet. The values displayed are the actual data values, regardless of the class of the image array, or whether the data is in normal image range.

If you click the image and hold down the mouse button while you move the cursor, pixval also displays the Euclidean distance between the point you clicked and the current cursor location. pixval draws a line between these points to indicate the distance being measured. When you release the mouse button, the line and the distance display disappear.

You can move the display bar by clicking it and dragging it to another place in the figure.
pixval off turns interactive display off in the current figure. You can also turn off the display by clicking the button on the right side of the display bar.
pixval toggles interactive display on or off in the current figure.
pixval(fig, option) applies the pixval command to the figure specified by fig. option is a string containing 'on' or 'off'.
pixval(ax,option) applies the pixval command to the figure that contains the axes ax. option is a string containing 'on' or 'off'.
pixval(H,option) applies the pixval command to the figure that contains the image object H . option is a string containing 'on' or 'off'.

## Purpose

Convert region polygon to region mask

## Syntax

BW = poly2mask(x,y,m,n)

## Example

## See Also roipoly

## Purpose <br> Convert point-spread function to optical transfer function

Syntax	```OTF = psf2otf(PSF) OTF = psf2otf(PSF,OUTSIZE)```	
Description	OTF $=$ psf2otf(PSF) computes the fast Fourier transform (FFT) of the point-spread function (PSF) array and creates the optical transfer function array, OTF, that is not influenced by the PSF off-centering. By default, the OT array is the same size as the PSF array.	
	OTF = psf2otf(PSF, OUTSIZE) converts the PSF array into an OTF array, wher OUTSIZE specifies the size of the OTF array. OUTSIZE cannot be smaller than the PSF array size in any dimension.	
	To ensure that the OTF is not altered because of PSF off-centering, psf2otf postpads the PSF array (down or to the right) with 0's to match dimensions specified in OUTSIZE, then circularly shifts the values of the PSF array up (or to the left) until the central pixel reaches $(1,1)$ position.	
	Note that this function is used in image convolution/deconvolution when the operations involve the FFT.	
Class Support	PSF can be any nonsparse, numeric array. OTF is of class double.	
Example	PSF = fspecial('gaussian', 13, 1) ;	
	OTF = psf2otf(PSF,[31 31]); \% PSF --> OTF	
	subplot(1,2,1); surf(PSF); title('PSF');	
	axis square; axis tight	
	subplot(1,2,2); surf(abs(OTF)); title('Corresponding \|OTF	'); axis square; axis tight
See Also	otf2psf, circshift, padarray	

## Purpose Perform quadtree decomposition

Syntax<br>\section*{Description}

```
S = qtdecomp(I)
S = qtdecomp(I,threshold)
S = qtdecomp(I,threshold,mindim)
S = qtdecomp(I,threshold,[mindim maxdim])
S = qtdecomp(I,fun)
S = qtdecomp(I,fun,P1,P2,...)
```

qtdecomp divides a square image into four equal-sized square blocks, and then tests each block to see if it meets some criterion of homogeneity. If a block meets the criterion, it is not divided any further. If it does not meet the criterion, it is subdivided again into four blocks, and the test criterion is applied to those blocks. This process is repeated iteratively until each block meets the criterion. The result can have blocks of several different sizes.
$S=q t d e c o m p(I)$ performs a quadtree decomposition on the intensity image I and returns the quadtree structure in the sparse matrix S . If $\mathrm{S}(\mathrm{k}, \mathrm{m})$ is nonzero, then $(k, m)$ is the upper left corner of a block in the decomposition, and the size of the block is given by $S(k, m)$. By default, qtdecomp splits a block unless all elements in the block are equal.
$S=q t d e c o m p(I$, threshold) splits a block if the maximum value of the block elements minus the minimum value of the block elements is greater than threshold. threshold is specified as a value between 0 and 1 , even if I is of class uint8 or uint16. If I is uint8, the threshold value you supply is multiplied by 255 to determine the actual threshold to use; if I is uint16, the threshold value you supply is multiplied by 65535.

S = qtdecomp(I,threshold,mindim) will not produce blocks smaller than mindim, even if the resulting blocks do not meet the threshold condition.

S = qtdecomp(I,threshold,[mindim maxdim]) will not produce blocks smaller than mindim or larger than maxdim. Blocks larger than maxdim are split even if they meet the threshold condition. maxdim/mindim must be a power of 2 .
$S=q t d e c o m p(I, f u n)$ uses the function fun to determine whether to split a block. qtdecomp calls fun with all the current blocks of size m-by-m stacked into an m-by-m-by-k array, where $k$ is the number of m-by-m blocks. fun should return
a logical k-element vector, whose values are 1 if the corresponding block should be split, and 0 otherwise. (For example, if $k$ (3) is 0 , the third $m$-by-m block should not be split.) fun can be a function_handle, created using @, or an inline object.

S = qtdecomp( I, fun $, \mathrm{P} 1, \mathrm{P} 2, \ldots$ ) passes $\mathrm{P} 1, \mathrm{P} 2, \ldots$ as additional arguments to fun.

Class Support For the syntaxes that do not include a function, the input image can be of class logical, uint8, uint16, or double. For the syntaxes that include a function, the input image can be of any class supported by the function. The output matrix is always of class sparse.

## Remarks

## Example

qtdecomp is appropriate primarily for square images whose dimensions are a power of 2 , such as 128 -by- 128 or 512 -by- 512 . These images can be divided until the blocks are as small as 1-by-1. If you use qtdecomp with an image whose dimensions are not a power of 2 , at some point the blocks cannot be divided further. For example, if an image is 96 -by- 96 , it can be divided into blocks of size 48 -by- 48 , then 24 -by- 24,12 -by- 12,6 -by- 6 , and finally 3 -by- 3 . No further division beyond 3 -by- 3 is possible. To process this image, you must set mindim to 3 (or to 3 times a power of 2); if you are using the syntax that includes a function, the function must return 0 at the point when the block cannot be divided further.

$\mathrm{I}=[1$	1	1	1	2	3	6	6
1	1	2	1	4	5	6	8
1	1	1	1	10	15	7	7
1	1	1	1	20	25	7	7
20	22	20	22	1	2	3	4
20	22	22	20	5	6	7	8
20	22	20	20	9	10	11	12
22	22	20	20	13	14	15	16];
S = qtdecomp ( $\mathrm{I}, 5$ ) ;							

```
ans =
```

4	0	0	0	2	0	2	0
0	0	0	0	0	0	0	0
0	0	0	0	1	1	2	0
0	0	0	0	1	1	0	0
4	0	0	0	2	0	2	0
0	0	0	0	0	0	0	0
0	0	0	0	2	0	2	0
0	0	0	0	0	0	0	0

View the block representation of quadtree decomposition.

```
I = imread('liftingbody.png');
S = qtdecomp(I,.27);
blocks = repmat(uint8(0),size(S));
for dim = [512 256 128 64 32 16 8 4 2 1];
 numblocks = length(find(S==dim));
 if (numblocks > 0)
 values = repmat(uint8(1),[dim dim numblocks]);
 values(2:dim,2:dim,:) = 0;
 blocks = qtsetblk(blocks,S,dim,values);
 end
end
blocks(end,1:end) = 1;
blocks(1:end,end) = 1;
imshow(I),figure,imshow(blocks,[])
```

The following figure shows the original image and a representation of the quadtree decomposition of the image.

## qtdecomp



Image Courtesy of NASA

See Also qtgetblk, qtsetblk

## Purpose

Syntax $\quad$| $[$ vals, $r, c]$ | $=q \operatorname{tgetblk}(I, S, \operatorname{dim})$ |
| ---: | :--- |
| $[$ vals,idx] | $=q \operatorname{tgetblk}(I, s, \operatorname{dim})$ |

Get block values in quadtree decomposition
[vals,r,c] = qtgetblk(I,S,dim) [vals,idx] = qtgetblk(I,S,dim)

## Class Support

Remarks

## Example

Description

[vals, $r, c$ ] = qtgetblk(I, S, dim) returns in vals an array containing the dim-by-dim blocks in the quadtree decomposition of I. S is the sparse matrix returned by qtdecomp; it contains the quadtree structure. vals is a dim-by-dim-by-k array, where $k$ is the number of dim-by-dim blocks in the quadtree decomposition; if there are no blocks of the specified size, all outputs are returned as empty matrices. $r$ and $c$ are vectors containing the row and column coordinates of the upper left corners of the blocks.
[vals,idx] = qtgetblk(I, S, dim) returns in idx a vector containing the linear indices of the upper left corners of the blocks.

I can be of class logical, uint8, uint16, or double. $S$ is of class sparse.
The ordering of the blocks in vals matches the columnwise order of the blocks in I. For example, if vals is 4 -by-4-by- 2 , vals ( $:,:, 1$ ) contains the values from the first 4-by-4 block in I, and vals ( $:,:, 2$ ) contains the values from the second 4-by-4 block.

This example continues the qtdecomp example.

```
[vals,r,c] = qtgetblk(I, S, 4)
vals(:,:,1) =
```

$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$
$\begin{array}{llll}1 & 1 & 2 & 1\end{array}$
$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$
$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$

```
vals(:,:,2) =
 20 22 20 22
 20 22 22 20
 20 22 20 20
 22 22 20 20
 r=
 1
 5
 C =
 1
 1
```

See Also qtdecomp, qtsetblk

## Purpose

## Syntax <br> $J=q t s e t b l k(I, S, d i m, v a l s)$

Description

## Class Support

Remarks

Example
Set block values in quadtree decomposition quadtree decomposition. values for the second 4 -by- 4 block.
$J=q t s e t b l k(I, S, d i m, v a l s)$ replaces each dim-by-dim block in the quadtree decomposition of I with the corresponding dim-by-dim block in vals. $S$ is the sparse matrix returned by qtdecomp; it contains the quadtree structure. vals is a dim-by-dim-by-k array, where $k$ is the number of dim-by-dim blocks in the

I can be of class logical, uint8, uint16, or double. $S$ is of class sparse.
The ordering of the blocks in vals must match the columnwise order of the blocks in I. For example, if vals is 4-by-4-by- 2 , vals $(:,:, 1)$ contains the values used to replace the first 4-by-4 block in I, and vals ( $:,:, 2$ ) contains the

This example continues the qtgetblock example.

```
newvals = cat(3,zeros(4), ones(4));
\(J\) = qtsetblk(I, S, 4, newvals)
 \(J=\)
```

0	0	0	0	2	3	6	6
0	0	0	0	4	5	6	8
0	0	0	0	10	15	7	7
0	0	0	0	20	25	7	7
1	1	1	1	1	2	3	4
1	1	1	1	5	6	7	8
1	1	1	1	9	10	11	12
1	1	1	1	13	14	15	16

See Also qtdecomp, qtgetblk

## qtsetblk

Purpose	radon
Radon transform	
Syntax	$R=\operatorname{radon}(I$, theta $)$
	$[R, x p]=\operatorname{radon}(\ldots)$

Description
$R=$ radon(I, theta) returns the Radon transform $R$ of the intensity image $I$ for the angle theta degrees.
The Radon transform is the projection of the image intensity along a radial line oriented at a specific angle. If theta is a scalar, $R$ is a column vector containing the Radon transform for theta degrees. If theta is a vector, $R$ is a matrix in which each column is the Radon transform for one of the angles in theta. If you omit theta, it defaults to 0:179.
$[R, x p]=\operatorname{radon}(\ldots)$ returns a vector $x p$ containing the radial coordinates corresponding to each row of $R$.

The radial coordinates returned in xp are the values along the $x$ '-axis, which is oriented at theta degrees counterclockwise from the $x$-axis. The origin of both axes is the center pixel of the image, which is defined as

```
floor((size(I)+1)/2)
```

For example, in a 20 -by- 30 image, the center pixel is $(10,15)$.

## Class Support

I can be of class double, logical, or any integer class. All other inputs and outputs are of class double.

## Example

```
iptsetpref('ImshowAxesVisible','on')
I = zeros(100,100);
I (25:75,25:75) = 1;
theta = 0:180;
[R,xp] = radon(I,theta);
imshow(theta,xp,R,[],'notruesize')
xlabel('0 (degrees)')
ylabel('x''')
colormap(hot), colorbar
```



See Also
References
fan2para, fanbeam, ifanbeam, iradon, para2fan, phantom
Bracewell, Ronald N., Two-Dimensional Imaging, Englewood Cliffs, NJ, Prentice Hall, 1995, pp. 505-537.

Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ, Prentice Hall, 1990, pp. 42-45.
Purpose Reflect structuring element
Syntax SE2 $=$ reflect(SE)
Description
Class Support
Example

se = strel([0 0 1; 0 0 0; 0 0 0])

se2 $=$ reflect(se)

se =

Flat STREL object containing 1 neighbor.
Neighborhood:
$0 \quad 0 \quad 1$
$0 \quad 0 \quad 0$
$0 \quad 0 \quad 0$
se2 =
Flat STREL object containing 1 neighbor.
Neighborhood:
$0 \quad 0 \quad 0$
$0 \quad 0 \quad 0$
100
See Also
strel

## Purpose

## Syntax

Description

Definitions

Measure properties of image regions

```
STATS = regionprops(L,properties)
```

STATS = regionprops(L,properties) measures a set of properties for each labeled region in the label matrix L. Positive integer elements of L correspond to different regions. For example, the set of elements of $L$ equal to 1 corresponds to region 1 ; the set of elements of $L$ equal to 2 corresponds to region 2 ; and so on. The return value STATS is a structure array of length $\max (\mathrm{L}(:))$. The fields of the structure array denote different measurements for each region, as specified by properties.
properties can be a comma-separated list of strings, a cell array containing strings, the single string 'all', or the string 'basic'. This table lists the set of valid property strings. Property strings are case insensitive and can be abbreviated.

'Area'	'EquivDiameter'	'MajorAxisLength'
'BoundingBox'	'EulerNumber'	'MinorAxisLength'
'Centroid'	'Extent'	'Orientation'
'ConvexArea'	'Extrema'	'PixelIdxList'
'ConvexHull'	'FilledArea'	'PixelList'
'ConvexImage'	'FilledImage'	'Solidity'
'Eccentricity'	'Image'	

If properties is the string 'all', then all the preceding measurements are computed. If properties is not specified or if it is the string 'basic', then these measurements are computed: 'Area', 'Centroid', and 'BoundingBox'.
'Area ' - Scalar; the actual number of pixels in the region. (This value might differ slightly from the value returned by bwarea, which weights different patterns of pixels differently.)

## regionprops

'BoundingBox' — 1-by-ndims(L)*2 vector; the smallest rectangle containing the region. BoundingBox is [ul_corner width], where
ul_corner is in the form [x y z ...] and specifies the upper left corner of the bounding box
width is in the form [x_width y_width ...] and specifies the width of the bounding box along each dimension
'Centroid ' - 1-by-ndims (L) vector; the center of mass of the region. Note that the first element of Centroid is the horizontal coordinate (or $x$-coordinate) of the center of mass, and the second element is the vertical coordinate (or $y$-coordinate). All other elements of Centroid are in order of dimension.

This figure illustrates the centroid and bounding box. The region consists of the white pixels; the green box is the bounding box, and the red dot is the centroid.

'MajorAxisLength ' - Scalar; the length (in pixels) of the major axis of the ellipse that has the same normalized second central moments as the region. This property is supported only for 2-D input label matrices.
'MinorAxisLength' - Scalar; the length (in pixels) of the minor axis of the ellipse that has the same normalized second central moments as the region. This property is supported only for 2-D input label matrices.
'Eccentricity ' - Scalar; the eccentricity of the ellipse that has the same second-moments as the region. The eccentricity is the ratio of the distance between the foci of the ellipse and its major axis length. The value is between 0 and 1. ( 0 and 1 are degenerate cases; an ellipse whose eccentricity is 0 is actually a circle, while an ellipse whose eccentricity is 1 is a line segment.) This property is supported only for 2-D input label matrices.
'Orientation' - Scalar; the angle (in degrees) between the $x$-axis and the major axis of the ellipse that has the same second-moments as the region. This property is supported only for 2-D input label matrices.

This figure illustrates the axes and orientation of the ellipse. The left side of the figure shows an image region and its corresponding ellipse. The right side shows the same ellipse, with features indicated graphically; the solid blue lines are the axes, the red dots are the foci, and the orientation is the angle between the horizontal dotted line and the major axis.

' Image ' - Binary image (logical) of the same size as the bounding box of the region; the on pixels correspond to the region, and all other pixels are off.

'FilledImage ' - Binary image (logical) of the same size as the bounding box of the region. The on pixels correspond to the region, with all holes filled in.
'FilledArea' - Scalar; the number of on pixels in FilledImage.


Original Image, Containing a Single Region


Image Returned
'ConvexHull' - p-by-2 matrix; the smallest convex polygon that can contain the region. Each row of the matrix contains the $x$ - and $y$-coordinates of one vertex of the polygon. This property is supported only for 2-D input label matrices.
'ConvexImage ' — Binary image (logical); the convex hull, with all pixels within the hull filled in (i.e., set to on). (For pixels that the boundary of the hull passes through, regionprops uses the same logic as roipoly to determine whether the pixel is inside or outside the hull.) The image is the size of the bounding box of the region. This property is supported only for 2-D input label matrices.
'ConvexArea' - Scalar; the number of pixels in 'ConvexImage '. This property is supported only for 2-D input label matrices.
'EulerNumber ' - Scalar; equal to the number of objects in the region minus the number of holes in those objects. This property is supported only for 2-D input label matrices.
'Extrema ' - 8-by-2 matrix; the extrema points in the region. Each row of the matrix contains the $x$ - and $y$-coordinates of one of the points. The format of the vector is [top-left top-right right-top right-bottom bottom-right bottom-left left-bottom left-top]. This property is supported only for 2-D input label matrices.

This figure illustrates the extrema of two different regions. In the region on the left, each extrema point is distinct; in the region on the right, certain extrema points (e.g., top-left and left-top) are identical.

'EquivDiameter ' - Scalar; the diameter of a circle with the same area as the region. Computed as sqrt (4*Area/pi). This property is supported only for 2-D input label matrices.
'Solidity ' - Scalar; the proportion of the pixels in the convex hull that are also in the region. Computed as Area/ConvexArea. This property is supported only for 2 -D input label matrices.
'Extent ' - Scalar; the proportion of the pixels in the bounding box that are also in the region. Computed as the Area divided by the area of the bounding box. This property is supported only for 2-D input label matrices.
'PixelIdxList' - p-element vector containing the linear indices of the pixels in the region.
'PixelList' - p-by-ndims(L) matrix; the actual pixels in the region. Each row of the matrix has the form $[x y z \ldots]$ and specifies the coordinates of one pixel in the region.

Class Support The input label matrix L can have any numeric class.

## Remarks

## Using the Comma-Separated List Syntax

The comma-separated list syntax for structure arrays is very useful when you work with the output of regionprops. For example, for a field that contains a scalar, you can use this syntax to create a vector containing the value of this field for each region in the image.

For instance, if stats is a structure array with field Area, then the following two expressions are equivalent:

```
stats(1).Area, stats(2).Area, ..., stats(end).Area
stats.Area
```

and

Therefore, you can use these calls to create a vector containing the area of each region in the image.

```
stats = regionprops(L,'Area');
allArea = [stats.Area];
```

allArea is a vector of the same length as the structure array stats.

## Selecting Regions Based on Certain Criteria

The function ismember is useful in conjunction with regionprops for selecting regions based on certain criteria. For example, these commands create a binary image containing only the regions whose area is greater than 80.

```
idx = find([stats.Area] > 80);
BW2 = ismember(L,idx);
```


## Performance Considerations

Most of the measurements take very little time to compute. The exceptions are these, which can take significantly longer, depending on the number of regions in L :

- 'ConvexHull'
- 'ConvexImage'
- 'ConvexArea'
- 'FilledImage'

Note that computing certain groups of measurements takes about the same amount of time as computing just one of them because regionprops takes advantage of intermediate computations used in both computations. Therefore, it is fastest to compute all the desired measurements in a single call to regionprops.

## Working with Binary Images

You must convert a binary image to a label matrix before calling regionprops.
Two common ways to convert a binary image to a label matrix are by using the bwlabel function,

L = bwlabel(BW);
or using the double function,
L = double(BW);
Note, however, that these functions produce different but equally valid label matrices from the same binary image.

For example, given the following logical matrix, BW,

1	1	0	0	0	0
1	1	0	0	0	0
0	0	0	0	0	0
0	0	0	0	1	1
0	0	0	0	1	1

bwlabel creates a label matrix containing two contiguous regions labeled by the integer values 1 and 2.

```
mylabel = bwlabel(BW)
mylabel =
```

1	1	0	0	0	0
1	1	0	0	0	0
0	0	0	0	0	0
0	0	0	0	2	2
0	0	0	0	2	2

The double function creates a label matrix containing one discontiguous region labeled by the integer value 1.

```
mylabel2 = double(BW)
mylabel2 =
```

    \(\begin{array}{llllll}1 & 1 & 0 & 0 & 0 & 0\end{array}\)
    | 1 | 1 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 0 | 1 | 1 |

Because each result is legitimately desirable in certain situations, regionprops does not attempt to perform either type of conversion on binary images and instead requires that you convert them using either method.

## Example

See Also
bwlabel, bwlabeln, ismember, watershed

## Purpose <br> Convert an RGB image or colormap to grayscale

Syntax	$\mathrm{I}=\mathrm{rgb2gray}(\mathrm{RGB})$
	newmap $=\operatorname{rgb2gray}($ map $)$

Description
rgb2gray converts RGB images to grayscale by eliminating the hue and saturation information while retaining the luminance.

I = rgb2gray (RGB) converts the true-color image RGB to the grayscale intensity image I .
newmap $=$ rgb2gray (map) returns a grayscale colormap equivalent to map.
Class Support If the input is an RGB image, it can be of class uint8, uint16, or double. The output image $I$ is of the same class as the input image. If the input is a colormap, the input and output colormaps are both of class double.

Algorithm	rgb2gray converts the RGB values to NTSC coordinates, sets the hue and   saturation components to zero, and then converts back to RGB color space.
See Also	ind2gray, ntsc2rgb, rgb2ind, rgb2ntsc

Purpose<br>Convert RGB values to hue-saturation-value (HSV) color space<br>rgb2hsv is a function in MATLAB. To get help for this function, select MATLAB Help from the Help menu and view the online function reference pages.

Purpose
Convert an RGB image to an indexed image

## Syntax

## Description

## Class Support

[X,map] = rgb2ind(RGB,tol)
[ $X$, map] $=r g b 2 i n d(R G B, n)$
$X=r g b 2 i n d(R G B, m a p)$
[...] = rgb2ind(...,dither_option) methods: uniform quantization, minimum variance quantization, and unless you specify 'nodither' for dither_option. tol must be between 0 and 1.0. less than or equal to 65536. map. size (map,1) must be less than or equal to 65536. dither_option is a string that can have one of these values: the expense of spatial resolution. new map. No dithering is performed.
rgb2ind converts RGB images to indexed images using one of three different colormap mapping. For all these methods, rgb2ind also dithers the image
[ $X$, map] $=$ rgb2ind (RGB, tol) converts the RGB image to an indexed image $X$ using uniform quantization. map contains at most (floor (1/tol)+1)^3 colors.
[ $X$, map] = rgb2ind (RGB, $n$ ) converts the RGB image to an indexed image $X$ using minimum variance quantization. map contains at most $n$ colors. $n$ must be
$X=r g b 2 i n d(R G B, m a p)$ converts the RGB image to an indexed image $X$ with colormap map by matching colors in RGB with the nearest color in the colormap
[...] = rgb2ind(..., dither_option) enables or disables dithering.

- 'dither' (default) dithers, if necessary, to achieve better color resolution at
- 'nodither' maps each color in the original image to the closest color in the

The input image can be of class uint8, uint16, or double. If the length of map is less than or equal to 256 , the output image is of class uint8. Otherwise, the output image is of class uint16.

If you specify tol, rgb2ind uses uniform quantization to convert the image. This method involves cutting the RGB color cube into smaller cubes of length tol. For example, if you specify a tol of 0.1 , the edges of the cubes are one-tenth the length of the RGB cube. The total number of small cubes is

```
n = (floor(1/tol)+1)^3
```

Each cube represents a single color in the output image. Therefore, the maximum length of the colormap is $n$. rgb2ind removes any colors that don't appear in the input image, so the actual colormap can be much smaller than $n$.

If you specify $n$, rgb2ind uses minimum variance quantization. This method involves cutting the RGB color cube into smaller boxes (not necessarily cubes) of different sizes, depending on how the colors are distributed in the image. If the input image actually uses fewer colors than the number you specify, the output colormap is also smaller.

If you specify map, rgb2ind uses colormap mapping, which involves finding the colors in map that best match the colors in the RGB image.

## Example

See Also

cmunique, dither, imapprox, ind2rgb, rgb2gray

Purpose
$\begin{array}{ll}\text { Syntax } & \text { yiqmap }=\operatorname{rgb2ntsc}(\text { rgbmap }) \\ & \text { YIQ }=\operatorname{rgb2ntsc}(\text { RGB })\end{array}$
Description

## Remarks

 equivalent to the colors in the RGB colormap. NTSC image YIQ.yiqmap $=$ rgb2ntsc (rgbmap) converts the m-by-3 RGB values in rgbmap to NTSC color space. yiqmap is an m-by-3 matrix that contains the NTSC luminance ( $Y$ ) and chrominance ( $I$ and $Q$ ) color components as columns that are
$Y I Q=r g b 2 n t s c(R G B)$ converts the true-color image RGB to the equivalent

In the NTSC color space, the luminance is the grayscale signal used to display pictures on monochrome (black and white) televisions. The other components carry the hue and saturation information.
rgb2ntsc defines the NTSC components using

$$
\left[\begin{array}{l}
Y \\
I \\
Q
\end{array}\right]=\left[\begin{array}{rrr}
0.299 & 0.587 & 0.114 \\
0.596 & -0.274 & -0.322 \\
0.211 & -0.523 & 0.312
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

## Class Support

See Also

If the input is an RGB image, it can be of class uint8, uint16, or double; the output image is of class double. If the input is a colormap, the input and output colormaps are both of class double.
ntsc2rgb, rgb2ind, ind2rgb, ind2gray

## Purpose <br> Convert RGB values to YCbCr color space

Syntax	ycbcrmap $=\operatorname{rgb2ycbcr}($ rgbmap $)$
	YCBCR $=\operatorname{rgb2ycbcr}(\mathrm{RGB})$

## Description

Class Support If the input is an RGB image, it can be of class uint8, uint16, or double; the output image is of the same class as the input image. If the input is a colormap, the input and output colormaps are both of class double.

See Also ntsc2rgb, rgb2ntsc, ycbcr2rgb

## Purpose

Plot colormap
rgbplot is a MATLAB function. To get help for this function, select MATLAB Help from the Help menu and view the online function reference page.

## Purpose

## Syntax <br> BW = roicolor(A,low, high) <br> $B W=\operatorname{roicolor}(A, v)$

## Description

Class Support
Example
Select region of interest, based on color filtering using roifilt2.)

$$
B W=(A>=\text { low }) \&(A<=\text { high })
$$ values of $A$ match the values of $v$.

roicolor selects a region of interest within an indexed or intensity image and returns a binary image. (You can use the returned image as a mask for masked
$\mathrm{BW}=$ roicolor(A, low, high ) returns a region of interest selected as those pixels that lie within the colormap range [low high].

BW is a binary image with 0's outside the region of interest and 1's inside.
$\mathrm{BW}=$ roicolor ( $\mathrm{A}, \mathrm{v}$ ) returns a region of interest selected as those pixels in A that match the values in vector v . BW is a binary image with 1's where the

The input image A must be numeric. The output image BW is of class logical.
I = imread('rice.png');
BW = roicolor(I,128,255);
imshow(I);
figure, imshow(BW)


See Also roifilt2, roipoly

Purpose
Smoothly interpolate within an arbitrary image region

```
Syntax
J = roifill(I,c,r)
J = roifill(I,BW)
[J,BW] = roifill(...)
J = roifill(x,y,I,xi,yi)
[x,y,J,BW,xi,yi] = roifill(...)
```


## Description

roifill fills in a specified polygon in an intensity image. It smoothly
interpolates inward from the pixel values on the boundary of the polygon by solving Laplace's equation. roifill can be used, for example, to erase small objects in an image.
$J=$ roifill( $I, c, r$ ) fills in the polygon specified by $c$ and $r$, which are equal-length vectors containing the row-column coordinates of the pixels on vertices of the polygon. The kth vertex is the pixel $(r(k), c(k))$.
$J=$ roifill(I) displays the image $I$ on the screen and lets you specify the polygon using the mouse. If you omit I, roifill operates on the image in the current axes. Use normal button clicks to add vertices to the polygon. Pressing Backspace or Delete removes the previously selected vertex. A shift-click, right-click, or double-click adds a final vertex to the selection and then starts the fill; pressing Return finishes the selection without adding a vertex.
$J=$ roifill( $I, B W$ ) uses BW (a binary image the same size as I) as a mask. roifill fills in the regions in I corresponding to the nonzero pixels in BW. If there are multiple regions, roifill performs the interpolation on each region independently.
$[J, B W]=$ roifill (...) returns the binary mask used to determine which pixels in I get filled. BW is a binary image the same size as I with 1's for pixels corresponding to the interpolated region of I and 0's elsewhere.
$J=$ roifill ( $x, y, I, x i, y i)$ uses the vectors $x$ and $y$ to establish a nondefault spatial coordinate system. xi and yi are equal-length vectors that specify polygon vertices as locations in this coordinate system.
$[x, y, J, B W, x i, y i]=\operatorname{roifill}(\ldots)$ returns the XData and YData in $x$ and $y$, the output image in $J$, the mask image in BW, and the polygon coordinates in $x i$ and yi. xi and yi are empty if the roifill( $I, B W$ ) form is used.

If roifill is called with no output arguments, the resulting image is displayed in a new figure.

## Class Support

The input image I can of class uint8, uint16, or double. The input binary mask BW can be any numeric class or logical. The output binary mask BW is always logical. The output image $J$ is of the same class as I. All other inputs and outputs are of class double.

## Example

```
I = imread('eight.tif');
c = [222 272 300 270 221 194];
r = [21 21 75 121 121 75];
J = roifill(I,c,r);
imshow(I)
figure, imshow(J)
```



See Also roifilt2, roipoly

## Purpose Filter a region of interest

Syntax $\quad$| $J$ | $=\operatorname{roifilt2}(h, I, B W)$ |
| ---: | :--- |
| $J$ | $=\operatorname{roifilt2}(I, B W, f u n)$ |
| $J$ | $=\operatorname{roifilt} 2(I, B W, f u n, P 1, P 2, \ldots)$ |

Description

## Class Support

$J=$ roifilt2(h, I, BW) filters the data in I with the two-dimensional linear filter $h$. BW is a binary image the same size as I that is used as a mask for filtering. roifilt2 returns an image that consists of filtered values for pixels in locations where BW contains 1's, and unfiltered values for pixels in locations where BW contains 0's. For this syntax, roifilt2 calls filter2 to implement the filter.
$J=$ roifilt2(I,BW,fun) processes the data in I using the function fun. The result $J$ contains computed values for pixels in locations where BW contains 1's, and the actual values in I for pixels in locations where BW contains 0's.
fun can be a function_handle, created using @, or an inline object. fun should take a matrix as a single argument and return a matrix of the same size.
$y=f u n(x)$
$\mathrm{J}=$ roifilt2(I, BW,fun, P1, P2, ...) passes the additional parameters P1, P2, ... to fun.

For the syntax that includes a filter $h$, the input image I can be of class uint8, uint16, or double, and the output array $J$ has the same class as the input image. For the syntax that includes a function, I can be of any class supported by fun, and the class of $J$ depends on the class of the output from fun.

## Example <br> This example continues the roipoly example.

```
I = imread('eight.tif');
c = [222 272 300 270 221 194];
r = [21 21 75 121 121 75];
BW = roipoly(I,c,r);
h = fspecial('unsharp');
J = roifilt2(h,I,BW);
imshow(J), figure, imshow(J)
```



See Also filter2, roipoly

Purpose
Select a polygonal region of interest

## Syntax

```
BW = roipoly(I,c,r)
BW = roipoly(I)
BW = roipoly(x,y,I,xi,yi)
[BW,xi,yi] = roipoly(...)
[x,y,BW,xi,yi] = roipoly(...)
```


## Description

Use roipoly to select a polygonal region of interest within an image. roipoly returns a binary image that you can use as a mask for masked filtering.
$B W=$ roipoly ( $I, C, r$ ) returns the region of interest selected by the polygon described by vectors c and $r$. BW is a binary image the same size as I with 0's outside the region of interest and 1's inside.
$\mathrm{BW}=$ roipoly(I) displays the image I on the screen and lets you specify the polygon using the mouse. If you omit I, roipoly operates on the image in the current axes. Use normal button clicks to add vertices to the polygon. Pressing Backspace or Delete removes the previously selected vertex. A shift-click, right-click, or double-click adds a final vertex to the selection and then starts the fill; pressing Return finishes the selection without adding a vertex.
$B W=$ roipoly ( $x, y, I, x i, y i)$ uses the vectors $x$ and $y$ to establish a nondefault spatial coordinate system. xi and yi are equal-length vectors that specify polygon vertices as locations in this coordinate system.
[BW, xi, yi] = roipoly(...) returns the polygon coordinates in xi and yi. Note that roipoly always produces a closed polygon. If the points specified describe a closed polygon (i.e., if the last pair of coordinates is identical to the first pair), the length of $x i$ and $y i$ is equal to the number of points specified. If the points specified do not describe a closed polygon, roipoly adds a final point having the same coordinates as the first point. (In this case the length of xi and $y i$ is one greater than the number of points specified.)
$[x, y, B W, x i, y i]=$ roipoly(...) returns the XData and YData in $x$ and $y$, the mask image in BW, and the polygon coordinates in xi and yi.

If roipoly is called with no output arguments, the resulting image is displayed in a new figure.

## Class Support

Remarks

The input image I can be of class uint8, uint16, or double. The output image BW is of class logical. All other inputs and outputs are of class double.

For any of the roipoly syntaxes, you can replace the input image I with two arguments, $m$ and $n$, that specify the row and column dimensions of an arbitrary image. For example, these commands create a 100-by-200 binary mask.

```
c = [lll2 112 79 79];
r = [37 66 66 37];
BW = roipoly(100,200,c,r);
```

If you specify $m$ and $n$ with an interactive form of roipoly, an $m$-by- $n$ black image is displayed, and you use the mouse to specify a polygon within this image.

## Example

## See Also

```
I = imread('eight.tif');
c = [222 272 300 270 221 194];
r = [l21 21 75 121 121 75];
BW = roipoly(I,c,r);
imshow(I)
figure, imshow(BW)
```


roifilt2, roicolor, roifill, poly2mask

Purpose	Compute the standard deviation of the elements of a matrix
Syntax	$b=\operatorname{std} 2(A)$
Description	$b=s t d 2(A)$ computes the standard deviation of the values in A.
Class Support	A can be numeric or logical. B is a scalar of class double.
Algorithm	std2 computes the standard deviation of the array A using std $(A(:))$.
See Also	corr2, mean2
	std, mean in the MATLAB Function Reference

## Purpose Create morphological structuring element

Syntax SE = strel(shape, parameters)
Description
SE = strel(shape, parameters) creates a structuring element, SE, of the type specified by shape. This table lists all the supported shapes. Depending on shape, strel can take additional parameters. See the syntax descriptions that follow for details about creating each type of structuring element.

Flat Structuring Elements

'arbitrary'	'pair'
'diamond'	'periodicline'
'disk'	'rectangle'
'line'	'square'
'octagon'	

## Nonflat Structuring Elements

'arbitrary ' 'ball'

SE = strel('arbitrary', NHOOD) creates a flat structuring element where NHOOD specifies the neighborhood. NHOOD is a matrix containing 1's and 0's; the location of the 1's defines the neighborhood for the morphological operation. The center (or origin) of NHOOD is its center element, given by floor ((size(NHOOD)+1)/2). You can omit the 'arbitrary' string and just use strel(NHOOD).


SE = strel('arbitrary', NHOOD, HEIGHT) creates a nonflat structuring element, where NHOOD specifies the neighborhood. HEIGHT is a matrix the same size as NHOOD containing the height values associated with each nonzero element of NHOOD. The HEIGHT matrix must be real and finite valued. You can omit the 'arbitrary' string and just use strel(NHOOD, HEIGHT).

SE = strel('ball', $\mathrm{R}, \mathrm{H}, \mathrm{N}$ ) creates a nonflat, ball-shaped structuring element (actually an ellipsoid) whose radius in the $X-Y$ plane is $R$ and whose height is $H$. Note that R must be a nonnegative integer, $H$ must be a real scalar, and $N$ must be an even nonnegative integer. When $N$ is greater than 0 , the ball-shaped structuring element is approximated by a sequence of $N$ nonflat, line-shaped structuring elements. When $N$ equals 0 , no approximation is used, and the structuring element members consist of all pixels whose centers are no greater than $R$ away from the origin. The corresponding height values are determined from the formula of the ellipsoid specified by $R$ and $H$. If $N$ is not specified, the default value is 8 .

Note Morphological operations run much faster when the structuring element uses approximations ( $\mathrm{N}>0$ ) than when it does not $(\mathrm{N}=0)$.

SE = strel('diamond',R) creates a flat, diamond-shaped structuring element, where $R$ specifies the distance from the structuring element origin to the points of the diamond. $R$ must be a nonnegative integer scalar.


SE = strel('disk',R,N) creates a flat, disk-shaped structuring element, where $R$ specifies the radius. $R$ must be a nonnegative integer. $N$ must be 0,4 , 6 , or 8 . When $N$ is greater than 0 , the disk-shaped structuring element is approximated by a sequence of $N$ periodic-line structuring elements. When $N$
equals 0 , no approximation is used, and the structuring element members consist of all pixels whose centers are no greater than $R$ away from the origin. If $N$ is not specified, the default value is 4 .

Note Morphological operations run much faster when the structuring element uses approximations ( $\mathrm{N}>0$ ) than when it does not ( $\mathrm{N}=0$ ). However, structuring elements that do not use approximations ( $\mathrm{N}=0$ ) are not suitable for computing granulometries. Sometimes it is necessary for strel to use two extra line structuring elements in the approximation, in which case the number of decomposed structuring elements used is $\mathrm{N}+2$.


SE = strel('line', LEN, DEG) creates a flat, linear structuring element, where LEN specifies the length, and DEG specifies the angle (in degrees) of the line, as measured in a counterclockwise direction from the horizontal axis. LEN is
approximately the distance between the centers of the structuring element members at opposite ends of the line.


SE $=$ strel ('octagon',$R$ ) creates a flat, octagonal structuring element, where $R$ specifies the distance from the structuring element origin to the sides of the octagon, as measured along the horizontal and vertical axes. R must be a nonnegative multiple of 3 .
SE $=$

0	0	1	1	1	0	0	
0	1	1	1	1	1	0	
1	1	$R=3$	1	1	1	1	1
1	1	1		1	1	1	
1	1	1	1	1	1	1	
0	1	1	1	1	1	0	
0	0	1	1	1	0	0	

SE = strel('pair', OFFSET) creates a flat structuring element containing two members. One member is located at the origin. The second member's location is specified by the vector OFFSET. OFFSET must be a two-element vector of integers.


SE = strel('periodicline', $\mathrm{P}, \mathrm{V}$ ) creates a flat structuring element containing $2 * P+1$ members. $V$ is a two-element vector containing integer-valued row and column offsets. One structuring element member is located at the origin. The other members are located at $1 * V,-1 * V, 2 * V,-2 * V, \ldots, P * V,-P * V$.


SE = strel('rectangle', MN) creates a flat, rectangle-shaped structuring element, where MN specifies the size. MN must be a two-element vector of nonnegative integers. The first element of $M N$ is the number of rows in the structuring element neighborhood; the second element is the number of columns.


SE = strel('square', W ) creates a square structuring element whose width is $W$ pixels. $W$ must be a nonnegative integer scalar.


Notes
For all shapes except ' arbitrary ', structuring elements are constructed using a family of techniques known collectively as structuring element decomposition. The principle is that dilation by some large structuring elements can be computed faster by dilation with a sequence of smaller structuring elements. For example, dilation by an 11-by-11 square structuring element can be accomplished by dilating first with a 1-by-11 structuring element and then
with an 11-by-1 structuring element. This results in a theoretical performance improvement of a factor of 5.5 , although in practice the actual performance improvement is somewhat less. Structuring element decompositions used for the 'disk' and 'ball' shapes are approximations; all other decompositions are exact.

Methods
This table lists the methods supported by the STREL object.

getheight	Get height of structuring element
getneighbors	Get structuring element neighbor locations and   heights
getnhood	Get structuring element neighborhood
getsequence	Extract sequence of decomposed structuring   elements
isflat	Return true for flat structuring element
reflect	Reflect structuring element
translate	Translate structuring element

## Example

Algorithm

See Also

14-394

```
se1 = strel('square',11)
se2 = strel('line',10,45) % line, length 10, angle 45 degrees
se3 = strel('disk',15) % disk, radius 15
se4 = strel('ball',15,5) % ball, radius 15, height 5
```

The method used to decompose diamond-shaped structuring elements is known as "logarithmic decomposition" [1].

The method used to decompose disk structuring elements is based on the technique called "radial decomposition using periodic lines" [2], [3]. For details, see the MakeDiskStrel subfunction in toolbox/images/images/@strel/strel.m.

The method used to decompose ball structuring elements is the technique called "radial decomposition of sphere" [2].
imdilate, imerode

References [1] van den Boomgard, Rein, and Richard van Balen, "Methods for Fast Morphological Image Transforms Using Bitmapped Images," Computer Vision, Graphics, and Image Processing: Graphical Models and Image Processing, Vol. 54, No. 3, May 1992, pp. 252-254.<br>[2] Adams, Rolf, "Radial Decomposition of Discs and Spheres," Computer Vision, Graphics, and Image Processing: Graphical Models and Image Processing, Vol. 55, No. 5, September 1993, pp. 325-332.<br>[3] Jones, Ronald, and Pierre Soille, "Periodic lines: Definition, cascades, and application to granulometrie," Pattern Recognition Letters, Vol. 17, 1996, pp. 1057-1063.

Purpose
Syntax
Description

Class Support

## Example

The input image can be of class uint8, uint16, or double. The output intensities returned, LOW_HIGH, are of class double and have values between 0 and 1.
Find limits to contrast stretch an image
LOW_HIGH = stretchlim(I,TOL)
LOW_HIGH = stretchlim(RGB,TOL)
LOW_HIGH = stretchlim(I,TOL) returns a pair of intensities that can be used by imadjust to increase the contrast of an image.

TOL = [LOW_FRACT HIGH_FRACT] specifies the fraction of the image to saturate at low and high intensities.

If TOL is a scalar, TOL = LOW_FRACT, and HIGH_FRACT = 1 - LOW_FRACT, which saturates equal fractions at low and high intensities.

If you omit the argument, TOL defaults to [0.01 0.99], saturating $2 \%$.
If TOL $=0$, LOW_HIGH $=[\min (I(:)) \max (I(:))]$.
LOW_HIGH = stretchlim(RGB,TOL) returns a 2-by-3 matrix of intensity pairs to saturate each plane of the RGB image. TOL specifies the same fractions of saturation for each plane.

```
I = imread('pout.tif');
J = imadjust(I,stretchlim(I),[]);
imshow(I), figure, imshow(J)
```



See Also brighten, histeq, imadjust

## subimage

Purpose
Syntax $\begin{array}{ll} & \text { subimage }(X, \text { map }) \\ & \text { subimage }(I) \\ & \text { subimage }(B W) \\ & \text { subimage }(R G B) \\ & \text { subimage }(x, y, \ldots) \\ & h=\operatorname{subimage}(\ldots)\end{array}$

```
subimage(X,map)
subimage(I)
subimage(BW)
subimage(RGB)
h = subimage(...)
```

Display multiple images in the same figure

## Description

Class Support The input image can be of class logical, uint8, uint16, or double.

## Example

You can use subimage in conjunction with subplot to create figures with multiple images, even if the images have different colormaps. subimage works by converting images to true color for display purposes, thus avoiding colormap conflicts.
subimage ( $X$, map) displays the indexed image $X$ with colormap map in the current axes.
subimage (I) displays the intensity image I in the current axes.
subimage (BW) displays the binary image BW in the current axes.
subimage (RGB) displays the true-color image RGB in the current axes.
subimage ( $x, y \ldots$ ) displays an image using a nondefault spatial coordinate system.
$\mathrm{h}=$ subimage (...) returns a handle to an image object.

```
load trees
[X2,map2] = imread('forest.tif');
subplot(1,2,1), subimage(X,map)
subplot(1,2,2), subimage(X2,map2)
```


## subimage



Purpose
Syntax
Description

Spatial transformation of a multidimensional array
$B=$ tformarray (A,T,R,TDIMS_A,TDIMS_B,TSIZE_B,TMAP_B,F)
$B=$ tformarray (A,T,R,TDIMS_A,TDIMS_B,TSIZE_B,TMAP_B,F) applies a spatial transformation to array $A$ to produce array $B$. The tformarray function is like imtransform, but is intended for problems involving higher-dimensioned arrays or mixed input/output dimensionality, or requiring greater user control or customization. (Anything that can be accomplished with imtransform can be accomplished with a combination of maketform, makeresampler, findbounds, and tformarray; but for many tasks involving 2-D images, imtransform is simpler.)

This table provides a brief description of all the input arguments. See the following section for more detail about each argument. (Click an argument in the table to move to the appropriate section.)

Argument	Description
A	Input array or image
T	Spatial transformation structure, called a TFORM,   typically created with maketform
R	Resampler structure, typically created with   makeresampler
TDIMS_A	Row vector listing the input transform dimensions
TDIMS_B	Row vector listing the output transform dimensions
TSIZE_B	Output array size in the transform dimensions
TMAP_B	Array of point locations in output space; can be used as   an alternative way to specify a spatial transformation
F	Array of fill values

A can be any nonsparse numeric array, and can be real or complex.

T is a TFORM structure that defines a particular spatial transformation. For each location in the output transform subscript space (as defined by TDIMS_B and TSIZE_B), tformarray uses T and the function tforminv to compute the corresponding location in the input transform subscript space (as defined by TDIMS_A and size(A)).

If T is empty, tformarray operates as a direct resampling function, applying the resampler defined in $R$ to compute values at each transform space location defined in TMAP_B (if TMAP_B is nonempty), or at each location in the output transform subscript grid.
$R$ is a structure that defines how to interpolate values of the input array at specified locations. $R$ is usually created with makeresampler, which allows fine control over how to interpolate along each dimension, as well as what input array values to use when interpolating close to the edge of the array.

TDIMS_A and TDIMS_B indicate which dimensions of the input and output arrays are involved in the spatial transformation. Each element must be unique, and must be a positive integer. The entries need not be listed in increasing order, but the order matters. It specifies the precise correspondence between dimensions of arrays $A$ and $B$ and the input and output spaces of the transformer T. length (TDIMS_A) must equal T.ndims_in, and LENGTH(TDIMS_B) must equal T.ndims_out.

For example, if T is a 2-D transformation, TDIMS_A = [2 1], and TDIMS_B = [ 1 2], then the column dimension and row dimension of A correspond to the first and second transformation input-space dimensions, respectively. The row and column dimensions of B correspond to the first and second output-space dimensions, respectively.

TSIZE_B specifies the size of the array B along the output-space transform dimensions. Note that the size of $B$ along nontransform dimensions is taken directly from the size of A along those dimensions. If, for example, T is a 2-D transformation, size $(A)=[4806403$ 10], TDIMS_B is [2 1], and TSIZE_B is [300 200], then size( $B$ ) is [200 300 3].

TMAP_B is an optional array that provides an alternative way of specifying the correspondence between the position of elements of $B$ and the location in output transform space. TMAP_B can be used, for example, to compute the result of an image warp at a set of arbitrary locations in output space. If TMAP_B is not empty, then the size of TMAP_B takes the form
where $N$ equals length (TDIMS_B). The vector [D1 D2 ... DN] is used in place of TSIZE_B. If TMAP_B is not empty, then TSIZE_B should be [ ].

The value of $L$ depends on whether or not $T$ is empty. If $T$ is not empty, then $L$ is T.ndims_out, and each L-dimension point in TMAP_B is transformed to an input-space location using $T$. If T is empty, then L is length (TDIMS_A), and each L-dimensional point in TMAP_B is used directly as a location in input space.
$F$ is a double-precision array containing fill values. The fill values in $F$ can be used in three situations:

- When a separable resampler is created with makeresampler and its padmethod is set to either 'fill' or 'bound'.
- When a custom resampler is used that supports the 'fill' or 'bound' pad methods (with behavior that is specific to the customization).
- When the map from the transform dimensions of B to the transform dimensions of A is deliberately undefined for some points. Such points are encoded in the input transform space by NaNs in either TMAP_B or in the output of TFORMINV.

In the first two cases, fill values are used to compute values for output locations that map outside or near the edges of the input array. Fill values are copied into $B$ when output locations map well outside the input array. See makeresampler for more information about 'fill' and 'bound'.

F can be a scalar (including NaN ), in which case its value is replicated across all the nontransform dimensions. F can also be a nonscalar, whose size depends on size (A) in the nontransform dimensions. Specifically, if $K$ is the $J$ th nontransform dimension of $A$, then size ( $F, J$ ) must be either size $(A, K)$ or 1 . As a convenience to the user, tformarray replicates $F$ across any dimensions with unit size such that after the replication size $(F, J)$ equals size $(A, K)$.

For example, suppose A represents 10 RGB images and has size 200-by-200-by-3-by-10, T is a 2-D transformation, and TDIMS_A and TDIMS_B are both [12]. In other words, tformarray will apply the same 2-D transform to each color plane of each of the 10 RGB images. In this situation you have several options for $F$ :

- F can be a scalar, in which case the same fill value is used for each color plane of all 10 images.
- F can be a 3-by-1 vector, [R G B] '. Then R, G, and B are used as the fill values for the corresponding color planes of each of the 10 images. This can be interpreted as specifying an RGB fill color, with the same color used for all 10 images.
- F can be a 1-by-10 vector. This can be interpreted as specifying a different fill value for each of 10 images, with that fill value being used for all three color planes.
- F can be a 3-by-10 matrix, which can be interpreted as supplying a different RGB fill color for each of the 10 images.


## Class Support

A can be any nonsparse numeric array, and can be real or complex. It can also be of class logical.

See Also findbounds, imtransform, makeresampler, maketform

Purpose Apply forward spatial transformation

```
Syntax
[X,Y] = tformfwd(T,U,V)
[X1,X2,X3,\ldots] = tformfwd(T,U1,U2,U3,...)
X = tformfwd(T,U)
[X1,X2,X3,...] = tformfwd(T,U)
X = tformfwd(T,U1,U2,U3,...)
```

Description
$[X, Y]=\operatorname{tformfwd}(T, U, V)$ applies the 2D-to-2D spatial transformation defined in $T$ to coordinate arrays $U$ and $V$, mapping the point $[U(k) V(k)]$ to the point [ $\mathrm{X}(\mathrm{k}) \mathrm{Y}(\mathrm{k})$ ].

T is a TFORM struct created with maketform, fliptform, or cp2tform. Both T.ndims_in and T.ndims_out must equal $2 . \mathrm{U}$ and V are typically column vectors matching in length. In general, $U$ and $V$ can have any dimensionality, but must have the same size. In any case, $X$ and $Y$ will have the same size as $U$ and V .
[X1,X2,X3,...] = tformfwd(T,U1, U2, U3, ...) applies the ndims_in-to-ndims_out spatial transformation defined in TFORM structure T to the coordinate arrays $\mathrm{U} 1, \mathrm{U} 2, \ldots$, UNDIMS_IN (where NDIMS_IN $=$ T.ndims_in and NDIMS_OUT = T.ndims_out). The number of output arguments must equal NDIMS_OUT. The transformation maps the point

```
[U1(k) U2(k) ... UNDIMS_IN(k)]
```

to the point
[X1(k) X2(k) ... XNDIMS_OUT(k)].
$\mathrm{U} 1, \mathrm{U} 2, \mathrm{U} 3, \ldots$ can have any dimensionality, but must be the same size.
$\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots$ must have this size also.
$X=$ tformfwd( $\mathrm{T}, \mathrm{U}$ ) applies the ndims_in-to-ndims_out spatial transformation defined in TFORM structure $T$ to each row of $U$, where $U$ is an M-by-NDIMS_IN matrix. It maps the point $U(k,:)$ to the point $X(k,:) . X$ is an M-by-NDIMS_OUT matrix.
$X=$ tformfwd $(T, U)$, where $U$ is an $(N+1)$-dimensional array, maps the point $U(k 1, k 2, \ldots, k N,:)$ to the point $X(k 1, k 2, \ldots, k N,:) . \operatorname{size}(U, N+1)$ must equal

NDIMS_IN. $X$ is an ( $\mathrm{N}+1$ )-dimensional array, with size ( $\mathrm{X}, \mathrm{I}$ ) equal to size ( $\mathrm{U}, \mathrm{I}$ ) for $I=1, \ldots, N$ and $\operatorname{size}(X, N+1)$ equal to NDIMS_OUT.
$[\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots]=$ tformfwd $(\mathrm{T}, \mathrm{U})$ maps an ( $\mathrm{N}+1$ )-dimensional array to NDIMS_OUT equally sized N-dimensional arrays.

X = tformfwd(T,U1, U2, U3, ...) maps NDIMS_IN N-dimensional arrays to one $(\mathrm{N}+1)$-dimensional array.

## Note

## Example

See Also
$X=$ tformfwd $(U, T)$ is an older form of the two-argument syntax that remains supported for backward compatibility.

Create an affine transformation that maps the triangle with vertices $(0,0)$, $(6,3),(-2,5)$ to the triangle with vertices $(-1,-1),(0,-10),(4,4)$.
$u=\left[\begin{array}{lll}0 & 6 & -2\end{array}\right]^{\prime} ;$
$v=\left[\begin{array}{lll}0 & 3 & 5\end{array}\right]$;
$x=\left[\begin{array}{ccc}-1 & 0 & 4\end{array}\right]$;
$y=\left[\begin{array}{ccc}-1 & -10 & 4\end{array}\right]$;
tform = maketform('affine',[u v],[x y]);
Validate the mapping by applying tformfwd. Results should equal [ $\mathrm{x}, \mathrm{y}$ ]
[xm, ym] = tformfwd(tform, u, v)
cp2tform, fliptform, maketform, tforminv

## fforminv

Purpose
Syntax
Description

Apply inverse spatial transformation
U = tforminv (X,T)
$[\mathrm{U}, \mathrm{V}]=$ tforminv ( $\mathrm{T}, \mathrm{X}, \mathrm{Y}$ ) applies the 2D-to-2D inverse transformation defined in TFORM structure $T$ to coordinate arrays $X$ and $Y$, mapping the point $[X(k) Y(k)]$ to the point [U(k) V(k)]. Both T.ndims_in and T.ndims_out must equal $2 . X$ and $Y$ are typically column vectors matching in length. In general, $X$ and $Y$ can have any dimensionality, but must have the same size. In any case, $U$ and $V$ will have the same size as $X$ and $Y$.
$[\mathrm{U} 1, \mathrm{U} 2, \mathrm{U} 3, \ldots]=$ tforminv( $\mathrm{T}, \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots$ ) applies the NDIMS_OUT-to-NDIMS_IN inverse transformation defined in TFORM structure T to the coordinate arrays X1, X2, ..., XNDIMS_OUT (where NDIMS_IN = T.ndims_in and NDIMS_OUT = T.ndims_out). The number of output arguments must equal NDIMS_IN. The transformation maps the point

```
[X1(k) X2(k) ... XNDIMS_OUT(k)]
```

to the point
[U1 (k) U2(k) ... UNDIMS_IN(k)].
$\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots$ can have any dimensionality, but must be the same size.
$\mathrm{U} 1, \mathrm{U} 2, \mathrm{U} 3, \ldots$ have this size also.
U = tforminv( $\mathrm{T}, \mathrm{X}$ ) applies the NDIMS_OUT-to-NDIMS_IN inverse transformation defined in TFORM structure $T$ to each row of $X$, where $X$ is an M-by-NDIMS_OUT matrix. It maps the point $X(k,:)$ to the point $U(k,:) . U$ is an M-by-NDIMS_IN matrix.
$U=$ tforminv $(T, X)$, where $X$ is an ( $\mathrm{N}+1$ )-dimensional array, maps the point $X(k 1, k 2, \ldots, k N,:)$ to the point $U(k 1, k 2, \ldots, k N,:)$. size ( $X, N+1$ ) must equal NDIMS_OUT. $U$ is an $(N+1)$-dimensional array, with $\operatorname{size}(\mathrm{U}, \mathrm{I})$ equal to $\operatorname{size}(\mathrm{X}, \mathrm{I})$ for $\mathrm{I}=1, \ldots, \mathrm{~N}$ and $\operatorname{size}(\mathrm{U}, \mathrm{N}+1)$ equal to NDIMS_IN.
[U1, U2, U3, $\ldots$ ] = tforminv( $\mathrm{T}, \mathrm{X}$ ) maps an ( $\mathrm{N}+1$ )-dimensional array to NDIMS_IN equally-sized N-dimensional arrays.

U = tforminv( $\mathrm{T}, \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots$ ) maps NDIMS_OUT N-dimensional arrays to one ( $\mathrm{N}+1$ )-dimensional array.

Note
$U=\operatorname{tforminv}(X, T)$ is an older form of the two-argument syntax that remains supported for backward compatibility.

Example

See Also

Create an affine transformation that maps the triangle with vertices $(0,0)$, $(6,3),(-2,5)$ to the triangle with vertices $(-1,-1),(0,-10),(4,4)$.
$u=\left[\begin{array}{lll}0 & 6 & -2\end{array}\right] ;$
$v=\left[\begin{array}{lll}0 & 3 & 5\end{array}\right] ;$
$x=\left[\begin{array}{lll}-1 & 0 & 4\end{array}\right]$;
$y=\left[\begin{array}{lll}-1 & -10 & 4]\end{array}\right.$;
tform = maketform('affine',[u v],[x y]);
Validate the mapping by applying tforminv. Results should equal [u, v].
[um, vm] = tforminv(tform, x, y)
cp2tform, tforminv, maketform, fliptform

## translate

Purpose
Syntax $\quad$ SE2 $=$ translate $(S E, V)$
Description

## Class Support

Example
Translate structuring element dimension.

SE2 = reflect(SE,V) translates a structuring element SE in N-D space. V is an N -element vector containing the offsets of the desired translation in each

SE and SE2 are STREL objects; $V$ is a vector of double-precision values.
Dilating with a translated version of strel(1) is a way to translate the input image in space. This example translates the cameraman.tif image down and to the right by 25 pixels.

```
I = imread('cameraman.tif');
se = translate(strel(1), [25 25]);
J = imdilate(I,se);
imshow(I), title('Original')
figure, imshow(J), title('Translated');
```



[^4]
## Purpose Adjust display size of an image

Syntax	truesize(fig, [mrows mcols])
	truesize(fig)

Description

## Remarks

See Also imshow, iptsetpref, iptgetpref

## Purpose

Convert data to unsigned 16-bit integers
uint16 is a MATLAB built-in function. To get help for this function, select MATLAB Help from the Help menu and view the online function reference page.

## Purpose

Convert data to unsigned 8-bit integers
uint8 is a MATLAB built-in function. To get help for this function, select
MATLAB Help from the Help menu and view the online function reference page.

Purpose
Syntax $\quad B=\operatorname{uintlut}(A, L U T)$
Purpose

Class Support A must be uint8 or uint16. If A is uint8, then LUT must be a uint8 vector with 256 elements. If A is uint16, then LUT must be a uint16 vector with 65536 elements. B has the same size and class as A.

## Example

```
A = uint8([1 2 3 4; 5 6 7 8;9 10 11 12]);
LUT = repmat(uint8([0 150 200 255]),1,64);
B = uintlut(A,LUT);
imview(A),imview(B);
```

See Also
impixel, improfile

## Purpose

Display an image as a texture-mapped surface

## Syntax

```
warp(X,map)
warp(I,n)
warp(BW)
warp(RGB)
warp(z,...)
warp(x,y,z,...)
h = warp(...)
```

Class Support The input image can be of class logical, uint8, uint16, or double.

Description

## Example

warp ( X , map) displays the indexed image X with colormap map as a texture map on a simple rectangular surface.
warp ( $\mathrm{I}, \mathrm{n}$ ) displays the intensity image I with grayscale colormap of length n as a texture map on a simple rectangular surface.
warp (BW) displays the binary image BW as a texture map on a simple rectangular surface.
warp (RGB) displays the RGB image in the array RGB as a texture map on a simple rectangular surface.
warp $(z, \ldots)$ displays the image on the surface $z$.
warp $(x, y, z \ldots)$ displays the image on the surface $(x, y, z)$.
$\mathrm{h}=\operatorname{warp}(\ldots)$ returns a handle to a texture-mapped surface.

Texture-mapped surfaces are generally rendered more slowly than images.
This example texture maps an image of a test pattern onto a cylinder.

```
[x,y,z] = cylinder;
I = imread('testpat1.png');
warp(x,y,z,I);
```



See Also imshow
image, imagesc, surf in the MATLAB Function Reference

## Purpose <br> Find image watershed regions

Syntax $\quad$| $L$ | $=$ watershed $(A)$ |
| ---: | :--- |
| $L$ | $=$ watershed $(A, C O N N)$ |

Description
$\mathrm{L}=$ watershed (A) computes a label matrix identifying the watershed regions of the input matrix $A$, which can have any dimension. The elements of $L$ are integer values greater than or equal to 0 . The elements labeled 0 do not belong to a unique watershed region. These are called watershed pixels. The elements labeled 1 belong to the first watershed region, the elements labeled 2 belong to the second watershed region, and so on.

By default, watershed uses 8-connected neighborhoods for 2-D inputs and 26 -connected neighborhoods for 3-D inputs. For higher dimensions, watershed uses the connectivity given by conndef(ndims (A), 'maximal').
$\mathrm{L}=$ watershed (A, CONN) specifies the connectivity to be used in the watershed computation. CONN can have any of the following scalar values.

Value	Meaning
Two-dimensional connectivities	
4	4-connected neighborhood
8	8-connected neighborhood
Three-dimensional connectivities	
6	6-connected neighborhood
18	18-connected neighborhood
26	26 -connected neighborhood

Connectivity can be defined in a more general way for any dimension by using for CONN a 3-by-3-by- ...-by-3 matrix of 0's and 1's. The 1 -valued elements define neighborhood locations relative to the center element of CONN. Note that CONN must be symmetric about its center element.

## Class Support

## Example

A can be a numeric or logical array of any dimension, and it must be nonsparse. The output array $L$ is of class double.

## 2-D Example

1 Make a binary image containing two overlapping circular objects.

```
center1 = -10;
center2 = -center1;
dist = sqrt(2*(2*center1)^2);
radius = dist/2 * 1.4;
lims = [floor(center1-1.2*radius) ceil(center2+1.2*radius)];
[x,y] = meshgrid(lims(1):lims(2));
bw1 = sqrt((x-center1).^2 + (y-center1).^2) <= radius;
bw2 = sqrt((x-center2).^2 + (y-center2).^2) <= radius;
bw = bw1 | bw2;
figure, imshow(bw,'n'), title('BW')
```

2 Compute the distance transform of the complement of the binary image.

```
D = bwdist(~bw);
figure, imshow(D,[],'n'), title('Distance transform of ~bw')
```

3 Complement the distance transform, and force pixels that don't belong to the objects to be at - Inf.

```
D = -D;
D(~bw) = - Inf;
```

4 Compute the watershed transform and display it as an indexed image.

```
L = watershed(D);
rgb = label2rgb(L,'jet',[.5 .5 .5]);
figure, imshow(rgb,'n'), title('Watershed transform of D');
```


## 3-D Example

1 Make a 3-D binary image containing two overlapping spheres.

```
center1 = -10;
center2 = -center1;
dist = sqrt(3*(2*center1)^2);
radius = dist/2 * 1.4;
lims = [floor(center1-1.2*radius) ceil(center2+1.2*radius)];
[x,y,z] = meshgrid(lims(1):lims(2));
```

```
bw1 = sqrt((x-center1).^2 + (y-center1).^2 + ...
 (z-center1).^2) <= radius;
bw2 = sqrt((x-center2).^2 + (y-center2).^2 + ...
 (z-center2).^2) <= radius;
bw = bw1 | bw2;
figure, isosurface(x,y,z,bw,0.5), axis equal, title('BW')
xlabel x, ylabel y, zlabel z
xlim(lims), ylim(lims), zlim(lims)
view(3), camlight, lighting gouraud
```

2 Compute the distance transform.

```
D = bwdist(~bw);
figure, isosurface(x,y,z,D,radius/2), axis equal
title('Isosurface of distance transform')
xlabel x, ylabel y, zlabel z
xlim(lims), ylim(lims), zlim(lims)
view(3), camlight, lighting gouraud
```

3 Complement the distance transform, force nonobject pixels to be - Inf, and then compute the watershed transform.

```
D = -D;
D(~bw) = -Inf;
L = watershed(D);
figure, isosurface(x,y,z,L==2,0.5), axis equal
title('Segmented object')
xlabel x, ylabel y, zlabel z
xlim(lims), ylim(lims), zlim(lims)
view(3), camlight, lighting gouraud
figure, isosurface(x,y,z,L==3,0.5), axis equal
title('Segmented object')
xlabel x, ylabel y, zlabel z
xlim(lims), ylim(lims), zlim(lims)
view(3), camlight, lighting gouraud
```


## Algorithm

See Also bwlabel, bwlabeln, bwdist, regionprops
watershed uses a variation of the Vincent and Soille algorithm [1]. For details of the variation, see toolbox/images/images/private/watershed_vs.h.

Reference<br>[1] Vincent, Luc, and Pierre Soille, "Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations," IEEE Transactions of Pattern Analysis and Machine Intelligence, Vol. 13, No. 6, June 1991, pp. 583-598.

Purpose

## Syntax

## Description

## Class Support

## Example

Return $X Y Z$ color space representation of various standard white points
xyz = whitepoint
xyz = whitepoint(string)
$x y z=$ whitepoint returns $x y z$, a three-element row vector of $X Y Z$ values scaled so that $Y=1$.
xyz = whitepoint(string) returns xyz, a three-element row vector of $X Y Z$ values, where string specifies the white reference illuminant. The following table lists all the possible values for string. The default value is enclosed in braces (\{\}).

Value	Description
'a'	CIE standard illuminant A
' $c^{\prime}$	CIE standard illuminant C
'd50'	CIE standard illuminant D50
'd55'	CIE standard illuminant D55
\{'icc' $\}$	ICC standard profile connection space illuminant; a   16-bit fractional approximation of D50

string is a character array. $x y z$ is of class double.
This example returns the $X Y Z$ color space representation of the default white reference illuminant 'icc'.

```
wp_icc = whitepoint
wp_icc =
```

    \(0.9642 \quad 1.0000 \quad 0.8249\)
    
## wiener2

Purpose
Perform two-dimensional adaptive noise-removal filtering

Syntax $\quad$	$J=$ wiener2 $(I,[m n]$, noise $)$
$[J$, noise $]=$ wiener2 $(I,[m n])$	

## Class Support

## Example

## Algorithm

wiener2 estimates the local mean and variance around each pixel,

$$
\begin{aligned}
& \mu=\frac{1}{N M} \sum_{n_{1}, n_{2} \in \eta} a\left(n_{1}, n_{2}\right) \\
& \sigma^{2}=\frac{1}{N M} \sum_{n_{1}, n_{2} \in \eta} a^{2}\left(n_{1}, n_{2}\right)-\mu^{2}
\end{aligned}
$$

where $\eta$ is the $N$-by- $M$ local neighborhood of each pixel in the image A. wiener2 then creates a pixelwise Wiener filter using these estimates,

$$
b\left(n_{1}, n_{2}\right)=\mu+\frac{\sigma^{2}-v^{2}}{\sigma^{2}}\left(a\left(n_{1}, n_{2}\right)-\mu\right)
$$

where $v^{2}$ is the noise variance. If the noise variance is not given, wiener2 uses the average of all the local estimated variances.

See Also<br>filter2, medfilt2<br>Reference<br>[1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ, Prentice Hall, 1990, pp. 536-540.

## xyz2double

Purpose
Syntax $\quad x y z d=x y z 2 d o u b l e(X Y Z)$

## Class Support

See Also

Convert color data from $X Y Z$ representation to double
xyxd = xyz2double(XYZ) converts an M-by-3 or M-by-N-by-3 array of XYZ color values to double. xyzd has the same size as XYZ.

The Image Processing Toolbox follows the convention that double-precision XYZ arrays contain 1931 CIE XYZ values. XYZ arrays that are uint16 follow the convention in the ICC profile specification (ICC.1:2001-4, www. color.org) for representing $X Y Z$ values as unsigned 16-bit integers. There is no standard representation of $X Y Z$ values as unsigned 8-bit integers. The ICC encoding convention is illustrated by this table.

Value (X, Y, or Z $)$	uint $1 \mathbf{6}$ Value
0.0	0
1.0	32768
$1.0+(32767 / 32768)$	65535

xyz is a uint16 or double array that must be real and nonsparse. xyzd is of class double.
applycform, lab2double, lab2uint16, lab2uint8, makecform, whitepoint, xyz2uint16

## Purpose

## Syntax <br> xyz16 = xyz2uint16(xyz)

Description

## Class Support

See Also convention is illustrated by this table. uint8.

Convert color data from XYZ representation to uint16
xyz16 = xyz2uint16(xyz) converts an M-by-3 or M-by-N-by-3 array of XYZ color values to uint16. xyz16 has the same size as xyz.

The Image Processing Toolbox follows the convention that double-precision $X Y Z$ arrays contain 1931 CIE $X Y Z$ values. $X Y Z$ arrays that are uint16 follow the convention in the ICC profile specification (ICC.1:2001-4, www. color.org) for representing $X Y Z$ values as unsigned 16 -bit integers. There is no standard representation of $X Y Z$ values as unsigned 8 -bit integers. The ICC encoding

Value (X,Y, or $\mathbf{Z})$	uint 16 Value
0.0	0
1.0	32768
$1.0+(32767 / 32768)$	65535

xyz is a uint16 or double array that must be real and nonsparse. xyz16 is
applycform, lab2double, lab2uint16, lab2uint8, makecform, whitepoint, xyz2double

## ycber2rgb

Purpose
$\begin{array}{ll}\text { Syntax } & \text { rgbmap }=\text { ycbcr2rgb (ycbcrmap) } \\ & R G B=\text { ycbcr2rgb }(\text { YCBCR })\end{array}$
Description

Class Support
If the input is a YCbCr image, it can be of class uint8, uint 16, or double; the output image is of the same class as the input image. If the input is a colormap, the input and output colormaps are both of class double.

See Also ntsc2rgb, rgb2ntsc, rgb2ycbcr

Purpose<br>Zoom in and out on an image<br>zoom is a MATLAB function. To get help for this function, select MATLAB Help from the Help menu and view the online function reference page.

## A

adapthisteq 10-28, 14-16
adaptive filtering 14-420
adaptive filters 10-37
definition 10-2
addition
of images 2-31
affine transformations
definition 5-13
using imtransform 4-11
aliasing 4-7
definition 4-2
alpha channel 13-4
analyzing images
edge detection 14-121
histograms 14-238
intensity profiles 14-262
pixel values 14-259
quadtree decomposition 14-355
antialiasing 4-7
definition 4-2
applycform 14-19
applylut 14-20
applylut 9-44
example 9-45
approximation
definition 13-2
of an image background 1-9
area
of binary images $9-42,14-27$
of image regions 10-11
arrays
storing images 2-4
averaging filter 7-7, 14-145

## B

background
of a binary image 9-2
of an intensity image 1-9
bestblk 14-22
bicubic interpolation 4-3
definition 4-2
bilinear interpolation 4-3
definition 4-2
binary image operations
connected-components labeling 14-45
lookup-table operations 14-20, 14-319
morphological operations 14-51
neighborhoods 14-20
binary images 2-9, 14-303
changing the display colors of 3-27
connected-components labeling 9-40
converting from other types 14-186
definition 2-2
displaying 3-27
Euler number 9-43, 14-41
feature measurement 9-40
flood fill operation 9-26
image area 9-42, 14-27
lookup table operations 9-44
morphological operations 9-4
object selection 14-59
packing 9-3
perimeter determination 9-17, 14-57
selecting objects in 9-42
binary masks
creating 11-3
definition 11-2
bit depth
1-bit images 2-18
screen bit depth 13-3
blind deconvolution algorithm
used for deblurring 12-16
blkproc 14-23
blkproc 6-8
specifying overlap 6-10
using 6-9
block operations
definition 6-2
block processing 6-2
block size 14-22
column processing 6-11
distinct blocks 6-8, 14-23
padding borders 6-5
sliding neighborhoods 6-4, 14-334
border padding 6-5
definition 6-2
border replication
in image processing 7-12
boundary padding
See border padding
boundary ringing
in image deblurring 12-23
boundary tracing 10-13
bounding box
finding for a region 10-11
brightness adjustment 10-23
bwarea 14-27
bwarea 9-42
bwareaopen 14-29
bwboundaries 14-31
bwdist 14-35
bwdist 9-37
bweuler 14-41
bwhitmiss 14-43
bwlabel 14-45
bwlabeln 14-48
bwmorph 14-51
bwmorph
skeletonization example 9-17
bwpack $14-55$
bwperim 14-57
bwselect 14-59
bwtraceboundary 14-61
bwtraceboundary
using 10-15
bwulterode 14-64
bwunpack 14-66

## C

camera read-out noise 12-12
Canny edge detector $10-12$, 14-122
center of mass
calculating for region 10-11
center pixel
calculating 6-4
definition 6-2
checkerboard 14-67
chrominance
in CIE color spaces 13-16
in NTSC color space 13-22
in YCbCr color space 13-22
CIE color spaces 13-15
CIELAB color space 13-15
class support 2-13
See also data types
closing 14-51
morphology 9-14
cmpermute 14-69
cmunique 14-70
col2im 14-71
colfilt 14-72
colfilt 6-11
example 6-12, 6-14
color
approximation 13-7, 14-119, 14-202, 14-376
dithering 13-13, 14-119
quantization 13-7, 14-376
reducing number of colors 13-6
color approximation
definition 3-2
color cube
a description of 13-7
quantization of 13-8
color planes 13-9, 13-24
of an HSV image 13-24
of an RGB image 2-10
color reduction 13-6-13-14
color spaces
converting among 13-15
converting between $13-15,14-337,14-378$, 14-379, 14-424
data encodings 13-18
device-independent color spaces 13-16
HSV 13-23
NTSC 13-21, 14-337, 14-378
RGB 13-15
YCbCr 13-22, 14-379, 14-424
YIQ 13-21
colorbar 3-31
colorcube 13-12
colormap mapping 13-11
colormaps
brightening 14-26
creating a colormap using colorcube 13-12
darkening 14-26
rearranging colors in 14-69
removing duplicate entries in 14-70
column processing 14-72
definition 6-2
in neighborhood operations 6-11
reshaping blocks into columns 14-188
reshaping columns into blocks 14-71
composite transformations 4-11
conformal transformations 5-13
conndef 14-75
connected component
definition 9-2
connected-components labeling 9-40, 14-45
connectivity
definition 9-2
overview 9-23
specifying custom 9-25
constant component
See zero-frequency component
contour plots 10-8, 14-212
text labels 10-9
contours
definition 10-2
contrast adjustment
decreasing contrast 10-23
increasing contrast 10-21
specifying limits automatically 10-24
contrast stretching
with decorrelation stretching 10-32
See also contrast adjustment
contrast-limited adaptive histogram equalization (CLAHE) 10-28
Control Point Selection Tool
appearance of control point symbols 5-27
changing view of images 5-18
saving a session 5-31
saving control points 5-30
specifying control points 5-23
starting 5-16
using 5-15
using point prediction 5-25
control points
appearance of 5-27
prediction 5-25
saving 5-30
selecting 5-15
specifying 5-23
conv2 2-4
compared to imfilter 7-14
conversions between image types 2-13
convmtx2 14-78
convn
compared to imfilter 7-14
used with images 2-4
convolution
convolution matrix 14-78
definition 7-4
Fourier transform and 8-12
two-dimensional 7-4
with imfilter 7-9
convolution kernel
definition 7-4
coordinate systems
pixel coordinates 2-37
spatial coordinates 2-38
corr2 14-80
corr2 10-11
correlation
definition 7-6
Fourier transform 8-13
with imfilter 7-9
correlation coefficient 14-80
correlation kernel
definition 7-6
cp2tform 14-81
using 5-13
cpcorr 14-90
example 5-32
cpselect 14-92
using 5-8
cpstruct2pairs 14-94
cropping an image 4-10, 14-214
cross-correlation
improving control point selection 5-32

## D

damping
for noise reduction 12-12
data types
8 -bit integers (uint8) 2-5
converting between 14-120, 14-195, 14-197, 14-221, 14-252
double-precision (double) 14-120, 14-195, 14-197, 14-221, 14-252
double-precision (double) 2-5
in image filtering 7-7
summary of image types and numeric classes 2-13
DC component
See zero-frequency component
dconvreg 14-105
dct2 14-95
dct2 8-17
dctmtx 14-98
dctmtx 8-18
deblurring
avoiding boundary ringing 12-23
conceptual model 12-3
overview 12-3
overview of functions 12-6
use of frequency domain 12-22
using the blind deconvolution algorithm 12-16
using the Lucy-Richardson algorithm 12-11
with regularized filter 12-9
with the Wiener filter 12-7
decomposition of structuring elements
example 9-9
getting sequence 14-169
deconvblind 14-99
deconvblind
example 12-16
deconvlucy 14-102
deconvlucy
example 12-11
deconvreg
example 12-9
deconvwnr 14-107
deconvwnr example 12-7
decorrelation stretching 10-29
See also contrast adjustment
decorrstretch 14-109
demos 1-20
detail rectangle
in Control Point Selection Tool 5-17
DICOM
reading and writing files 2-22
DICOM unique identifier
generating 2-28
dicominfo 14-110
dicomread 14-111
dicomuid 14-114
dicomwrite 14-115
Digital Imaging and Communications in Medicine (DICOM)
reading and writing files 2-22
dilation 9-4, 14-52
grayscale 14-338
discrete cosine transform 8-17, 14-95
image compression 8-19
inverse 14-180
transform matrix 8-18, 14-98
discrete Fourier transform 8-8
discrete transform
definition 8-2
display depth $13-3$
See screen color resolution
display techniques 14-276
displaying at true size 14-409
multiple images 14-398
texture mapping 14-413
displaying images
adding a colorbar 3-31
at true size 3-19
binary 3-27
binary images with different colors 3-27
comparison of functions 3-3
directly from disk 3-18
indexed images 3-24
initial size 3-19
intensity images 3-25
multiple images in the same figure window 3-20
texture mapping 3-35
toolbox preferences for 3-37
unconventional ranges of data 3-25
using imshow 3-18
using the Image Viewer 3-5
distance
between pixels 10-3
Euclidean 10-3
distance transform 9-37
distinct block operations 6-8
definition 6-2
overlap 6-9, 14-23
zero padding 6-8
dither 14-119
dithering 13-13, 14-119, 14-376
example 13-13

## division

of images 2-35
double 14-197, 14-210, 14-221, 14-248, 14-252, 14-278

## E

edge 14-121
edge 10-12
example 10-13
See also edgedemo
edge detection 10-12
Canny method 10-12
example 10-13
methods 14-121
Sobel method 10-12
edges
definition 10-2
edgetaper 14-126
edgetaper
avoiding boundary ringing $12-23$
8-bit image files
creating 2-19
reading 2-16
enhancing images
decorrelation stretching 10-29
intensity adjustment 10-22, 14-199
noise removal 10-34
erosion 9-4, 14-52
grayscale 14-338
Euclidean distance 10-3, 14-351
Euler number 9-43, 14-41

## F

fan2para 14-127
fanbeam 14-131
fanbeam
using 8-35
fan-beam projection data
arc geometry 8-36
computing 8-35
line geometry 8-37
reconstructing image from $8-38$
fast Fourier transform 8-8
higher-dimensional 14-134
higher-dimensional inverse 14-185
two-dimensional 14-133
zero padding 8-10
See also Fourier transform
feature measurement
area 10-11
binary images 9-40
bounding box $10-11$
center of mass 10-11
feature measurements 1-17
fft 8-8
fft2 14-133
fft2 2-4, 8-8
example 8-9
using 8-11
fftn 2-4, 8-8
fftshift
example 7-18
using 8-11
files
displaying images from disk 3-18
filling a region 11-9
definition 11-2
filling holes in images 9-28
filter design 7-17
frequency sampling method 7-19, 14-142 frequency transformation method 7-18, 14-150
windowing method 7-20, 14-153, 14-157
filter2
compared to imfilter 7-14
example 3-26, 10-36
filtering
a region 11-6
masked filtering 11-6
regions 11-2
filters
adaptive 10-37, 14-420
averaging 14-145
binary masks 11-6
computing frequency response 8-11
designing 7-17
finite impulse response (FIR) 7-17
frequency response 7-22
imfilter 7-7
Infinite Impulse Response (IIR) 7-18
Laplacian of Gaussian 14-145
linear 7-4
median 10-34, 14-330
multidimensional 7-13
order-statistic 14-338
predefined types 14-145
Prewitt 14-145
Sobel 14-145
unsharp 14-145
unsharp masking 7-15
FIR filters 7-17
transforming from one-dimensional to two-dimensional 7-18
flat-field correction 12-12
flood-fill operation 9-26
foreground
of a binary image 9-2
4-bit image files 2-18
Fourier transform 8-3
applications of the Fourier transform 8-11 centering the zero-frequency coefficient 8-11
computing frequency response 8-11
convolution and 8-12
correlation 8-13
DFT coefficients 8-9
examples of transform on simple shapes 8-7
fast convolution with 8-12
for performing correlation 8-13
frequency domain 8-3
higher-dimensional 14-134
higher-dimensional inverse 14-185
increasing resolution 8-10
padding before computation 8-10
two-dimensional 8-3, 14-133
zero-frequency component 8-3
freqspace 7-21
example 7-19
frequency domain 8-3
definition 8-2
frequency response
computing 7-22, 8-11, 14-140
desired response matrix 7-21
frequency sampling method (filter design) 7-19, 14-142
frequency transformation method (filter design) 7-18, 14-150
freqz
example 7-18
freqz2 14-140
freqz2 7-22, 8-11
example 7-19
See also firdemo
fsamp2 14-142
fsamp2 7-19
example 7-19
See also firdemo
fspecial 14-145
fspecial
creating predefined filters 7-15
ftrans2 14-150
See also firdemo
ftrans2
example 7-18
function functions
using 6-9
fwind1 14-153
fwind1 7-20
example 7-21
See also firdemo
fwind2 14-157
fwind2 7-20
See also firdemo

## G

gamma correction 10-24
Gaussian convolution kernel
frequency response of 8-11
Gaussian filter 14-145
Gaussian noise 10-37
geocoded images 5-7
geometric operations
cropping 4-10, 14-214
definition 4-2
interpolation 4-3
resizing 4-5
rotation 14-274
georegistered images 5-7
getheight 14-161
getimage 14-162
getimage
example 3-18
getline 14-164
getneighbors 14-165
getnhood 14-166
getpts 14-167
getrect 14-168
getsequence 14-169
graphics card 13-4
graphics file formats
converting from one format to another 2-21
writing data 2-17
gray2ind 14-170
grayscale images
See intensity images
grayscale morphological operations 14-338
grayslice 14-171
graythresh 14-172
graythresh
thresholding image values 1-13

## H

histeq 14-173
histeq
example 10-27
increase contrast example 10-26, 10-29
See also imadjdemo and roidemo
histogram equalization 10-26, 14-173
histograms 10-9, 14-238
definition 10-2
holes
filling 9-26
tracing boundaries 10-13
HSV color space $13-23$
color planes of 13-24
hsv2rgb 13-23
hue
in HSV color space 13-23
in NTSC color space 13-22

## I

ICC profiles
processing 13-19
iccread 14-177
idct2 14-177, 14-180
See also dctdemo
ifanbeam 14-181
ifanbeam
using 8-38
ifft 8-8
ifft2 8-8
ifftn 8-8
IIR filters 7-18
im2bw 14-186
im2bw 2-14
im2col 14-188
See also dctdemo
im2double 14-190
im2double
example 6-14
im2java2d 14-192
im2uint16 14-193, 14-193
im2uint8 14-194
imabsdiff 14-195
imadjust 14-199
imadjust 10-22
brightening example 10-23
gamma correction and 10-24
gamma correction example 10-25
increase contrast example 10-22
setting limits automatically 10-24
See also imadjdemo, landsatdemo, roidemo, and ipss003
image analysis
contour plots 10-8
edge detection 10-12
histograms 10-9
intensity profiles 10-5
overview 10-12
pixel values $10-3$
quadtree decomposition 10-18
summary statistics 10-11
image area (binary images) 14-27
image arithmetic
combining functions 2-36
overview 2-29
truncation rules 2-30
image editing 11-9
image filtering
data types 7-7
unsharp masking 7-15
with imfilter 7-7
Image Information tool
using 3-16
Image Information window
in Image Viewer 3-7
image processing
demos 1-20
image profiles
definition 10-2
image properties
definition 10-2
set by imshow 3-22
image registration
fine-tuning point placement 5-32
overview 5-4
procedure 5-4
selecting control points 5-15
specifying control point pairs 5-23
types of transformations 5-13
using control point prediction 5-25
image rotation 4-8
image transformations
affine 5-13
custom 4-11
local weighted mean 5-14
piecewise linear 5-14
polynomial 5-14
projective 5-14
supported by cp2tform 5-13
types of 5-13
using imtransform 4-11
image types 2-6
binary 2-9
converting between 2-13
indexed 2-6
intensity 2-8
interpolation and 4-4
multiframe images 2-12
overview 2-2
RGB 2-9
supported by the toolbox 2-6
See also indexed, intensity, binary, RGB, multiframe
Image Viewer
closing 3-4
compared to imshow 3-3
controlling initial magnification 3-5
exploring images $3-9$
extended example 1-8
managing memory usage $3-16$
opening 3-4
overview of tools 3-6
panning images 3-11
specifying image magnification 3-12
starting 3-4
using the Pixel Region tool 3-13
viewing multiple images 3-5
zoom tools 3-11
images
adding 2-31
analyzing 10-3
arithmetic operations 2-29
causes of blurring 12-3
converting to binary 14-186
data types 2-5, 14-120, 14-195, 14-197, 14-221, 14-252
displaying 14-276
displaying multiple images 3-19, 14-398
displaying multiple images in the same figure window 3-20
dividing 2-35
feature measurement 1-17
filling holes in 9-28
finding image minima and maxima 9-29
getting data from axes 14-162
how MATLAB stores 2-4
image types 2-6
improving contrast 1-12
multiplication 2-34
reducing number of colors 13-6, 14-202
registering 5-4
restoring blurred images 12-3
returning information about 2-20
statistical analysis of 1-18
storage classes of 2-5
subtraction 2-33
using imshow 3-18
viewing as a surface plot 1-10
imapprox 14-202
imapprox 13-12
example 13-12
imbothat 14-203
imclearborder 14-205
imclose 14-208
imclose
using 9-14
imcontour 14-212
imcontour 10-8
example 10-9
imcrop 14-214
imcrop 4-10
example 4-10
imdilate 14-217
imerode 14-223
imerode
closure example 9-15
imextendedmax 14-226
imextendedmax
example 9-31
imextendedmin 14-228
imfill 14-230
imfill
example 9-28
imfilter 14-234
imfilter
compared to other filtering functions 7-14
convolution option 7-9
correlation option 7-9
padding options 7-10
using 7-7
imfinfo 2-20
example 2-18
imhist 14-238
imhist 10-9
example 10-10, 10-21, 10-22
imhmax 14-240
imhmin 14-242
imimposemin 14-244
imlincomb
example 2-36
immovie 14-251
immovie
example 3-34
imnoise 14-254
imnoise 10-34
example 10-37
salt \& pepper example 10-35
imopen
using 9-14
impixel 14-259
impixel 10-3
example 10-4
improfile 14-262
improfile 10-5
example 10-7
grayscale example 10-5
imread 2-16
example for multiframe image 2-17
imreconstruct 14-266
imreconstruct
example 9-20
imregionalmax 14-268
imregmin 14-270
imresize 14-272
imresize 4-5
imrotate 14-274
imrotate
example 4-5, 4-8
using 4-8
imshow 14-276
imshow
compared to Image Viewer 3-3
displaying images 3-18
displaying unconventional range data 3-26
example for binary images 3-27
example for intensity images 3-25
example for RGB images 3-29
preferences for 3-37
specifying number of gray levels 3-25
truesize option 3-19
used with indexed images 3-24
imtophat 14-280
imtransform 14-257, 14-282
imtransform
using 4-11
imview 14-288
imview
compared to imshow 3-3
displaying unconventional range data 3-26
used with indexed images 3-24
imwrite
example 2-18
ind2gray 14-293
ind2rgb 14-294
ind2rgb 2-14
indexed images 2-6, 14-306
converting from intensity 14-170
converting from RGB 14-376
definition 2-2
reducing number of colors in 13-6, 13-12
infinite impulse response (IIR) filter 7-18
inline 6-9
Intel Performance Primitives Library 14-295
intensity adjustment 10-22, 14-199
gamma correction 10-24
histogram equalization 10-26
specifying limits automatically 10-24
See also contrast adjustment
intensity images 2-8, 14-305
converting from matrices $14-328$
converting from RGB 14-374
converting to indexed 14-170
definition 2-2
displaying 3-25
flood-fill operation 9-26
number of gray levels displayed 3-25
intensity profiles 10-5, 14-262
interpolation 4-3
bicubic 4-3
definition 4-2
bilinear 4-3
definition 4-2
default 4-4
definition 4-2
intensity profiles 10-5
nearest-neighbor 4-3
definition 4-2
of binary images 4-4
of indexed images 4-4
of RGB images 4-4
tradeoffs between methods 4-3
within a region of interest 11-9
inverse Radon transform 8-28
example 8-33
filtered backprojection algorithm 8-30
inverse transform
definition 8-2
ippl 14-295
iptdemos 14-296
iptgetpref 14-297
iptgetpref 3-38
iptsetpref 14-298
iradon 14-300
iradon 8-28
example 8-28
isbw 14-303
isflat 14-304
isgray 14-305
isind 14-306
isrgb 14-307

## J

java.opts file
managing memory usage 3-16

JPEG compression
discrete cosine transform and 8-19

## L

lab2double 14-308
lab2uint16 14-309
lab2uint8 14-310
label matrix
creating 9-40
viewing as pseudocolor image 1-16, 9-41
label2rgb 14-311
labeling
connected-components 9-40
levels of contours 10-9
Laplacian of Gaussian edge detector 14-122
Laplacian of Gaussian filter 14-145
line detection 8-26
line segment
pixel values along 10-5
linear conformal transformations 5-13
linear filtering 6-5, 7-4
convolution 7-4
filter design 7-17
FIR filters 7-17
IIR filters 7-18
noise removal and 10-34
local weighted mean transformations 5-14
lookup table operations 9-44
lookup-table operations 14-319
Lucy-Richardson algorithm
used for deblurring 12-11
luminance
in NTSC color space 13-22
in YCbCr color space $13-22$

## M

magnification
specifying in Image Viewer 3-5
magnifying
See resizing images
makecform 14-177, 14-313
makelut 14-319
makelut 9-44
example 9-44
marker image
creating 9-34
definition 9-19
mask image
definition 9-19
masked filtering 11-6, 14-384
definition 11-2
mat2gray 14-328
mat2gray 2-14
matrices
converting to intensity images 14-328
storing images in 2-4
maxima
finding in images 9-29
imposing 9-33
suppressing 9-31
McClellan transform 14-150
mean2 14-329
mean2 10-11
medfilt2 14-330
medfilt2
example 10-36
using 10-35
median filtering 10-34, 14-330
minima
finding in images 9-29
imposing 9-33
suppressing 9-31
minimum variance quantization
See quantization
moiré patterns 4-7
montage 14-332
montage
example 3-32, 3-33
morphological operations 9-4, 14-51
closing 14-51
diagonal fill 14-52
dilation 9-4, 14-52
erosion 9-4, 14-52
grayscale 14-338
opening 14-52
predefined operations 9-16
removing spur pixels 14-52
shrinking objects $14-52$
skeletonization 9-17, 14-52
thickening objects 14-53
thinning objects 14-53
morphological reconstruction
finding peaks and valleys 9-29
overview 9-19
morphology
closing 9-14
definition 9-2
opening 9-14
overview 9-1
See also morphological reconstruction
mouse
filling region of interest in intensity image 11-9
getting an intensity profile with 10-3
returning pixel values with 10-3
selecting a polygonal region of interest 11-3
movies
creating from images 3-34, 14-251
playing 3-34
multidimensional filters 7-13
multiframe images
about 2-12
definition 2-2
displaying 14-332
limitations 2-12
multilevel thresholding 14-171
multiplication
of images 2-34

## N

nearest-neighbor interpolation 4-3
definition 4-2
neighborhood operations
definition 6-2
neighborhoods
binary image operations $14-20$
definition 9-2
neighborhood operations 6-2
nlfilter 14-334
nlfilter 6-6
example 6-6
noise
definition 10-2
noise amplification
reducing 12-12
noise removal 10-34
adaptive filtering (Weiner) and 10-37
adding noise 14-254
Gaussian noise 10-37, 14-254
grain noise 10-34
linear filtering and 10-34
localvar noise 14-254
median filter and 10-35
poisson noise 14-254
salt and pepper noise 10-35, 14-254
speckle noise 14-254
nonlinear filtering 6-5
normalized cross-correlation 5-32
normxcorr2 14-335
NTSC color space 13-21, 14-337, 14-378
ntsc2rgb 14-337
ntsc2rgb 13-22

## 0

object selection 14-59
objects
tracing boundaries 10-13
observed image
in image registration 5-15
1-bit image files 2-18
opening 14-52
morphology 9-14
optical transfer function (OTF)
definition 12-2
order-statistic filtering 14-338
ordfilt2 14-338
orthonormal matrix 8-19
orthophoto
defined 5-7
orthorectified image 5-7
OTF
See optical transfer function
otf2psf 14-340
use of 12-22
outliers 10-35
overlap
in block operations 6-2
in distinct block operations 6-8
Overview window
in Image Viewer 3-6
using 3-9

## P

packed binary image
definition 9-3
padarray 14-341
padding borders
block processing 6-5
options with imfilter 7-10
panning images
using the Image Viewer 3-11
para2fan 14-344
parallel beam projections 8-29
perimeter determination 14-57
in binary images 9-17
phantom 14-348
phantom 8-31
piecewise linear transformations 5-14
Pixel Region tool
in Image Viewer 3-6
specifying region size 3-15
using 3-13
pixel values 14-259, 14-351
along a line segment 10-5
returning using a mouse 10-3
using the Pixel Region tool 3-13
pixels
correcting for bad pixels 12-12
defining connectivity 9-23
definition 2-4
displaying coordinates of 10-3
Euclidean distance between 10-3
returning coordinates of 10-4
selecting 10-3
pixval 14-351
pixval
using 10-3
PNG
writing as 16 -bit 2-18
point mapping
for image registration 5-4
point spread function
importance of in deblurring 12-4
point spread function (PSF)
definition 12-2
poly2mask 14-353
polygon
pixels inside 11-3
selecting a polygonal region of interest 11-3
polynomial transformations 5-14
predicting control point locations
in image registration 5-25
preferences
getting values 14-298
Image Processing Toolbox display preferences 3-37
ImshowAxesVisible 3-37
ImshowBorder 3-37
ImshowTruesize 3-37
TrueSizeWarning 3-38
Prewitt edge detector 14-122
Prewitt filter 14-145
profiles
reading ICC color profiles 13-19
projections
parallel beam 8-29
projective transformations 4-11, 5-14
PSF
See point spread function
psf2otf 14-354
use of 12-22

## Q

qtdecomp 14-355
qtdecomp 10-19
example 10-19
qtgetblk 14-359
See also qtdemo
qtsetblk 14-361
See also qtdemo
quadtree decomposition 10-18, 14-355
definition 10-2
getting block values 14-359
setting block values 14-361
quantization 13-7
minimum variance quantization 14-376
tradeoffs between using minimum variance and uniform quantization methods 13-11
uniform quantization 14-376

## R

radon 14-362
radon 8-28
example 8-24
Radon transform 8-21, 14-362
center pixel 8-23
example 8-31
inverse 14-300
inverse Radon transform 8-28
line detection example 8-26
of the Shepp-Logan Head phantom 8-32
relationship to Hough transform 8-26
rank filtering 10-35
See also order-statistic filtering
ratioing 2-36
read-out noise
correcting 12-12
real orthonormal matrix 8-19
reconstruction
morphological 9-19
reference image
in image registration 5-15
reflect 14-364
regcorr 14-137, 14-138, 14-321
region labeling 9-40
region of interest
based on color or intensity 11-5
binary masks 11-3
definition 11-2
filling 11-9, 14-382
filtering 11-6, 14-384
polygonal 11-3
selecting 11-3, 11-4, 14-381, 14-386
region property measurement 10-11
regional maxima
definition 9-3, 9-29
imposing 9-33
suppressing 9-31
regional minima
definition 9-3, 9-29
imposing 9-33
suppressing 9-31
regionprops 14-365
regionprops 10-11
using 1-17
registering an image 5-4
regularized filter
used for deblurring 12-9
replication
to avoid border effect 7-12
resizing images 4-5
antialiasing 4-7
resolution
screen color resolution 13-3
See also bit depth 13-3
RGB color cube
description of 13-7
quantization of 13-8

RGB images 2-9, 14-307
converting to indexed 14-376
converting to intensity 14-374
definition 2-3
displaying 3-29
measuring the intensities of each color plane 10-6
reducing number of colors 13-6
rgb2gray 14-374
rgb2gray 2-14
rgb2hsv 13-23
example 13-24
rgb2ind 14-376
rgb2ind 2-14, 13-7
colormap mapping example 13-12
example 13-9, 13-10, 13-12, 13-13, 13-14
minimum variance quantization example 13-10
specifying a colormap to use 13-11
uniform quantization example 13-9
rgb2ntsc 14-378
rgb2ntsc 13-22
example 13-22
rgb2ycbcr 13-23
example 13-23
Richardson-Lucy algorithm
See Lucy-Richardson
ringing
in image deblurring 12-23
Roberts edge detector 14-122
roicolor 14-381
roicolor 11-5
roifill 14-382
roifill 11-9
example 11-9
roifilt2 14-384
roifilt2 11-6
contrast example 11-6
inline example 11-7
roipoly 14-386
roipoly 11-3
example 11-3
rotating an image 14-274
rotation
of images 4-8

## S

salt and pepper noise 10-35
sampling
handling undersampled images 12-13
saturation
in HSV color space 13-23
in NTSC color space 13-22
screen bit depth 13-3
definition 13-2
screen color resolution 13-3
definition 13-2
ScreenDepth 13-3
Shepp-Logan head phantom 8-31
shrinking
See resizing images
Signal Processing Toolbox
hamming function 7-21
16-bit image files
creating 2-19
reading 2-16
skeletonization 9-17
sliding neighborhood operations 6-4, 14-334
center pixel in 6-4
padding in 6-5
Sobel edge detector 14-121
Sobel filter 14-145
spatial coordinates 2-38
spatial domain
definition 8-2
statistical properties
mean 14-329
of image objects 1-18
standard deviation 14-388
std2 14-388
std2 10-11
storage classes
converting between 2-20
of images 2-3
strel 14-389
stretchlim 14-396
stretchlim
adjusting image contrast 1-12
using 10-24
structuring elements 9-7
creating 9-8
decomposition of 9-9
decomposition sequence 14-169
definition 9-3
determining composition 14-219
subimage 14-398
subimage 3-21
subplot 3-21
subtraction
of images 2-33
of one image from another 1-11
sum 2-4
surf
viewing images $1-10$

## T

template matching 8-13
texture mapping 3-35, 14-413
tform 14-325
tformarray 14-400
tformfwd 14-404
tforminv 14-406
thresholding
to create a binary image $1-13,14-186$
to create indexed image from intensity image 14-171
tomography 8-28
tracing boundaries 10-13
transformation matrix 7-18
transforms 8-1
definition 8-2
discrete cosine 8-17, 14-95
discrete Fourier transform 8-8
Fourier 8-3, 14-133, 14-134
inverse discrete cosine 14-180
inverse Fourier 14-185
inverse Radon 8-28, 14-300
Radon 8-21, 14-362
two-dimensional Fourier transform 8-3
translate 14-408
transparency 13-4
truesize 14-409
truesize function
used with imshow 3-19
truncation rules
for image arithmetic operators 2-30
24-bit image files $2-9$

## U

uint16
storing images in 2-5, 2-16
uint8
storing images in 2-5, 2-16
uintlut 14-412
undersampling
correcting 12-13
uniform quantization
See quantization
unsharp filter 14-145
unsharp masking 7-15

## W

warp 14-413
example 14-413
warp 3-35
example 3-35
watershed 14-415
weight array
in deblurring 12-12
whitepoint 14-419
Wiener filter
deblurring with 12-7
wiener2 14-420
wiener2
adaptive filtering 10-37
using 10-37
windowing method (filter design) 7-20, 14-153, 14-157

## X

X-ray absorption tomography 8-28
XYZ color space 13-15
xyz2double 14-422
xyz2uint16 14-423

## $\mathbf{Y}$

YCbCr color space 13-22, 14-379, 14-424
ycbcr2rgb 13-23
YIQ color space 13-22

## Z

zero padding 8-13
and the fast Fourier transform 8-10 image boundaries 7-10
zero-cross edge detector 14-122
zero-frequency component 8-3
zooming
Control Point Selection Tool 5-20
with Image Viewer 3-11


[^0]:    Algorithm

    See Also
    bweuler computes the Euler number by considering patterns of convexity and concavity in local 2-by-2 neighborhoods. See [2] for a discussion of the algorithm used.
    bwmorph, bwperim

[^1]:    Example
    This example illustrates using 4 -connected objects. Notice objects 2 and 3; with 8 -connected labeling, bwlabel would consider these a single object rather than two separate objects.

[^2]:    See Also
    conndef, imreconstruct, imregionalmin

[^3]:    See Also
    imcrop, imresize, imtransform, tformarray

[^4]:    See Also

