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This chapter introduces you to the Image Processing Toolbox and describes conventions used by the 
documentation. 

What Is the Image Processing Toolbox? 
(p. xiv)

Introduces the Image Processing Toolbox and its 
capabilities

Related Products (p. xv) Highlights other MathWorks products that are related to 
image processing

Configuration Notes (p. xvi) Provides some information about installing and 
configuring the image processing toolbox

About the Documentation (p. xvii) Describes the structure of the Image Processing Toolbox 
documentation and credits the sources of the images used 
in the documentation

Typographical Conventions (p. xxi) Lists typographical conventions used in the 
documentation

Image Processing Demos (p. xxii) Describes the demos included with the Image Processing 
Toolbox
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What Is the Image Processing Toolbox?
The Image Processing Toolbox is a collection of functions that extend the 
capability of the MATLAB® numeric computing environment. The toolbox 
supports a wide range of image processing operations, including

• Spatial image transformations

• Morphological operations

• Neighborhood and block operations

• Linear filtering and filter design

• Transforms

• Image analysis and enhancement

• Image registration

• Deblurring

• Region of interest operations

Many of the toolbox functions are MATLAB M-files, a series of MATLAB 
statements that implement specialized image processing algorithms. You can 
view the MATLAB code for these functions using the statement

type function_name

You can extend the capabilities of the Image Processing Toolbox by writing 
your own M-files, or by using the toolbox in combination with other toolboxes, 
such as the Signal Processing Toolbox and the Wavelet Toolbox.

For a list of the new features in this version, see the Release Notes 
documentation.
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Related Products
The MathWorks provides several products that are especially relevant to the 
kinds of tasks you can perform with Image Processing Toolbox.

For more information about any of these products, see either

• The online documentation for that product if it is installed or if you are 
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com; see the “products” 
section

The toolboxes listed below all include functions that extend MATLAB. The 
blocksets all include blocks that extend Simulink..

Product Description

DSP Blockset Design and simulate DSP systems

Image Acquisition 
Toolbox

Connect to image acquisition hardware and 
bring frames of image data into the MATLAB 
workspace

Mapping Toolbox Analyze and visualize geographically based 
information 

MATLAB The Language of Technical Computing

Signal Processing 
Toolbox

Perform signal processing, analysis, and 
algorithm development

Wavelet Toolbox Analyze, compress, and denoise signals and 
images using wavelet techniques
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Configuration Notes
To determine if the Image Processing Toolbox is installed on your system, type 
this command at the MATLAB prompt.

ver

When you enter this command, MATLAB displays information about the 
version of MATLAB you are running, including a list of all toolboxes installed 
on your system and their version numbers.

For information about installing the toolbox, see the MATLAB Installation 
Guide for your platform.

For the most up-to-date information about system requirements, see the 
system requirements page, available in the products area at The MathWorks 
Web site (www.mathworks.com).
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About the Documentation
This section

• Describes the structure of the Image Processing Toolbox documentation

• Credits the sources of images used in the documentation

• Explains the use of glossaries at the beginning of each major section of the 
documentation

• Provides pointers to other sources of information

Structure of the Documentation
The documentation is organized into these major sections:

• Chapter 1, “Getting Started,” contains two step-by-step examples that will 
help you get started with using the Image Processing Toolbox. 

• Chapter 2, “Introduction,” introduces the Image Processing Toolbox and its 
capabilities.

• Chapter 3, “Displaying and Printing Images,” describes how to display and 
print images in MATLAB.

• Chapter 4, “Spatial Transformations,” describes image cropping, resizing, 
rotating, and other geometric transformations you can perform with the 
Image Processing Toolbox.

• Chapter 5, “Image Registration,” describes how to align two images of the 
same scene using the Control Point Selection Tool. 

• Chapter 6, “Neighborhood and Block Operations,” describes how to perform 
block operations on images. 

• Chapter 7, “Linear Filtering and Filter Design,” describes how to create 
filters. 

• Chapter 8, “Transforms,” discusses several important image transforms. 

• Chapter 9, “Morphological Operations,” describes the functions in the 
toolbox that you can use to implement morphological image processing 
operations. 

• Chapter 10, “Analyzing and Enhancing Images,” discusses working with 
image data and displaying images in MATLAB and the Image Processing 
Toolbox.
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• Chapter 11, “Region-Based Processing,” describes how to perform image 
processing on specific regions of an image. 

• Chapter 12, “Image Deblurring,” describes the toolbox deblurring functions.

• Chapter 13, “Color,” describes how to handle color images.

For detailed reference descriptions of each toolbox function, go to the MATLAB 
Help browser. Many reference descriptions also include examples, a 
description of the function’s algorithm, and references to additional reading 
material.

Image Credits
This table lists the copyright owners of the images used in the Image 
Processing Toolbox documentation.

Image Source

cameraman Copyright Massachusetts Institute of 
Technology. Used with permission.

cell Cancer cell from a rat’s prostate, courtesy of 
Alan W. Partin, M.D., Ph.D., Johns Hopkins 
University School of Medicine.

circuit Micrograph of 16-bit A/D converter circuit, 
courtesy of Steve Decker and Shujaat 
Nadeem, MIT, 1993.

concordaerial and 
westconcordaerial

Visible color aerial photographs courtesy of 
mPower3/Emerge.

concordorthophoto and 
westconcordorthophoto

Orthoregistered photographs courtesy of 
Massachusetts Executive Office of 
Environmental Affairs, MassGIS.

forest Photograph of Carmanah Ancient Forest, 
British Columbia, Canada, courtesy of Susan 
Cohen.
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Terminology
At the beginning of each chapter are glossaries of words you need to know to 
understand the information in the chapter. These tables clarify how we use 
terms that may be used in several different ways in image processing 
literature. For example:

• In the field of image processing, one word is sometimes used to describe more 
than one concept. For example the resolution of an image can describe the 
height and width of an image as a quantity of pixels in each direction, or it 
can describe the number of pixels per linear measure, such as 100 dots per 
inch.

LAN files Permission to use Landsat™ data sets 
provided by Space Imaging, LLC, Denver, 
Colorado.

liftingbody Picture of M2-F1 lifting body in tow, courtesy 
of NASA (Image number E-10962).

m83 M83 spiral galaxy astronomical image 
courtesy of Anglo-Australian Observatory, 
photography by David Malin.

moon Copyright Michael Myers. Used with 
permission.

saturn Voyager 2 image, 1981-08-24, NASA catalog 
#PIA01364.

solarspectra Courtesy of Ann Walker. Used with 
permission.

tissue Courtesy of Alan W. Partin, M.D., PhD., 
Johns Hopkins University School of Medicine. 

trees Trees with a View, watercolor and ink on 
paper, copyright Susan Cohen. Used with 
permission.

Image Source
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• In the field of image processing, the same concepts are sometimes described 
by different terminology. For example, a grayscale image can also be called 
an intensity image.

MATLAB Newsgroup
If you read newsgroups on the Internet, you might be interested in the 
MATLAB newsgroup (comp.soft-sys.matlab). This newsgroup gives you 
access to an active MATLAB user community. It is an excellent way to seek 
advice and to share algorithms, sample code, and M-files with other MATLAB 
users.
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Typographical Conventions

Item Convention Example

Example code Monospace font To assign the value 5 to A, 
enter

A = 5

Function names, syntax, 
filenames, directory/folder 
names, user input, items in 
drop-down lists

Monospace font The cos function finds the 
cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Buttons and keys Boldface with book title caps Press the Enter key.

Literal strings (in syntax 
descriptions in reference 
chapters)

Monospace bold for literals f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables
Standard text font for 
functions, operators, and 
constants

This vector represents the 
polynomial p = x2 + 2x + 3.

MATLAB output Monospace font MATLAB responds with
A =

5

Menu and dialog box titles Boldface with book title caps Choose the File Options 
menu.

New terms and for 
emphasis

Italics An array is an ordered 
collection of information.

Omitted input arguments (...) ellipsis denotes all of the 
input/output arguments from 
preceding syntaxes. 

[c,ia,ib] = union(...)

String variables (from a 
finite list)

Monospace italics sysc = d2c(sysd,'method')
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Image Processing Demos
The Image Processing Toolbox is supported by a full complement of demo 
applications. These are very useful as templates for your own end-user 
applications, or for seeing how to use and combine your toolbox functions for 
powerful image analysis and enhancement. 

To view all the Image Processing Toolbox demos, call the iptdemos function. 
This displays an HTML page in the MATLAB Help browser that lists all the 
Image Processing Toolbox demos. 

You can also view this page by starting the MATLAB Help browser and clicking 
the Demos tab in the Help Navigator pane. From the list of products with 
demos, select the Image Processing Toolbox.

The toolbox demos are located under the subdirectory

matlabroot\toolbox\images\imdemos

where matlabroot represents your MATLAB installation directory.



 

1

Getting Started

This chapter contains two examples to get you started doing image processing using MATLAB and 
the Image Processing Toolbox. The examples contain cross-references to other sections in the 
documentation manual that have in-depth discussions on the concepts presented in the examples.

Example 1 — Some Basic Topics 
(p. 1-2)

Guides you through an example of some of the basic 
image processing capabilities of the toolbox, including 
reading, writing, and displaying images 

Example 2 — Advanced Topics (p. 1-8) Guides you through some advanced image processing 
topics, including components labeling, object property 
measurement, image arithmetic, morphological image 
processing, and contrast enhancement

Where to Go from Here (p. 1-20) Provides pointers to additional sources of information
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Example 1 — Some Basic Topics
This example introduces some basic image processing concepts, including 
reading and writing images, performing histogram equalization on an image, 
and getting information about an image. The example breaks this process into 
the following steps:

Before beginning with this example, you should already have installed the 
Image Processing Toolbox and have started MATLAB. If you are new to 
MATLAB, read the MATLAB Getting Started documentation to learn about 
basic MATLAB concepts.

1. Read and Display an Image
Clear the MATLAB workspace of any variables and close open figure windows. 

clear, close all

To read an image, use the imread command. The example reads an image from 
a file named pout.tif and stores it in an array named I. pout.tif is one of the 
sample images that is supplied with the Image Processing Toolbox.

I = imread('pout.tif');

imread infers from the file that the graphics file format is TIFF. For the list of 
supported graphics file formats, see the imread function reference 
documentation.

Now display the image. The toolbox includes two image display functions: 
imshow and imview. You can use either one to display an image.

imshow(I)

Step 1: Read and display an image 

Step 2: Check how the image appears in the workspace

Step 3: Perform histogram equalization on the image

Step 4: Write the image to a disk file

Step 5: Get information about a graphics file
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Intensity Image pout.tif

Your choice of which display function to use depends on what you want to do. 
For example, because it displays the image in a MATLAB figure window, 
imshow provides access to figure annotation and printing capabilities. The 
imview function displays an image in a separate Java-based window called the 
Image Viewer, which provides access to additional tools that aid in navigating 
around an image, especially large images, and enable the inspection of pixels 
in an image. 

“Example 2 — Advanced Topics” on page 1-8 uses imview. For more detailed 
information about these display functions, see Chapter 3, “Displaying and 
Printing Images.”

2. Check How the Image Appears in the Workspace
To see how the imread function stored the image data in the workspace, check 
the Workspace browser in the MATLAB desktop. The Workspace browser 
displays information about all the variables you create during a MATLAB 
session. In the call to imread, you created the variable I, which is a 291-by-240 
element array of uint8 data. MATLAB can store images as uint8, uint16, or 
double arrays. 

You can also get information about variables in the workspace by calling the 
whos command.

whos
Name      Size         Bytes  Class
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  I       291x240        69840  uint8 array

Grand total is 69840 elements using 69840 bytes

For more information about image storage classes, see “Reading a Graphics 
Image” on page 2-16.

3. Perform Histogram Equalization on the Image
As you can see, pout.tif is a somewhat low contrast image. To see the 
distribution of intensities in pout.tif, you can create a histogram by calling 
the imhist function. (Precede the call to imhist with the figure command so 
that the histogram does not overwrite the display of the image I in the current 
figure window.) 

figure, imhist(I) 

Notice how the intensity range is rather narrow. It does not cover the potential 
range of [0, 255], and is missing the high and low values that would result in 
good contrast.
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The toolbox provides several ways to improve the contrast in an image. One 
way is to call the histeq function to spread the intensity values over the full 
range of the image, a process called histogram equalization. (For more 
information about this topic, see “Intensity Adjustment” on page 10-21, which 
describes how to use the histeq, imadjust, and adapthisteq functions.)

I2 = histeq(I);

Display the new equalized image, I2, in a new figure window.

figure, imshow(I2) 

Equalized Version of pout.tif

Call imhist again to create a histogram of the equalized image I2. If you 
compare the two histograms, the histogram of I2 is more spread out than the 
histogram of I1. 

figure, imhist(I2) 
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4. Write the Image to a Disk File
To write the newly adjusted image I2 to a disk file, use the imwrite function. 
If you include the filename extension '.png', the imwrite function writes the 
image to a file in Portable Network Graphics (PNG) format, but you can specify 
other formats. 

imwrite (I2, 'pout2.png');

See the imwrite function reference page for a list of file formats it supports. See 
also “Writing a Graphics Image” on page 2-17 for a tutorial discussion on 
writing images using the Image Processing Toolbox.

5. Check the Contents of the Newly Written File
To see what imwrite wrote to the disk file, use the imfinfo function. This 
function returns information about the image in the file, such as its format, 
size, width, and height.

imfinfo('pout2.png')

MATLAB responds with
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ans = 

. . .

This example shows only a subset of all the fields returned by imfinfo. See 
“Querying a Graphics File” on page 2-20 for more information about using 
imfinfo.

Filename:'pout2.png'
FileModDate:'03-Jun-1999 15:50:25'

FileSize:36938
Format:'png'

FormatVersion:[]
Width:240
Height:291

BitDepth:8
ColorType:'grayscale'
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Example 2 — Advanced Topics
This example introduces some advanced image processing concepts. The 
example calculates statistics about objects in the image but, before it performs 
these calculations, it preprocesses the image to achieve better results. The 
preprocessing involves creating a uniform background in the image and 
converting the image into a binary image. The example breaks this process into 
the following steps:

1. Read and Display an Image
Clear the MATLAB workspace of any variables, close open figure windows, and 
close all open Image Viewers.

clear, close all, imview close all

Read and display the intensity image rice.png.

I = imread('rice.png');
imview(I)

Step 1: Read and display an image 

Step 2: Estimate the approximate value of background pixels

Step 3: View the background approximation as a surface

Step 4: Create an image with a uniform background

Step 5: Adjust the contrast in the uniform image

Step 6: Create a binary version of the image

Step 7: Determine the number of objects in the image

Step 8: Examine the label matrix

Step 9: Display the label matrix as a pseudocolor indexed image

Step 10: Measure properties of objects in the image

Step 11: Compute statistics of objects in the image
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Intensity Image rice.png

2. Estimate the Value of Background Pixels
In the sample image, the background illumination is brighter in the center of 
the image than at the bottom. In this step, the example uses a morphological 
opening operation to estimate the background illumination. An opening is an 
erosion followed by a dilation, using the same structuring element for both 
operations. The morphological opening has the effect of removing objects that 
cannot completely contain the structuring element. For more information 
about morphological image processing, see Chapter 9, “Morphological 
Operations.”

The example calls the imopen function to perform the morphological opening 
operation. Note the call to the strel function, which creates a disk-shaped 
structuring element with a radius of 15. To remove the rice grains from the 
image, the structuring element must be large enough so that it cannot fit 
entirely inside a single grain of rice. 

background = imopen(I,strel('disk',15));

To see the estimated background image, type

imview(background)
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3. View the Background Approximation as a 
Surface
Use the surf command to create a surface display of the background 
approximation background. The surf command creates colored parametric 
surfaces that enable you to view mathematical functions over a rectangular 
region. The surf function requires data of class double, however, so you first 
need to convert background using the double command. 

figure, surf(double(background(1:8:end,1:8:end))),zlim([0 255]);
set(gca,'ydir','reverse');

The example uses MATLAB indexing syntax to view only 1 out of 8 pixels in 
each direction; otherwise the surface plot would be too dense. The example also 
sets the scale of the plot to better match the range of the uint8 data and 
reverses the y-axis of the display to provide a better view of the data (the pixels 
at the bottom of the image appear at the front of the surface plot).

In the surface display, [0, 0] represents the origin, or upper left corner of the 
image. The highest part of the curve indicates that the highest pixel values of 
background (and consequently rice.png) occur near the middle rows of the 
image. The lowest pixel values occur at the bottom of the image and are 
represented in the surface plot by the lowest part of the curve. 

The surface plot is a Handle Graphics® object. You can use object properties to 
fine-tune its appearance. For information on working with MATLAB graphics, 
see the MATLAB graphics documentation.
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4. Create an Image with a Uniform Background
To create a more uniform background, subtract the background image, 
background, from the original image, I. 

I2 = imsubtract(I,background); 

Because subtraction, like many MATLAB mathematical operations, is only 
supported for data of class double, you must use the Image Processing Toolbox 
image arithmetic imsubtract function.

Display the image with its more uniform background.

imview(I2)
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Image with Uniform Background

5. Adjust the Contrast in the Processed Image
After subtraction, the image has a uniform background but is now a bit too 
dark. Use imadjust to adjust the contrast of the image.

I3 = imadjust(I2);

imadjust increases the contrast of the image by saturating 1% of the data at 
both low and high intensities of I2 and by stretching the intensity values to fill 
the uint8 dynamic range. See the reference page for imadjust for more 
information.

Display the adjusted image I3.

imview(I3);
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Image After Intensity Adjustment

6. Create a Binary Version of the Image
Create a binary version of the image by using thresholding. The function 
graythresh automatically computes an appropriate threshold to use to convert 
the intensity image to binary. The im2bw function performs the conversion.

level = graythresh(I3);
bw = im2bw(I3,level); 
imview(bw)
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Binary Version of the Image

The binary image bw returned by im2bw is of class logical, as can be seen in 
this call to whos. The Image Processing Toolbox uses logical arrays to represent 
binary images. For more information, see “Binary Images” on page 2-9.

whos

MATLAB responds with

Name                Size         Bytes  Class

I                 256x256        65536  uint8 array
I2                256x256        65536  uint8 array
I3                256x256        65536  uint8 array
background        256x256        65536  uint8 array
bw                256x256        65536 logical array
level               1x1              8  double array

Grand total is 327681 elements using 327688 bytes
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7. Determine the Number of Objects in the Image
After converting the image to a binary image, you can use the bwlabel function 
to determine the number of grains of rice in the image. The bwlabel function 
labels all the components in the binary image bw and returns the number of 
components it finds in the image in the output value, numObjects.

[labeled,numObjects] = bwlabel(bw,4);

numObjects 
ans = 

   101

The accuracy of the results depends on a number of factors, including 

• The size of the objects

• Whether or not any objects are touching (in which case they might be labeled 
as one object) 

• The accuracy of the approximated background 

• The connectivity selected. The parameter 4, passed to the bwlabel function, 
means that pixels must touch along an edge to be considered connected. For 
more information about the connectivity of objects, see “Pixel Connectivity” 
on page 9-23.

8. Examine the Label Matrix
To better understand the label matrix returned by the bwlabel function, this 
step explores the pixel values in the image. There are several ways to get a 
closeup view of pixel values. For example, you can use imcrop to select a small 
portion of the image. Another way is to use imview to display the label matrix 
and use features of the Image Viewer to examine pixel values. 

imview(labeled);

The Image Viewer displays the value of the pixel under the mouse pointer as 
you move it over the image. If you move the pointer over the label matrix in a 
columnwise direction, you can see the order in which bwlabel numbered the 
grains of rice.

You can also use the Pixel Region tool to get a close look at the values of pixels 
in the label matrix. When you click the Pixel Region button  in the Image 
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Viewer toolbar, the Image Viewer opens the Pixel Region tool window and 
places a rectangular cursor, called the pixel region rectangle, in the center of 
the visible part of the image. This rectangle defines which pixels are displayed 
in the Pixel Region tool window. As you move the rectangle, the Pixel Region 
Tool updates the pixel values displayed in the window. For more information 
about all the capabilities of the Image Viewer, see “Using the Image Viewer to 
Display Images” on page 3-4.

The following figure shows the Image Viewer with the Pixel Region rectangle 
positioned over the edges of two rice grains. Note how all the pixels in the rice 
grains have the values assigned by the bwlabel function and the background 
pixels have the value 0 (zero).
.

Examining the Label Matrix with the Pixel Region Tool

9. Display the Label Matrix as a Pseudocolor 
Indexed Image
A good way to view a label matrix is to display it as a pseudocolor indexed 
image. In the pseudocolor image, the number that identifies each object in the 
label matrix maps to a different color in the associated colormap matrix. The 
colors in the image make objects easier to distinguish.

Pixel Region rectangle Region displayed in Pixel Region Tool
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To view a label matrix in this way, use the label2rgb function. Using this 
function, you can specify the colormap, the background color, and how objects 
in the label matrix map to colors in the colormap. 

pseudo_color = label2rgb(labeled, @spring, 'c', 'shuffle');
imview(pseudo_color); 

Label Matrix Displayed as Pseudocolor Image

10. Measure Object Properties in the Image
The regionprops command measures object or region properties in an image 
and returns them in a structure array. When applied to an image with labeled 
components, it creates one structure element for each component. 

This example uses regionprops to create a structure array containing some 
basic properties for labeled. When you set the properties parameter to 
'basic', the regionprops function returns three commonly used 
measurements: area, centroid (or center of mass), and bounding box. The 
bounding box represents the smallest rectangle that can contain a region, or in 
this case, a grain of rice.

graindata = regionprops(labeled,'basic')

MATLAB responds with

graindata = 

101x1 struct array with fields:
    Area
    Centroid
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    BoundingBox

To find the area of the 51st labeled component, access the Area field in the 51st 
element in the graindata structure array. Note that structure field names are 
case sensitive.

graindata(51).Area

returns the following results

ans =

140

To find the smallest possible bounding box and the centroid (center of mass) for 
the same component, use this code:

graindata(51).BoundingBox, graindata(51).Centroid

ans =

  107.5000    4.5000   13.0000   20.0000

ans =

  114.5000   15.4500

11. Compute Statistical Properties of Objects in the 
Image
Now use MATLAB functions to calculate some statistical properties of the 
thresholded objects. First use max to find the size of the largest grain. (In this 
example, the largest grain is actually two grains of rice that are touching.)

max([graindata.Area])

returns

ans =

404

Use the find command to return the component label of the grain of rice with 
this area.
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biggrain = find([graindata.Area]==404)

returns

biggrain =

59

Find the mean of all the rice grain sizes.

mean([graindata.Area])

returns

ans =

175.0396

Make a histogram containing 20 bins that show the distribution of rice grain 
sizes. The histogram shows that the most common sizes for rice grains in this 
image are in the range of 150 to 250 pixels.

hist([graindata.Area],20)
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Where to Go from Here
For more information about the topics covered in these exercises, read the 
tutorial chapters that make up the remainder of this documentation. For 
reference information about any of the Image Processing Toolbox functions, see 
the online “Function Reference”, which complements the M-file help that is 
displayed in the MATLAB command window when you type 

help functionname 

For example,

help imview

Online Help
The Image Processing Toolbox User’s Guide documentation is available online 
in both HTML and PDF formats. To access the HTML help, select Help from 
the menu bar of the MATLAB desktop. In the Help Navigator pane, click the 
Contents tab and expand the Image Processing Toolbox topic in the list. 

To access the PDF help, click Image Processing Toolbox in the Contents tab 
of the Help browser and go to the link under “Printable Documentation (PDF).” 
(Note that to view the PDF help, you must have Adobe's Acrobat Reader 
installed.)

Toolbox Demos
The Image Processing Toolbox includes many demo applications. The demos 
are useful for seeing the toolbox features put into action and for borrowing code 
for your own applications. To view an HTML page that lists all the Image 
Processing Toolbox demos, call the iptdemos function. You can also access the 
demos by clicking the Demos tab in the Help Navigator pane of the MATLAB 
Help browser. 
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Introduction

This chapter introduces you to the fundamentals of image processing using MATLAB and the Image 
Processing Toolbox. 

Terminology (p. 2-2) Provides definitions of image processing terms used in 
this section

Images in MATLAB and the Image 
Processing Toolbox (p. 2-4)

Describes how images are represented in MATLAB and 
the Image Processing Toolbox

Image Types in the Toolbox (p. 2-6) Describes the fundamental image types supported by the 
Image Processing Toolbox

Reading and Writing Image Data 
(p. 2-16)

Describes how to read and write images, and get 
information about image files

Image Arithmetic (p. 2-29) Describes how to add, subtract, multiply, and divide 
images

Coordinate Systems (p. 2-37) Explains image coordinate systems
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Terminology
An understanding of the following terms will help you to use this chapter.

Term Definition

binary image Image containing only black and white pixels. In MATLAB, a binary 
image is represented as a logical array of 0’s and 1’s (which usually 
represent black and white, respectively). This documentation uses the 
variable name BW to represent a binary image in the workspace.

image type Defined relationship between array values and pixel colors. The toolbox 
supports binary, indexed, intensity, and RGB image types.

indexed image Image whose pixel values are direct indices into an RGB colormap. In 
MATLAB, an indexed image is represented by an array of class uint8, 
uint16, or double. The colormap is always an m-by-3 array of class 
double. This documentation uses the variable name X to represent an 
indexed image in the workspace, and map to represent the colormap.

intensity image Image consisting of intensity (grayscale) values. In MATLAB, intensity 
images are represented by an array of class uint8, uint16, or double. 
While intensity images are not stored with colormaps, MATLAB uses a 
system colormap to display them. This documentation uses the variable 
name I to represent an intensity image in the workspace.

multiframe image Image array that contains more than one image, related by time or view. 
Each image in the array is referred to as a frame. Multiframe images 
are represented in the workspace as a 4-D array where the fourth 
dimension specifies the frame number. 
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RGB image Image in which each pixel is specified by three values — one each for 
the red, green, and blue components of the pixel’s color. In MATLAB, an 
RGB image is represented by an m-by-n-by-3 array of class uint8, 
uint16, or double. This documentation uses the variable name RGB to 
represent an RGB image in the workspace. This type of image is also 
known as a true-color image.

storage class The numeric storage class used to store an image in MATLAB. The 
storage classes used in MATLAB are uint8, uint16, and double. The 
reference documentation for some functions includes a section called 
“Class Support” that specifies which image classes the function can 
operate on. When this section is absent, the function can operate on all 
supported storage classes.

Term Definition
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Images in MATLAB and the Image Processing Toolbox
The basic data structure in MATLAB is the array, an ordered set of real or 
complex elements. This object is naturally suited to the representation of 
images, real-valued ordered sets of color or intensity data.

MATLAB stores most images as two-dimensional arrays (i.e., matrices), in 
which each element of the matrix corresponds to a single pixel in the displayed 
image. (Pixel is derived from picture element and usually denotes a single dot 
on a computer display.) For example, an image composed of 200 rows and 300 
columns of different colored dots would be stored in MATLAB as a 200-by-300 
matrix. Some images, such as RGB, require a three-dimensional array, where 
the first plane in the third dimension represents the red pixel intensities, the 
second plane represents the green pixel intensities, and the third plane 
represents the blue pixel intensities.

This convention makes working with images in MATLAB similar to working 
with any other type of matrix data, and makes the full power of MATLAB 
available for image processing applications. For example, you can select a 
single pixel from an image matrix using normal matrix subscripting.

I(2,15)

This command returns the value of the pixel at row 2, column 15 of the image I.

Working with Images in MATLAB
Images are most commonly stored in MATLAB using the logical, uint8, 
uint16 and double data types. You can perform many standard MATLAB 
array manipulations on uint8 and uint16 image data, including

• Indexing, including logical indexing

• Reshaping, reordering, and concatenating

• Reading from and writing to MAT-files

• Using relational operators

Certain MATLAB functions, including the find, all, any, conv2, convn, fft2, 
fftn, and sum functions, accept uint8 or uint16 data but return data in 
double-precision format. 
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The basic MATLAB arithmetic operators, however, do not accept uint8 or 
uint16 data. For example, if you attempt to add two uint8 images, A and B, you 
get an error, such as

C = A + B
??? Function '+' not defined for variables of class 'uint8'.

Because these arithmetic operations are an important part of many 
image-processing operations, the Image Processing Toolbox includes functions 
that support these operations on uint8 and uint16 data, as well as the other 
numeric data types. See “Image Arithmetic” on page 2-29 for more information. 

Storage Classes in the Toolbox
By default, MATLAB stores most data in arrays of class double. The data in 
these arrays is stored as double-precision (64-bit) floating-point numbers. All 
MATLAB functions work with these arrays.

For image processing, however, this data representation is not always ideal. 
The number of pixels in an image can be very large; for example, a 
1000-by-1000 image has a million pixels. Since each pixel is represented by at 
least one array element, this image would require about 8 megabytes of 
memory.

To reduce memory requirements, MATLAB supports storing image data in 
arrays as 8-bit or 16-bit unsigned integers, class uint8 and uint16. These 
arrays require one eighth or one fourth as much memory as double arrays.
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Image Types in the Toolbox
The Image Processing Toolbox supports four basic types of images:

• Indexed images

• Intensity images

• Binary images

• RGB images

This section discusses how MATLAB and the Image Processing Toolbox 
represent each of these image types.

Indexed Images
An indexed image consists of a data matrix, X, and a colormap matrix, map. The 
data matrix can be of class uint8, uint16, or double. The colormap matrix is 
an m-by-3 array of class double containing floating-point values in the range 
[0,1]. Each row of map specifies the red, green, and blue components of a single 
color. An indexed image uses direct mapping of pixel values to colormap values. 
The color of each image pixel is determined by using the corresponding value 
of X as an index into map. The value 1 points to the first row in map, the value 2 
points to the second row, and so on. 

A colormap is often stored with an indexed image and is automatically loaded 
with the image when you use the imread function. However, you are not limited 
to using the default colormap—you can use any colormap that you choose. The 
figure below illustrates the structure of an indexed image. The pixels in the 
image are represented by integers, which are pointers (indices) to color values 
stored in the colormap. The following figure depicts an indexed image.
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Relationship of Pixel Values to Colormap in Indexed Images 

Class and Colormap Offsets
The relationship between the values in the image matrix and the colormap 
depends on the class of the image matrix. If the image matrix is of class double, 
the value 1 points to the first row in the colormap, the value 2 points to the 
second row, and so on. If the image matrix is of class uint8 or uint16, there is 
an offset—the value 0 points to the first row in the colormap, the value 1 points 
to the second row, and so on. 

The offset is also used in graphics file formats to maximize the number of colors 
that can be supported. In the preceding figure, the image matrix is of class 
double. Because there is no offset, the value 5 points to the fifth row of the 
colormap.

Limitations to uint16 Support
Note that the toolbox provides limited support for indexed images of class 
uint16. You can read these images into MATLAB and display them, but before 
you can process a uint16 indexed image you must first convert it to either a 
double or a uint8. To convert to a double, call im2double; to reduce the image 

         0         0         0
    0.0627    0.0627    0.0314
    0.2902    0.0314         0
         0         0    1.0000
    0.2902    0.0627    0.0627
    0.3882    0.0314    0.0941
    0.4510    0.0627         0
    0.2588    0.1608    0.0627

 75 10 12 21 40 53 53

 75 14 17 21 21 53 53

 75  8  5  8 10 30 15

 51 15 18 31 31 18 16

 56 31 18 31 31 31 31

...

Image Courtesy of Susan Cohen
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to 256 colors or fewer (uint8), call imapprox. For more information, see the 
reference pages for im2double and imapprox.

Intensity Images
An intensity image is a data matrix, I, whose values represent intensities 
within some range. MATLAB stores an intensity image as a single matrix, with 
each element of the matrix corresponding to one image pixel. The matrix can 
be of class double, uint8, or uint16.While intensity images are rarely saved 
with a colormap, MATLAB uses a colormap to display them. 

The elements in the intensity matrix represent various intensities, or gray 
levels, where the intensity 0 usually represents black and the intensity 1, 255, 
or 65535 usually represents full intensity, or white. 

The figure below depicts an intensity image of class double.

Pixel Values in an Intensity Image Define Gray Levels

 0.5342  0.2051  0.2157  0.2826  0.3822  0.4391  0.4391
 .2251  0.2563  0.2826  0.2826  0.4

 0.4308  0.2483  0.2624  0.3344  0.3344  0.2624  0.2549
 0.5342  0.1789  0.1307  0.1789  0.2051  0.3256  0.2483

 3344  0.2624  0.3344  0.3344  0.33
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Binary Images
In a binary image, each pixel assumes one of only two discrete values. 
Essentially, these two values correspond to on and off. A binary image is 
stored as a logical array of 0’s (off pixels) and 1’s (on pixels).

The figure below depicts a binary image.

Pixels in a Binary Image Have Two Possible Values: 0 or 1

RGB Images
An RGB image, sometimes referred to as a true-color image, is stored in 
MATLAB as an m-by-n-by-3 data array that defines red, green, and blue color 
components for each individual pixel. RGB images do not use a palette. The 
color of each pixel is determined by the combination of the red, green, and blue 
intensities stored in each color plane at the pixel’s location. Graphics file 
formats store RGB images as 24-bit images, where the red, green, and blue 
components are 8 bits each. This yields a potential of 16 million colors. The 
precision with which a real-life image can be replicated has led to the 
commonly used term true-color image.

An RGB array can be of class double, uint8, or uint16. In an RGB array of 
class double, each color component is a value between 0 and 1. A pixel whose 
color components are (0,0,0) is displayed as black, and a pixel whose color 
components are (1,1,1) is displayed as white. The three color components for 

  1  0  0  0  0  0  1  0

  1  0  0  0  0  0  1  0

  1  0  0  0  0  0  1  0

  0  0  1  0  0  1  0  0

  0  0  0  1  0  1  0  0

  0  0  0  0  1  1  0  0

  0  0  0  0  0  0  0  0

  0  0  0  0  0  0  0  0
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each pixel are stored along the third dimension of the data array. For example, 
the red, green, and blue color components of the pixel (10,5) are stored in 
RGB(10,5,1), RGB(10,5,2), and RGB(10,5,3), respectively.

The following figure depicts an RGB image of class double.

The Color Planes of an RGB Image

To determine the color of the pixel at (2,3), you would look at the RGB triplet 
stored in (2,3,1:3). Suppose (2,3,1) contains the value 0.5176, (2,3,2) contains 
0.1608, and (2,3,3) contains 0.0627. The color for the pixel at (2,3) is

0.5176 0.1608 0.0627

To further illustrate the concept of the three separate color planes used in an 
RGB image, the code sample below creates a simple RGB image containing 
uninterrupted areas of red, green, and blue, and then creates one image for 
each of its separate color planes (red, green, and blue). It displays each color 
plane image separately, and also displays the original image.

  0.5804  0.2235  0.1294  0.2902  0.4196  0.4824  0.4824
  0.5804  0.2902  0.0627  0.2902  0.2902  0.4824  0.4824
  0.5804  0.0627  0.0627  0.0627  0.2235  0.2588  0.2588
  0.5176  0.2588  0.0627  0.0941  0.0941  0.0627  0.0627
  0.4510  0.0941  0.0627  0.0941  0.0941  0.0941  0.0941

  0.5176  0.1922  0.0627  0.1294  0.1922  0.2588  0.2588
  0.5176  0.1294  0.1608  0.1294  0.1294  0.2588  0.2588
  0.5176  0.1608  0.0627  0.1608  0.1922  0.2588  0.2588
  0.4196  0.2588  0.3529  0.4196  0.4196  0.3529  0.2902
  0.4510  0.4196  0.3529  0.4196  0.4196  0.4196  0.4196

  0.5490  0.2235  0.5490  0.5804  0.7412  0.7765  0.7765
  0.5490  0.3882  0.5176  0.5804  0.5804  0.7765  0.7765
  0.5490  0.2588  0.2902  0.2588  0.2235  0.4824  0.2235
  0.4196  0.2235  0.1608  0.2588  0.2588  0.1608  0.2588
  0.4510  0.2588  0.1608  0.2588  0.2588  0.2588  0.2588

Red

Green

Blue
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RGB=reshape(ones(64,1)*reshape(jet(64),1,192),[64,64,3]);
R=RGB(:,:,1);
G=RGB(:,:,2);
B=RGB(:,:,3);
imshow(R)
figure, imshow(G)
figure, imshow(B)
figure, imshow(RGB)

The Separated Color Planes of an RGB Image

Notice that each separated color plane in the figure contains an area of white. 
The white corresponds to the highest values (purest shades) of each separate 
color. For example, in the Red Plane image, the white represents the highest 
concentration of pure red values. As red becomes mixed with green or blue, 
gray pixels appear. The black region in the image shows pixel values that 
contain no red values, i.e., R == 0.
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Multiframe Image Arrays
For some applications, you might need to work with collections of images 
related by time or view, such as magnetic resonance imaging (MRI) slices or 
movie frames.

The Image Processing Toolbox provides support for storing multiple images in 
the same array. Each separate image is called a frame. If an array holds 
multiple frames, they are concatenated along the fourth dimension. For 
example, an array with five 400-by-300 RGB images would be 
400-by-300-by-3-by-5. A similar multiframe intensity or indexed image would 
be 400-by-300-by-1-by-5.

Use the cat command to store separate images in one multiframe array. For 
example, if you have a group of images A1, A2, A3, A4, and A5, you can store them 
in a single array using

A = cat(4,A1,A2,A3,A4,A5)

You can also extract frames from a multiframe image. For example, if you have 
a multiframe image MULTI, this command extracts the third frame.

FRM3 = MULTI(:,:,:,3)

Note that, in a multiframe image array, each image must be the same size and 
have the same number of planes. In a multiframe indexed image, each image 
must also use the same colormap.

Multiframe Support Limitations
Many of the functions in the toolbox operate only on the first two or first three 
dimensions. You can still use four-dimensional arrays with these functions, but 
you must process each frame individually. For example, this call displays the 
seventh frame in the array MULTI.

imshow(MULTI(:,:,:,7))

If you pass an array to a function and the array has more dimensions than the 
function is designed to operate on, your results can be unpredictable. In some 
cases, the function simply processes the first frame of the array, but in other 
cases the operation does not produce meaningful results.

See the reference pages for information about how individual functions work 
with the dimensions of an image array. 
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Summary of Image Types and Numeric Classes
This table summarizes the way MATLAB interprets data matrix elements as 
pixel colors, depending on the image type and storage class.

1. The associated colormap is a p-by-3 array of floating-point values in the 
range [0, 1]. For intensity images the colormap is typically grayscale.

Converting Image Types
For certain operations, it is helpful to convert an image to a different image 
type. For example, if you want to filter a color image that is stored as an 
indexed image, you should first convert it to RGB format. When you apply the 
filter to the RGB image, MATLAB filters the intensity values in the image, as 
is appropriate. If you attempt to filter the indexed image, MATLAB simply 

Image 
Type

Storage Class Interpretation

Binary logical Array of zeros (0) and ones (1)

Indexed1 double Array of integers in the range [1, p] 

uint8 or uint16 Array of integers in the range [0, p-1] 

Intensity1 double Array of floating-point values. The 
typical range of values is [0, 1].

uint8 or uint16 Array of integers. The typical range of 
values is [0, 255] or [0, 65535]. 

RGB 
(true-color)

double m-by-n-by-3 array of floating-point 
values in the range [0, 1] 

uint8 or uint16 m-by-n-by-3 array of integers in the 
range [0, 255] or [0, 65535] 
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applies the filter to the indices in the indexed image matrix, and the results 
might not be meaningful.

Note  When you convert an image from one format to another, the resulting 
image might look different from the original. For example, if you convert a 
color indexed image to an intensity image, the resulting image is grayscale, 
not color. 

The following table lists all the image conversion functions in the Image 
Processing Toolbox.

Function Description

dither Create a binary image from a grayscale intensity image 
by dithering; create an indexed image from an RGB 
image by dithering

gray2ind Create an indexed image from a grayscale intensity 
image

grayslice Create an indexed image from a grayscale intensity 
image by thresholding

im2bw Create a binary image from an intensity image, 
indexed image, or RGB image, based on a luminance 
threshold

ind2gray Create a grayscale intensity image from an indexed 
image

ind2rgb Create an RGB image from an indexed image

mat2gray Create a grayscale intensity image from data in a 
matrix, by scaling the data

rgb2gray Create a grayscale intensity image from an RGB image

rgb2ind Create an indexed image from an RGB image



Image Types in the Toolbox

2-15

You can also perform certain conversions just using MATLAB syntax. For 
example, you can convert an intensity image to RGB format by concatenating 
three copies of the original matrix along the third dimension.

RGB = cat(3,I,I,I);

The resulting RGB image has identical matrices for the red, green, and blue 
planes, so the image displays as shades of gray.

In addition to these standard conversion tools, there are some functions that 
return a different image type as part of the operation they perform. For 
example, the region-of-interest routines each return a binary image that you 
can use to mask an indexed or intensity image for filtering or for other 
operations.

Color Space Conversions
The Image Processing Toolbox represents colors as RGB values, either directly 
(in an RGB image) or indirectly (in an indexed image). However, there are 
other methods for representing colors. For example, a color can be represented 
by its hue, saturation, and value components (HSV). Different methods for 
representing colors are called color spaces.

The toolbox provides a set of routines for converting between color spaces. The 
image processing functions themselves assume all color data is RGB, but you 
can process an image that uses a different color space by first converting it to 
RGB, and then converting the processed image back to the original color space. 
For more information about color space conversion routines, see Chapter 13, 
“Color.”
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Reading and Writing Image Data
This section describes how to read and write image data. Topics include 

• Reading data stored in many standard graphics file formats

• Writing data to files in many standard graphics file formats

• Querying graphics image files for information stored in header fields

• Converting images between image storage classes

• Converting images between graphics file formats

• Reading and writing data in Digital Imaging and Communications in 
Medicine (DICOM) file format

Reading a Graphics Image
The imread function reads an image from any supported graphics image file 
format, in any of the supported bit depths. Most image file formats use 8 bits 
to store pixel values. When these are read into memory, MATLAB stores them 
as class uint8. For file formats that support 16-bit data, PNG and TIFF, 
MATLAB stores the images as class uint16. 

Note  For indexed images, imread always reads the colormap into an array of 
class double, even though the image array itself may be of class uint8 or 
uint16.

For example, this code reads an RGB image into the MATLAB workspace as 
the variable RGB. 

RGB = imread('football.jpg');

In this example, imread infers the file format to use from the contents of the 
file. You can also specify the file format as an argument to imread. MATLAB 
supports many common graphics file formats, such as Microsoft Windows 
Bitmap (BMP), Graphics Interchange Format (GIF), Joint Photographic 
Experts Group (JPEG), Portable Network Graphics (PNG), and Tagged Image 
File Format (TIFF) formats. For the latest information concerning the bit 
depths and/or image formats supported, see the reference page for the imread 
function.
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Reading Multiple Images from a Graphics File
MATLAB supports several graphics file formats, such as HDF and TIFF, that 
can contain multiple images. By default, imread imports only the first image 
from a file. To import additional images from the file, use the syntax supported 
by the file format. 

For example, when used with TIFF files, you can use an index value with 
imread that identifies the image in the file you want to import. This example 
reads a series of 27 images from a TIFF file and stores the images in a 
four-dimensional array. You can use imfinfo to determine how many images 
are stored in the file.

mri = uint8(zeros(128,128,1,27)); % preallocate 4-D array 

for frame=1:27
[mri(:,:,:,frame),map] = imread('mri.tif',frame);

end

When a file contains multiple images that are related in some way, such as a 
time sequence, you can store the images in MATLAB as a 4-D array. All the 
images must be the same size. For more information, see “Multiframe Image 
Arrays” on page 2-12.

Writing a Graphics Image 
The function imwrite writes an image to a graphics file in one of the supported 
formats. The most basic syntax for imwrite takes the image variable name and 
a filename. If you include an extension in the filename, MATLAB infers the 
desired file format from it. (For more information, see the reference entry for 
the imwrite function.)

This example loads the indexed image X from a MAT-file, with its associated 
colormap map, and then writes the image to a file as a bitmap. 

load clown
whos
  Name          Size         Bytes  Class

  X           200x320       512000  double array
  caption       2x1              4  char array
  map          81x3           1944  double array
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Grand total is 64245 elements using 513948 bytes

imwrite(X,map,'clown.bmp')

Specifying Additional Format-Specific Parameters
When using imwrite with some graphics formats, you can specify additional 
parameters. For example, with PNG files, you can specify the bit depth as an 
additional parameter. This example writes an intensity image I to a 4-bit PNG 
file.

imwrite(I,'clown.png','BitDepth',4);

This example writes an image A to a JPEG file, using an additional parameter 
to specify the compression quality parameter.

imwrite(A, 'myfile.jpg', 'Quality', 100);

For more information about the additional parameters associated with certain 
graphics formats, see the reference pages for imwrite.

Reading and Writing Binary Images in 1-Bit Format
In certain file formats, a binary image can be stored in a 1-bit format. If the file 
format supports it, MATLAB writes binary images as 1-bit images by default. 
When you read in a binary image in 1-bit format, MATLAB represents it in the 
workspace as a logical array. 

This example reads in a binary image and writes it as a TIFF file. Because the 
TIFF format supports 1-bit images, the file is written to disk in 1-bit format.

BW = imread('text.png');
imwrite(BW,'test.tif'); 

To verify the bit depth of test.tif, call imfinfo and check the BitDepth field.

info = imfinfo('test.tif');
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info.BitDepth
ans =

     1

Note  When writing binary files, MATLAB sets the ColorType field to 
'grayscale'. 

Determining the Storage Class of the Output File
imwrite uses the following rules to determine the storage class used in the 
output image.

Storage Class 
of Image 

Storage Class of Output Image File 

logical If the output image file format specified supports 
1-bit images, imwrite creates a 1-bit image file.

If the output image file format specified does not 
support 1-bit images, such as JPEG, imwrite 
converts the image to a class uint8 intensity image.

uint8 If the output image file format specified supports 
8-bit images, imwrite creates an 8-bit image file.

uint16 If the output image file format specified supports 
16-bit images (PNG or TIFF), imwrite creates a 
16-bit image file.

If the output image file format specified does not 
support 16-bit images, imwrite scales the image 
data to class uint8 and creates an 8-bit image file.

double MATLAB scales the image data to uint8 and creates 
an 8-bit image file, because most image file formats 
use 8 bits.



2 Introduction

2-20

Querying a Graphics File
The imfinfo function enables you to obtain information about graphics files 
that are in any of the formats supported by the toolbox. The information you 
obtain depends on the type of file, but it always includes at least the following:

• Name of the file

• File format

• Version number of the file format

• File modification date

• File size in bytes

• Image width in pixels

• Image height in pixels

• Number of bits per pixel

• Image type: RGB (true-color), intensity (grayscale), or indexed

See the reference entry for imfinfo for more information. 

Converting Image Storage Classes
You can convert uint8 and uint16 data to double precision using the MATLAB 
double function. However, converting between storage classes changes the way 
MATLAB and the toolbox interpret the image data. If you want the resulting 
array to be interpreted properly as image data, you need to rescale or offset the 
data when you convert it.

For easier conversion of storage classes, use one of these toolbox functions: 
im2double, im2uint8, or im2uint16. These functions automatically handle the 
rescaling and offsetting of the original data. For example, this command 
converts a double-precision RGB image with data in the range [0,1] to a uint8 
RGB image with data in the range [0,255].

RGB2 = im2uint8(RGB1);

Losing Information in Conversions
When you convert to a class that uses fewer bits to represent numbers, you 
generally lose some of the information in your image. For example, a uint16 
intensity image is capable of storing up to 65,536 distinct shades of gray, but a 
uint8 intensity image can store only 256 distinct shades of gray. When you 
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convert a uint16 intensity image to a uint8 intensity image, im2uint8 
quantizes the gray shades in the original image. In other words, all values from 
0 to 127 in the original image become 0 in the uint8 image, values from 128 to 
385 all become 1, and so on. This loss of information is often not a problem, 
however, since 256 still exceeds the number of shades of gray that your eye is 
likely to discern.

Converting Indexed Images
It is not always possible to convert an indexed image from one storage class to 
another. In an indexed image, the image matrix contains only indices into a 
colormap, rather than the color data itself, so no quantization of the color data 
is possible during the conversion. 

For example, a uint16 or double indexed image with 300 colors cannot be 
converted to uint8, because uint8 arrays have only 256 distinct values. If you 
want to perform this conversion, you must first reduce the number of the colors 
in the image using the imapprox function. This function performs the 
quantization on the colors in the colormap, to reduce the number of distinct 
colors in the image. See “Reducing Colors in an Indexed Image” on page 13-12 
for more information. 

Converting Graphics File Formats
To change the graphics format of an image, use imread to read in the image and 
then save the. image with imwrite, specifying the appropriate format. 

To illustrate, this example uses the imread function to read an image in bitmap 
(BMP) format into the workspace. The example then writes the bitmap image 
to a file using Portable Network Graphics (PNG) format.

bitmap = imread('mybitmap.bmp','bmp');
imwrite(bitmap,'mybitmap.png','png');

For the specifics of which bit depths are supported for the different graphics 
formats, and for how to specify the format type when writing an image to file, 
see the reference entries for imread and imwrite.
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Reading and Writing DICOM Files
The Image Processing Toolbox includes support for working with image data in 
Digital Imaging and Communications in Medicine (DICOM) format. The 
following sections describe how to 

• Read image data from a DICOM file

• Read metadata from a DICOM file

• Write image data to a DICOM file

• Write metadata to a DICOM file

To see an example that reads both the image data and metadata from a DICOM 
file, modifies the image data, and writes the modified data to a new DICOM 
file, see “Example: Creating a New Series” on page 2-25. The example shows 
how to use the dicomuid function to generate a DICOM unique identifier, 
which you need to create a new series. 

Reading Image Data from a DICOM File
To read image data from a DICOM file, use the dicomread function. The 
dicomread function reads files that comply with the DICOM specification but 
can also read certain common noncomplying files.

This example reads an image from a sample DICOM file included with the 
toolbox.

I = dicomread('CT-MONO2-16-ankle.dcm');

To view the image data, use one of the toolbox image display functions, imshow 
or imview. (Because the image data is signed 16-bit data, you must use the 
autoscaling syntax with either display function.)

imview(I,[])
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Reading Metadata from a DICOM File
DICOM files include information, called metadata, that describes 
characteristics of the image data it contains, such as size, dimensions, and bit 
depth. In addition, the DICOM specification defines numerous other metadata 
fields that describe many other characteristics of the data, such as the modality 
used to create the data, the equipment settings used to capture the image, and 
information about the study. The dicomread function can process almost all the 
metadata fields defined by the DICOM specification.

To read metadata from a DICOM file, use the dicominfo function. This 
function returns the metadata as a structure, where every field in the structure 
is a specific piece of DICOM metadata. 

info = dicominfo('CT-MONO2-16-ankle.dcm');

info = 

                        Filename: [1x47 char]
                     FileModDate: '24-Dec-2000 19:54:47'
                        FileSize: 525436
                          Format: 'DICOM'
                   FormatVersion: 3
                           Width: 512
                          Height: 512
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                        BitDepth: 16
                       ColorType: 'grayscale'
                  SelectedFrames: []
                      FileStruct: [1x1 struct]
                StartOfPixelData: 1140
          MetaElementGroupLength: 192
      FileMetaInformationVersion: [2x1 double]
         MediaStorageSOPClassUID: '1.2.840.10008.5.1.4.1.1.7'
      MediaStorageSOPInstanceUID: [1x50 char]
               TransferSyntaxUID: '1.2.840.10008.1.2'
          ImplementationClassUID: '1.2.840.113619.6.5'
       .
    .
          .

You can use the metadata structure returned by dicominfo to specify the 
DICOM file you want to read using dicomread. For example, you can use this 
code to read metadata from the sample DICOM file and then pass the metadata 
to dicomread to read the image from the file.

info = dicominfo('CT-MONO2-16-ankle.dcm');
I = dicomread(info);

Writing Data to a DICOM File
To write image data to a file in DICOM format, use the dicomwrite function. 

This example writes the image I to the DICOM file ankle.dcm.

dicomwrite(I,'h:\matlab\tmp\ankle.dcm')

Writing Metadata to a DICOM File
When you write image data to a DICOM file, dicomwrite includes the 
minimum set of metadata fields required by the type of DICOM information 
object (IOD) you are creating. dicomwrite supports three types of DICOM 
IODs: 

• Secondary capture (default)

• Magnetic resonance

• Computed tomography
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You can also specify the metadata you want to write to the file by passing to 
dicomwrite an existing DICOM metadata structure that you retrieved using 
dicominfo. 

info = dicominfo('CT-MONO2-16-ankle.dcm');
I = dicomread(info);
dicomwrite(I,'h:\matlab\tmp\ankle.dcm',info)

In this case, the dicomwrite function writes the information in the metadata 
structure info to the new DICOM file. When writing metadata to a file, there 
are certain fields that dicomwrite must update. For example, dicomwrite 
must update the file modification date in the new file. To illustrate, compare 
the file modification date in the original metadata with the file modification 
date in the new file. 

info.FileModDate

ans =

24-Dec-2000 19:54:47

Using dicominfo, read the metadata from the newly written file and check the 
file modification date.

info2 = dicominfo('h:\matlab\tmp\ankle.dcm');

info2.FileModDate

ans =

16-Mar-2003 15:32:43

Example: Creating a New Series
When writing a modified image to a DICOM file, you might want to make the 
modified image the start of a new series. In the DICOM standard, images can 
be organized into series. When you write an image with metadata to a DICOM 
file, dicomwrite puts the image in the same series by default. To create a new 
series, you must assign a new DICOM unique identifier to the 
SeriesInstanceUID metadata field. This example illustrates this process: 

1 Read an image from a DICOM file into the MATLAB workspace.
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I = dicomread('CT-MONO2-16-ankle.dcm');

To view the image, use either of the toolbox display functions, imshow or 
imview. Because the DICOM image data is signed 16-bit data, you must use 
the autoscaling syntax.

imview(I,[])

2 Read the metadata from the same DICOM file.

info = dicominfo('CT-MONO2-16-ankle.dcm');

To identify which series an image belongs to, view the value of the 
SeriesInstanceUID field.

info.SeriesInstanceUID

ans =

1.2.840.113619.2.1.2411.1031152382.365.736169244
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3 Because you typically only start a new DICOM series when you modify the 
image in some way, this example removes all the text from the image. 

The example finds the maximum and minimum values of all pixels in the 
image. The pixels that form the white text characters are set to the 
maximum pixel value. 

max(I(:))
ans =

4080

min(I(:))

ans =

    32

To remove them, the example sets all pixels with the maximum value to the 
minimum value.

Imodified = I;
Imodified(Imodified == 4080) = 32;

View the processed image.

imshow(Imodified)



2 Introduction

2-28

4 Generate a new DICOM unique identifier (UID) using the dicomuid 
function. You need a new UID to write the modified image as a new series.

uid = dicomuid

uid =

1.3.6.1.4.1.9590.100.1.1.56461980611264497732341403390561061497

dicomuid is guaranteed to generate a unique UID.

5 Set the value of the SeriesInstanceUID field in the metadata associated 
with the original DICOM file to the generated value.

info.SeriesInstanceUID = uid;

6 Write the modified image to a new DICOM file, specifying the modified 
metadata structure, info, as an argument. Because you set the 
SeriesInstanceUID value, the image you write is part of a new series.

dicomwrite(Imodified,'ankle_newseries.dcm',info);

To verify this operation, view the image and the SeriesInstanceUID 
metadata field in the new file.
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Image Arithmetic
Image arithmetic is the implementation of standard arithmetic operations, 
such as addition, subtraction, multiplication, and division, on images. Image 
arithmetic has many uses in image processing both as a preliminary step in 
more complex operations and by itself. For example, image subtraction can be 
used to detect differences between two or more images of the same scene or 
object. 

You can do image arithmetic using the MATLAB arithmetic operators; 
however, you must convert the images to class double to use these operators. 
To make working with images more convenient, the Image Processing Toolbox 
includes a set of functions that implement arithmetic operations for all 
numeric, nonsparse data types. The advantages to using these functions 
include

• No conversion to the double data type is necessary. The functions accept any 
numeric data type, including uint8, uint16, and double, and return the 
result image in the same format. Note that the functions perform the 
operations in double precision, on an element-by-element basis, but do not 
convert images to double-precision values in the MATLAB workspace.

• Overflow is handled automatically. The functions truncate return values to 
fit the data type. For details about this truncation, see “Image Arithmetic 
Truncation Rules” on page 2-30.

Note  On Intel architecture processors, the image arithmetic functions can 
take advantage of the Intel Performance Primitives Library (IPPL), thus 
accelerating their execution time. IPPL is only activated, however, when the 
data passed to these functions is of specific classes. See the reference pages for 
the individual arithmetic functions for more information. 

See “Summary of Image Arithmetic Functions” on page 2-30 for a complete list. 
For more information about using these functions to perform arithmetic 
operations, see these sections:

• “Adding Images” on page 2-31

• “Subtracting Images” on page 2-33
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• “Multiplying Images” on page 2-34

• “Dividing Images” on page 2-35

• “Nesting Calls to Image Arithmetic Functions” on page 2-36

Summary of Image Arithmetic Functions
The following table lists the image arithmetic functions. For more complete 
descriptions, see their reference pages.

Image Arithmetic Truncation Rules
The results of integer arithmetic can easily overflow the data type allotted for 
storage. For example, the maximum value you can store in uint8 data is 255. 
Arithmetic operations can also result in fractional values, which cannot be 
represented using integer arrays. 

The image arithmetic functions use these rules for integer arithmetic:

• Values that exceed the range of the integer type are truncated to that range.

• Fractional values are rounded.

Function Description

imabsdiff Absolute difference of two images

imadd Add two images

imcomplement Complement an image

imdivide Divide two images

imlincomb Compute linear combination of two images

immultiply Multiply two images

imsubtract Subtract two images
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For example, if the data type is uint8, results greater than 255 (including Inf) 
are set to 255. The following table lists some additional examples.

Adding Images
To add two images or add a constant value to an image, use the imadd function. 
imadd adds the value of each pixel in one of the input images with the 
corresponding pixel in the other input image and returns the sum in the 
corresponding pixel of the output image. 

Image addition has many uses in image processing. For example, the following 
code fragment uses addition to superimpose one image on top of another. The 
images must be the same size and class.

I = imread('rice.png');
J = imread('cameraman.tif');
K = imadd(I,J);
imshow(K)

You can also use addition to brighten an image by adding a constant value to 
each pixel. For example, the following code brightens an RGB image. 

Result Class Truncated Value

300 uint8 255

-45 uint8 0

10.5 uint8 11
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RGB = imread('peppers.png');
imshow(RGB);

RGB2 = imadd(RGB, 50);
figure, imshow(RGB2);

Handling Overflow
When you add the pixel values of two images, the result can easily overflow the 
maximum value supported by the data type, especially for uint8 data. When 
overflow occurs, imadd truncates the value to the maximum value supported by 
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the data type. This is an effect known as saturation. For example, imadd 
truncates uint8 data at 255. To avoid saturation, convert the image to a larger 
data type, such as uint16, before performing the addition. 

Subtracting Images
To subtract one image from another, or subtract a constant value from an 
image, use the imsubtract function. imsubtract subtracts each pixel value in 
one of the input images from the corresponding pixel in the other input image 
and returns the result in the corresponding pixel in an output image. 

Image subtraction can be used as a preliminary step in more complex image 
processing or by itself. For example, you can use image subtraction to detect 
changes in a series of images of the same scene. This code fragment subtracts 
the background from an image of rice grains. The images must be the same size 
and class.

rice= imread('rice.png');
background = imopen(rice, strel('disk',15));
rice2 = imsubtract(rice,background);
imshow(rice),figure,imshow(rice2);

To subtract a constant from each pixel in I, replace Y with a constant, as in the 
following example.

Z = imsubtract(I,50);

Original Image Difference Image
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Handling Negative Values
Subtraction can result in negative values for certain pixels. When this occurs 
with unsigned data types, such as uint8 or uint16, the imsubtract function 
truncates the negative value to zero (0), which is displayed as black. To avoid 
negative values but preserve the value differentiation of these pixels, use the 
imabsdiff function. The imabsdiff function calculates the absolute difference 
between corresponding pixels in the two images so the result is always 
nonnegative. 

Multiplying Images
To multiply two images, use the immultiply function. immultiply does an 
element-by-element multiplication (.*) of corresponding pixels in a pair of 
input images and returns the product of these multiplications in the 
corresponding pixel in an output image. 

Multiplying an image by a constant, referred to as scaling, is a common image 
processing operation. When used with a scaling factor greater than 1, scaling 
brightens an image; a factor less than 1 darkens an image. Scaling generally 
produces a much more natural brightening/darkening effect than simply 
adding an offset to the pixels, since it preserves the relative contrast of the 
image better. For example, this code scales an image by a constant factor.

I = imread('moon.tif');
J = immultiply(I,1.2);
imshow(I);
figure, imshow(J)
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Handling Overflow
Multiplication of uint8 images very often results in overflow. The immultiply 
function truncates values that overflow the data type to the maximum value. 
To avoid truncation, convert uint8 images to a larger data type, such as 
uint16, before performing multiplication. 

Dividing Images
To divide two images, use the imdivide function. The imdivide function does 
an element-by-element division (./) of corresponding pixels in a pair of input 
images. The immultiply function returns the result in the corresponding pixel 
in an output image. 

Original Image Image After Multiplication
Image Courtesy of Michael Myers
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Image division, like image subtraction, can be used to detect changes in two 
images. However, instead of giving the absolute change for each pixel, division 
gives the fractional change or ratio between corresponding pixel values. Image 
division is also called ratioing.

For example, the following code divides the rice grain image by a 
morphologically opened version of the image itself. (For information about 
morphological image processing, see Chapter 9, “Morphological Operations.”) 
The images must be the same size and class. 

I = imread('rice.png');
background = imopen(I, strel('disk',15));
Ip = imdivide(I,background);
imshow(Ip,[])

Nesting Calls to Image Arithmetic Functions
You can use the image arithmetic functions in combination to perform a series 
of operations. For example, to calculate the average of two images, 

You could enter

I = imread('rice.png');
I2 = imread('cameraman.tif');
K = imdivide(imadd(I,I2), 2); % not recommended 

When used with uint8 or uint16 data, each arithmetic function truncates its 
result before passing it on to the next operation. This truncation can 
significantly reduce the amount of information in the output image. A better 
way to perform this series of calculations is to use the imlincomb function. 
imlincomb performs all the arithmetic operations in the linear combination in 
double precision and only truncates the final result. 

K = imlincomb(.5,I,.5,I2); % recommended 

C A B+
2

--------------=
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Coordinate Systems
Locations in an image can be expressed in various coordinate systems, 
depending on context. This section discusses the two main coordinate systems 
used in the Image Processing Toolbox and the relationship between them. 
These two coordinate systems are described in

• “Pixel Coordinates”

• “Spatial Coordinates” on page 2-38

Pixel Coordinates
Generally, the most convenient method for expressing locations in an image is 
to use pixel coordinates. In this coordinate system, the image is treated as a 
grid of discrete elements, ordered from top to bottom and left to right, as 
illustrated by the following figure.

The Pixel Coordinate System

For pixel coordinates, the first component r (the row) increases downward, 
while the second component c (the column) increases to the right. Pixel 
coordinates are integer values and range between 1 and the length of the row 
or column.

There is a one-to-one correspondence between pixel coordinates and the 
coordinates MATLAB uses for matrix subscripting. This correspondence makes 
the relationship between an image’s data matrix and the way the image is 

r

c

1

2

3

1 2 3
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displayed easy to understand. For example, the data for the pixel in the fifth 
row, second column is stored in the matrix element (5,2).

Spatial Coordinates
In the pixel coordinate system, a pixel is treated as a discrete unit, uniquely 
identified by a single coordinate pair, such as (5,2). From this perspective, a 
location such as (5.3,2.2) is not meaningful.

At times, however, it is useful to think of a pixel as a square patch. From this 
perspective, a location such as (5.3,2.2) is meaningful, and is distinct from (5,2). 
In this spatial coordinate system, locations in an image are positions on a 
plane, and they are described in terms of x and y (not r and c as in the pixel 
coordinate system).

The following figure illustrates the spatial coordinate system used for images. 
Notice that y increases downward.

The Spatial Coordinate System

This spatial coordinate system corresponds closely to the pixel coordinate 
system in many ways. For example, the spatial coordinates of the center point 
of any pixel are identical to the pixel coordinates for that pixel.

There are some important differences, however. In pixel coordinates, the upper 
left corner of an image is (1,1), while in spatial coordinates, this location by 
default is (0.5,0.5). This difference is due to the pixel coordinate system’s being 
discrete, while the spatial coordinate system is continuous. Also, the upper left 
corner is always (1,1) in pixel coordinates, but you can specify a nondefault 
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origin for the spatial coordinate system. See “Using a Nondefault Spatial 
Coordinate System” on page 2-39 for more information.

Another potentially confusing difference is largely a matter of convention: the 
order of the horizontal and vertical components is reversed in the notation for 
these two systems. As mentioned earlier, pixel coordinates are expressed as 
(r,c), while spatial coordinates are expressed as (x,y). In the reference pages, 
when the syntax for a function uses r and c, it refers to the pixel coordinate 
system. When the syntax uses x and y, it refers to the spatial coordinate 
system.

Using a Nondefault Spatial Coordinate System
By default, the spatial coordinates of an image correspond with the pixel 
coordinates. For example, the center point of the pixel in row 5, column 3 has 
spatial coordinates x=3, y=5. (Remember, the order of the coordinates is 
reversed.) This correspondence simplifies many of the toolbox functions 
considerably. Several functions primarily work with spatial coordinates rather 
than pixel coordinates, but as long as you are using the default spatial 
coordinate system, you can specify locations in pixel coordinates.

In some situations, however, you might want to use a nondefault spatial 
coordinate system. For example, you could specify that the upper left corner of 
an image is the point (19.0,7.5), rather than (0.5,0.5). If you call a function that 
returns coordinates for this image, the coordinates returned will be values in 
this nondefault spatial coordinate system.

To establish a nondefault spatial coordinate system, you can specify the XData 
and YData image properties when you display the image. These properties are 
two-element vectors that control the range of coordinates spanned by the 
image. By default, for an image A, XData is [1 size(A,2)], and YData is 
[1 size(A,1)]. 

For example, if A is a 100 row by 200 column image, the default XData is 
[1 200], and the default YData is [1 100]. The values in these vectors are 
actually the coordinates for the center points of the first and last pixels (not the 
pixel edges), so the actual coordinate range spanned is slightly larger; for 
instance, if XData is [1 200], the x-axis range spanned by the image is 
[0.5 200.5].
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These commands display an image using nondefault XData and YData.

A = magic(5);
x = [19.5 23.5];
y = [8.0 12.0];
image(A,'XData',x,'YData',y), axis image, colormap(jet(25))

For information about the syntax variations that specify nondefault spatial 
coordinates, see the reference page for imshow.



 

3
Displaying and Printing 
Images

This chapter introduces the image display techniques supported by the Image Processing Toolbox for 
each image type supported by the toolbox, binary, indexed, intensity, and RGB. 

Terminology (p. 3-2) Provides definitions of image processing terms used in 
this section

Overview (p. 3-3) Describes the toolbox displays functions and compares 
their use

Using the Image Viewer to Display 
Images (p. 3-4)

Describes how to use the Image Viewer to display images

Using imshow to Display Images 
(p. 3-18)

Describes how to use the imshow function to display 
images 

Displaying Different Image Types 
(p. 3-24)

Describes how to use the display functions with each type 
of image

Special Display Techniques (p. 3-31) Describes how to use the colorbar, montage, and warp 
functions

Printing Images (p. 3-36) Describes how to print images

Setting Toolbox Display Preferences 
(p. 3-37)

Describes how to view and set toolbox preferences
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Terminology
An understanding of the following terms will help you to use this chapter.

Term Definition

color approximation There are two ways in which this term is used in MATLAB:

• The method by which MATLAB chooses the best colors for 
an image whose number of colors you are decreasing

• The automatic choice of screen colors MATLAB makes when 
displaying on a system with limited color display capability

screen bit depth Number of bits per screen pixel

screen color resolution Number of distinct colors that can be produced on the screen 
by your graphics hardware
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Overview
MATLAB includes two image display functions: image and imagesc. Both 
functions create a Handle Graphics® image object and include syntax for 
setting the various properties of the object. The imagesc function automatically 
scales the input data.

The Image Processing Toolbox includes two display functions, imview and 
imshow. In general, using these functions is preferable to using image and 
imagesc because they are easier to use and are optimized for displaying 
images. The following table shows an example of each function and gives a brief 
description comparing the tools.

Display Function Description

imview('moon.tif') The imview function displays the image in a separate, 
Java-based window called the Image Viewer. The Image 
Viewer provides tools for flexible navigation, especially 
for large images, and for pixel value inspection. Use 
imview when you want to explore an image and get 
information about pixel values. For more information, 
see “Using the Image Viewer to Display Images” on 
page 3-4.

imshow('moon.tif') The imshow function, like image and imagesc, creates a 
Handle Graphics image object and displays the image in 
a MATLAB figure window. imshow automatically sets the 
values of certain figure, axes, and image object 
properties to control how image data is interpreted. Use 
imshow when you want to take advantage of figure 
annotation and printing capabilities. See “Using imshow 
to Display Images” on page 3-18 for more information.
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Using the Image Viewer to Display Images
This section describes how to use the Image Viewer to display images. Topics 
covered include

• “Opening and Closing the Image Viewer” 

• “Understanding Image Viewer Tools” on page 3-6

• “Using Image Viewer Navigation Aids” on page 3-9

• “Using the Pixel Region Tool” on page 3-13

• “Using the Image Information Tool” on page 3-16

• “Managing Image Viewer Memory Usage” on page 3-16

For information about using imview with various image types, see “Displaying 
Different Image Types” on page 3-24.

Opening and Closing the Image Viewer
This section describes how to open an image in the Image Viewer. Topics 
covered include

• “Starting the Image Viewer”

• “Viewing Multiple Images” on page 3-5

• “Specifying the Initial Image Size” on page 3-5

• “Closing the Image Viewer” on page 3-6

Starting the Image Viewer
To start the Image Viewer, call the imview function, specifying the image you 
want to view. You can use imview to display an image that has already been 
imported into the MATLAB workspace. 

moonfig = imread('moon.tif');
imview(moonfig);

You can also specify the name of the file containing the image, as in the 
following example. 

imview('moon.tif');
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The file must be in the current directory or on the MATLAB path. This syntax 
can be useful for scanning through images. Note, however, that when you use 
this syntax, the image data is not stored in the MATLAB workspace.

If you call imview without specifying any arguments, it displays a file chooser 
dialog box. For more detailed information about other syntax options, see the 
imview function reference page.

Viewing Multiple Images
If you specify a file that contains multiple images, imview only displays the first 
image in the file. To view all the images in the file, use imread to import each 
image into the MATLAB workspace, and then call imview multiple times to 
display each image individually. 

You can open up multiple Image Viewer windows at the same time. You are 
limited by the amount of memory available to the Java Virtual Machine that 
MATLAB uses. For information about increasing the amount of memory 
available to the Image Viewer, see “Managing Image Viewer Memory Usage” 
on page 3-16.

Some applications create collections of images related by time or view, such as 
magnetic resonance imaging (MRI) slices or frames of data acquired from a 
video stream. The Image Processing Toolbox supports these collections of 
images as four-dimensional arrays, where each separate image is called a 
frame and the frames are concatenated along the fourth dimension. All the 
frames in a multiframe image must be the same size. The Image Viewer can 
only display one image frame at a time. Use standard MATLAB indexing 
syntax to specify the frame to display.

imview(multiframe_array(:,:,:,1));

To view all the frames in a multiframe image at once, use the montage function. 
See “Displaying All Frames of a Multiframe Image at Once” on page 3-32 for 
more information.

Specifying the Initial Image Size
By default, the imview function displays images at 100% magnification. In this 
context, 100% means that imview maps each image pixel to one screen pixel. 
This is generally the preferred way to display an image. In some cases, 
however, especially if you are working with small images, you might want 
imview to scale the image to fit the minimum size of the Image Viewer. 
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To control the initial magnification of the images displayed using imview, you 
can use either of these methods:

• Set the ImviewInitialMagnification preference to 'fit' for the current 
MATLAB session. The default value is 100, specifying 100% magnification. 
To learn how to change the value of toolbox preferences, see “Setting the 
Value of Toolbox Preferences” on page 3-38.

• Use the optional 'InitialMagnification' parameter to the imview 
function, specifying the value 'fit'. This overrides the setting of the 
ImviewInitialMagnification preference for the call to imview.

imshow(X, map,'InitialMagnification','fit')

For more information, see the imview function reference page.

Closing the Image Viewer
To close the Image Viewer window, use the Close button in the window title 
bar. If you have multiple Image Viewer windows open you can close them all 
by using the syntax

imview close all

You can also use the imview function to return a handle to the Image Viewer 
and use the handle to close the Image Viewer. For more detailed information 
about these syntax options, see the imview function reference page. 

Understanding Image Viewer Tools
The Image Viewer displays an image in a separate window and provides 
information about the size of the image, the display range of pixel values, and 
the value of the pixel under the current location of the mouse pointer. In 
addition, the Image Viewer provides access to three other tools:

• Overview window — The Overview window displays the entire image in a 
small, separate window. In the Overview window, the portion of the image 
being displayed in the Image Viewer is outlined in a rectangle, called the 
detail rectangle. By moving this rectangle, you can change which part of the 
image appears in the main Image Viewer window. For more information, see 
“Using Image Viewer Navigation Aids” on page 3-9. 

• Pixel Region tool — This tool lets you examine the values of pixels in specific 
regions of the image. You select the region by dragging the pixel region 
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rectangle over the image. The Pixel Region tool displays the values of the 
pixels in the region in a separate window. This tool can make it easier to 
identify specific visual elements in the image. For more information, see 
“Using the Pixel Region Tool” on page 3-13.

• Image Information window — This tool lets you display information about 
the image in a separate window. For more information, see “Using the Image 
Information Tool” on page 3-16.

The following figure shows the Image Viewer and the tools it makes available. 
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Image Viewer and Related Tools

Image Viewer

Overview 
window

Pixel Region tool

Image 
Information 
window
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Using Image Viewer Navigation Aids
The Image Viewer provides several navigational tools that make it easy to 
explore an image, especially large images. These navigational tools include

• Overview window

• Pan tool

• Zoom in and Zoom out tools

• Image magnification edit box

Using the Overview Window for Navigation
If an image is large or viewed at a large magnification, the Image Viewer 
displays only a portion of the entire image. When this occurs, the Image Viewer 
includes scroll bars to allow navigation around the image but in some cases 
scroll bars might not be sufficient. Sometimes, especially for large images, you 
need a view of the entire image to understand which portion of the image is 
currently displayed in the Image Viewer. 

To provide this view of an image, the Image Viewer includes an Overview 
window. In this window, the Image Viewer displays a view of the entire image 
with a rectangle superimposed over it, called the detail rectangle. The detail 
rectangle shows which part of the image is currently being displayed in the 
Image Viewer window. 

To activate the Overview window, click the Overview Window button  in 
the Image Viewer toolbar. The Image Viewer opens a new window containing 
the entire image, scaled to fit. The following figure shows the Image Viewer 
and the Overview window.

Note  If the entire image is displayed in the Image Viewer, the detail 
rectangle is not visible in the Overview window.
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Image Viewer Overview Window

To use the detail rectangle to view any part of the image displayed in the Image 
Viewer, follow this procedure:

1 Click the Overview Window button  in the Image Viewer toolbar. The 
Image Viewer opens a new window containing the entire image, scaled to fit.

2 Using the mouse, move the cursor into the detail rectangle. The cursor 
changes to the fleur shape, .

3 Press and hold the mouse button to drag the detail rectangle anywhere on 
the image. 

Overview window

Overview Window 
button

Detail rectangle
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Note  As you drag the detail rectangle over the image in the Overview 
window, the view of the image displayed in the Image Viewer changes.

Panning the Image Displayed in the Image Viewer
To change the portion of the image displayed in the Image Viewer, you can use 
the Drag Image to Pan button to move the image in the window. This is called 
panning the image. 

To pan an image displayed in the Image Viewer,

1 Click the Drag Image to Pan button  in the toolbar.

2 Using the mouse, move the cursor over the image in the Image Viewer. The 
cursor changes to a fleur shape, .

3 Press and hold the mouse button and drag the image in the Image Viewer. 

Note  As you pan the image in the Image Viewer, the Overview window 
updates the position of the detail rectangle.

Zooming In and Out on an Image
To enlarge an image to get a closer look or shrink an image to see the whole 
image in context, use the Zoom buttons on the toolbar. (You can also zoom in or 
out on an image by changing the magnification. See “Specifying the 
Magnification of the Image” on page 3-12 for more information.)

To zoom in or zoom out on an image,

1 Click the appropriate magnifying glass button.
 

Zoom in Zoom out
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2 Move the pointer over the image you want to zoom in or out on. The cursor 
changes to crosshairs, .

You can use the zoom tool in two ways:

- Position the cursor over a location in the image and click the mouse. With 
each click, imview changes the magnification of the image. imview centers 
the new view of the image on the spot where you clicked. 

- Alternatively, you can position the cursor over a location in the image and, 
while pressing and holding the mouse button, draw a rectangle defining 
the area you want to zoom in or out on. imview selects a magnification 
value based on the size of the rectangle. 

When you zoom in or out on an image, the magnification value displayed in 
the magnification edit box changes and the Overview window updates the 
position of the detail rectangle.

3 To leave zoom mode, click the Drag Pixel Region Rectangle button  in 
the Image Viewer toolbar. 

Specifying the Magnification of the Image
To enlarge an image to get a closer look or to shrink an image to see the whole 
image in context, you can use the magnification edit box, shown in the 
following figure. (You can also use the Zoom buttons to enlarge or shrink an 
image. See “Zooming In and Out on an Image” on page 3-11 for more 
information.)

Magnification edit box Magnification menu
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To change the magnification of an image,

1 Move the cursor into the magnification edit box of the window you want to 
change. The cursor changes to the text entry cursor. 

2 Type a new value in the magnification edit box and press Enter. The Image 
Viewer changes the magnification of the image and displays the new view in 
the window.

You can also specify a magnification by clicking the menu associated with the 
magnification edit box and selecting from a list of preset magnifications. If you 
choose the Fit to Window option, imview scales the image so that it can fit in 
the current size of the Image Viewer. 

Using the Pixel Region Tool
The Pixel Region tool provides information about specific pixels in an image. 
When you click the Pixel Region button  in the Image Viewer toolbar, a 
rectangular cursor, called the pixel region rectangle, appears in the center of 
the visible part of the image and the Pixel Region tool opens in a separate 
window. 

The pixel region rectangle defines the region of the image you want to examine. 
The Pixel Region tool displays a grid of cells where each cell represents a pixel 
in the region specified by the rectangle. Each cell contains the numeric value 
of the pixel. For RGB images, each cell contains three numeric values, one for 
each band of the image. For indexed images, the cell contains the index value 
and the associated RGB value. The color of the cell represents the color of the 
pixel.

The following figure illustrates the Pixel Region tool. The following sections 
describe how to

• Select the region in the pixel region rectangle

• Select the size of the region defined by the pixel region rectangle

• Specify whether to include numeric values in the cells in the Pixel Region 
tool 
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Pixel Region Tool

Selecting the Region
To examine specific regions of an image in detail, perform this procedure:

1 Click the Pixel Region button  in the Image Viewer toolbar. The Image 
Viewer opens the Pixel Region tool and displays the pixel region rectangle 

in the center of the visible part of the image.

The pixel region rectangle defines which pixels appear in the Pixel Region 
tool. 

Note  Scrolling the image can move the pixel region rectangle off the visible 
part of the image. To bring the pixel region rectangle back to the center, click 
the Pixel Region tool button again.

Pixel region 
rectangle

Pixel Region 
button Pixel Region tool
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2 Click the Drag Pixel Region Rectangle button  in the Image Viewer 
toolbar. This is an optional step. You only need to do this if you have 
previously activated the Zoom In or Zoom Out buttons or the Drag Image to 
Pan button. 

3 Using the mouse, position the pointer over the pixel region rectangle. The 
pointer changes to the fleur shape, .

4 Click the left mouse button and drag the pixel region rectangle to any part 
of the image. The pixel values displayed in the Pixel Region tool update as 
you move the pixel region rectangle over the image.

Specifying the Region Size
By default, the pixel region rectangle defines a 5-by-5 pixel region. You can 
specify a larger region by selecting from the list in the top right corner of the 
Pixel Region tool. 

Note  As you specify larger regions, the size of each element in the Pixel 
Region tool might become too small to fit the numeric pixel value. If you want 
to see the numeric value, resize the Pixel Region tool by positioning the cursor 
on any border of the Pixel Region tool and dragging the cursor.

Suppressing the Display of Numeric Pixel Values
If you only want to see the color of each pixel in the Pixel Region tool and not 
its numeric value, clear the Display pixel values check box.
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Using the Image Information Tool
The Image Information tool provides information about the image being 
displayed in the Image Viewer. This is the same information provided by the 
imfinfo function.

To view this information, click the Image Information button  in the Image 
Viewer toolbar. The Image Viewer displays this image information in a 
separate window. 

The information included varies depending on the image type. However, for all 
image types, the Image Information window displays these fields:

If the image is read from a file, the Image Information window displays 
additional fields. The exact list of these additional fields varies depending on 
the type of image file. For example, for a grayscale image, the Image 
Information window includes fields for bit depth, byte order, and format. 

Managing Image Viewer Memory Usage
By default, MATLAB sets a limit of 64 MB on the amount of memory the Java 
Virtual Machine (JVM) can allocate. The memory used by the Image Viewer to 
display an image must fit within this 64 MB limit. If you are having trouble 

Field Description

Width Length of the horizontal dimension, measured in 
pixels

Height Length of the vertical dimension, measured in 
pixels

Class type MATLAB class, such as uint8, uint16, and double

Color type 'grayscale', 'indexed', or 'truecolor'

Minimum intensity 
value

Value of the pixel with the lowest value

Maximum intensity 
value

Value of the pixel with the highest value



Using the Image Viewer to Display Images

3-17

viewing large images, or displaying multiple images at the same time, you 
might need to increase the amount of memory the Image Viewer can allocate. 

One way to increase the amount of JVM memory available to the Image 
Viewer, is to run MATLAB with the -nodesktop mode enabled. 

Alternatively, you can increase the MATLAB JVM memory allocation limit. To 
increase the amount of memory MATLAB allows the JVM to allocate, create a 
file named java.opts and put it in your MATLAB startup directory. In this 
file, include the -Xmx option, specifying the amount of memory you want to give 
the JVM.

For example, to increase the JVM memory allocation limit to 128 MB, use this 
syntax in the java.opts file. 

-Xmx128m

Note  To avoid virtual memory thrashing, never set the -Xmx option to more 
than 66% of the physical RAM available.

On UNIX systems, create the java.opts file in a directory where you intend to 
start MATLAB and move to that directory before starting MATLAB.

On Windows systems,

1 Create the java.opts file in a directory where you intend to start MATLAB. 

2 Create a shortcut to MATLAB. 

3 Right-click the shortcut and select Properties.

4 In the Properties dialog box, specify the name of the directory in which you 
created the java.opts file as the MATLAB startup directory. 
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Using imshow to Display Images
This section describes how to use the imshow function to display images. Topics 
covered include

• “Opening Images” 

• “Specifying the Initial Image Size” on page 3-19

• “Viewing Multiple Images” on page 3-19

• “Understanding Handle Graphics Object Property Settings” on page 3-22

For information about using imshow with various image types, see “Displaying 
Different Image Types” on page 3-24.

Opening Images
To view images, you can use the imshow function. You use imshow to display an 
image that has already been imported into the MATLAB workspace, as in the 
following example. 

moon = imread('moon.tif');
imshow(moon);

You can also simply specify the name of the file containing the image as an 
argument to the imshow function, as in the following example. The file must be 
in the current directory or on the MATLAB path.

imshow('moon.tif');

This syntax can be useful for scanning through images. Note, however, that 
when you use this syntax, the image data is not stored in the MATLAB 
workspace. If you want to bring the image into the workspace, you must use 
the getimage function, which retrieves the image data from the current Handle 
Graphics image object. For example:

moon = getimage;

assigns the image data from moon.tif to the variable moon if the figure window 
in which it is displayed is currently active.
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Note  One of the most common toolbox usage errors is using the wrong syntax 
of imshow for your image type. To find out which syntax is appropriate for each 
type of image, see “Displaying Different Image Types” on page 3-24.

Specifying the Initial Image Size
In most situations, when the toolbox is operating under default behavior, 
imshow assigns a single screen pixel to each image pixel, e.g., a 200-by-300 
image is 200 screen pixels in height and 300 screen pixels in width. This is 
generally the preferred way to display an image. imshow calls the truesize 
command to create this image pixel-to-screen pixel mapping. 

In some cases, you might not want imshow to automatically call truesize (for 
example, if you are working with a small image). In these cases, the image is 
displayed at the default axis size. To use imshow without calling the truesize 
function,

• Set the ImshowTruesize preference to 'manual' for the current MATLAB 
session. To learn how to change the values of toolbox preferences, see 
“Setting the Value of Toolbox Preferences” on page 3-38.

• Set the imshow function display_option parameter to 'notruesize'. This 
overrides the setting of the ImshowTruesize preference for the call to imshow.

imshow(X, map,'notruesize')

For more information, see the imshow function reference page.

When imshow does not use the truesize function, it must use interpolation to 
determine the values for screen pixels that do not directly correspond to 
elements in the image matrix. For more information, see “Interpolation” on 
page 4-3.

Viewing Multiple Images
If you specify a file that contains multiple images, imshow only displays the first 
image in the file. To view all the images in the file, import the images into the 
MATLAB workspace by calling imread. See “Reading Multiple Images from a 
Graphics File” on page 2-17 for more information. 
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Some applications create collections of images related by time or view, such as 
magnetic resonance imaging (MRI) slices or frames of data acquired from a 
video stream. The Image Processing Toolbox supports these collections of 
images as four-dimensional arrays, where each separate image is called a 
frame and the frames are concatenated along the fourth dimension. All the 
frames in a multiframe image must be the same size. 

Once the images are in the MATLAB workspace, there are two ways to display 
them using imshow:

• Displaying each image in a separate figure window

• Displaying multiple frames in a single figure window

To view all the frames in a multiframe image at once, you can also use the 
montage function. See “Displaying All Frames of a Multiframe Image at Once” 
on page 3-32 for more information.

Displaying Each Image in a Separate Figure
The simplest way to display multiple images is to display them in separate 
figure windows. MATLAB does not place any restrictions on the number of 
images you can display simultaneously. However, there are usually system 
limitations that are dependent on the computer hardware you are using.

imshow always displays an image in the current figure, so if you display two 
images in succession, the second image replaces the first image. To avoid 
replacing the image in the current figure, use the figure command to explicitly 
create a new empty figure before calling imshow for the next image. For 
example, to view the first three frames in an array of intensity images I,

imshow(I(:,:,:,1))
figure, imshow(I(:,:,:,2))
figure, imshow(I(:,:,:,3))

When you use this approach, the figures you create are empty initially.

Displaying Multiple Images in the Same Figure
You can use the imshow function with the MATLAB subplot function or the 
MATLAB subimage function to display multiple images in a single figure 
window.
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Dividing a Figure Window into Multiple Display Regions. subplot divides a figure into 
multiple display regions. The syntax of subplot is

subplot(m,n,p)

This syntax divides the figure into an m-by-n matrix of display regions and 
makes the pth display region active. 

For example, if you want to display two images side by side, use

[X1,map1]=imread('forest.tif');
[X2,map2]=imread('trees.tif');
subplot(1,2,1), imshow(X1,map2)
subplot(1,2,2), imshow(X2,map2)

Two Images in Same Figure Using the Same Colormap

If sharing a colormap (using the subplot function) produces unacceptable 
display results, use the subimage function, described below. Or, as another 
alternative, you can map all images to the same colormap as you load them. 

Using the subimage Function to Display Multiple Images. subimage converts images to 
RGB before displaying and therefore circumvents the colormap sharing 
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problem. This example displays the same two images shown with better 
results.

[X1,map1]=imread('forest.tif');
[X2,map2]=imread('trees.tif');
subplot(1,2,1), subimage(X1,map1)
subplot(1,2,2), subimage(X2,map2)

Two Images in Same Figure Using Separate Colormaps

Understanding Handle Graphics Object Property 
Settings
When you display an indexed, intensity, binary, or RGB image, imshow sets the 
Handle Graphics properties that control how the image is displayed. The 
following table lists the relevant properties and their settings for each type of 
image. The table uses standard toolbox terminology to refer to the various 
image types: X represents an indexed image, I represents an intensity image, 
BW represents a binary image, and RGB represents an RGB (or true-color) image.
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Note  When you use the imshow automatic scaling syntax, imshow(I,[]), the 
function sets the axes CLim property to [min(J(:)) max(J(:))]. 
CDataMapping is always scaled for intensity images, so that the value 
min(J(:)) is displayed using the first colormap color, and the value 
max(J(:)) is displayed using the last colormap color.

Handle Graphics 
Property

Indexed 
Images

Intensity 
(Grayscale) Images

Binary Images RGB (True-color) 
Images

CData (Image) Set to the 
data in X

Set to the data in I Set to data in BW Set to data in 
RGB 

CDataMapping 
(Image)

Set to 
'direct'

Set to 'scaled' Set to 'direct' Ignored when 
CData is 3-D

CLim (Axes) Does not 
apply

double: [0 1]
uint8: [0 255]
uint16: [0 65535]

Set to [0 1] Ignored when 
CData is 3-D

Colormap (Figure) Set to data 
in map

Set to grayscale 
colormap

Set to a grayscale 
colormap whose 
values range from 
black to white

Ignored when 
CData is 3-D
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Displaying Different Image Types
This section describes how to use imshow and imview with the different types 
of images supported by the Image Processing Toolbox.

• Indexed images

• Intensity (grayscale) images

• Binary images

• RGB (true-color) images

If you need help determining what type of image you are working with, see 
“Image Types in the Toolbox” on page 2-6.

Displaying Indexed Images
To display an indexed image, using either imshow or imview, specify both the 
image matrix and the colormap. 

imshow(X,map)

or

imview(X,map)

For each pixel in X, these functions display the color stored in the corresponding 
row of map. If the image matrix data is of class double, the value 1 points to the 
first row in the colormap, the value 2 points to the second row, and so on. 
However, if the image matrix data is of class uint8 or uint16, the value 0 (zero) 
points to the first row in the colormap, the value 1 points to the second row, and 
so on. This offset is handled automatically by the imview and imshow functions.

If the colormap contains a greater number of colors than the image, the 
functions ignore the extra colors in the colormap. If the colormap contains 
fewer colors than the image requires, the functions set all image pixels over the 
limits of the colormap’s capacity to the last color in the colormap. For example, 
if an image of class uint8 contains 256 colors, and you display it with a 
colormap that contains only 16 colors, all pixels with a value of 15 or higher are 
displayed with the last color in the colormap.
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Displaying Intensity Images
To display an intensity (grayscale) image, using either imshow or imview, 
specify the image matrix as an argument.

imshow(I)

or

imview(I)

Both functions display the image by scaling the intensity values to serve as 
indices into a grayscale colormap. 

If I is double, a pixel value of 0.0 is displayed as black, a pixel value of 1.0 is 
displayed as white, and pixel values in between are displayed as shades of gray. 
If I is uint8, then a pixel value of 255 is displayed as white. If I is uint16, then 
a pixel value of 65535 is displayed as white.

Intensity images are similar to indexed images in that each uses an m-by-3 
RGB colormap, but normally, you do not specify a colormap for an intensity 
image. MATLAB displays intensity images by using a grayscale system 
colormap (where R=G=B). By default, the number of levels of gray in the 
colormap is 256 on systems with 24-bit color, and 64 or 32 on other systems. 
(See “Working with Different Screen Bit Depths” on page 13-3 for a detailed 
explanation.) 

Specifying the Number of Gray Levels
Using imshow, you can optionally specify the number of gray levels to use for 
intensity images. For example, to display an image with 32 gray levels, use this 
syntax.

imshow(I,32)

Because MATLAB scales intensity images to fill the colormap range, a 
colormap of any size can be used. Larger colormaps enable you to see more 
detail, but they also use up more color slots. The availability of color slots is 
discussed further in “Working with Different Screen Bit Depths” on page 13-3.

Displaying Intensity Images That Have Unconventional Ranges
In some cases, you might have data you want to display as an intensity image, 
even though the data is outside the conventional toolbox range (i.e., [0,1] for 
double arrays, [0,255] for uint8 arrays, or [0,65535] for uint16 arrays). For 
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example, if you filter an intensity image, some of the output data might fall 
outside the range of the original data.

To display unconventional range data as an image, you can specify the display 
range directly, using this syntax for both the imshow and imview functions.

imshow(I,[low high])

or

imview(I,[low high])

If you use an empty matrix ([]) for the display range, these functions scale the 
data automatically, setting low and high to the minimum and maximum 
values in the array. The next example filters an intensity image, creating 
unconventional range data. The example calls imview to display the image, 
using the automatic scaling option. If you execute this example, note the 
display range specified in the lower right corner of the Image Viewer window.

I = imread('testpat1.png');
J = filter2([1 2;-1 -2],I);
imview(J,[]);

Display range
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Displaying Binary Images
In MATLAB, a binary image is of class logical. Binary images contain only 0’s 
and 1’s. Pixels with the value 0 are displayed as black; pixels with the value 1 
are displayed as white. 

Note  For the toolbox to interpret the image as binary, it must be of class 
logical. Intensity images that happen to contain only 0’s and 1’s are not 
binary images. 

To display a binary image, using either imshow or imview, specify the image 
matrix as an argument. For example, this code reads a binary image into the 
MATLAB workspace and then displays the image.

BW = imread('circles.png');
imshow(BW)

or

imview(BW)

Changing the Display Colors of a Binary Image
You might prefer to invert binary images when you display them, so that 0 
values are displayed as white and 1 values are displayed as black. To do this, 
use the NOT (~) operator in MATLAB. (In this figure, a box is drawn around 
the image to show the image boundary.) For example:

imshow(~BW)
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or

imview(~BW)

You can also display a binary image using the indexed image colormap syntax. 
For example, the following command specifies a two-row colormap that 
displays 0’s as red and 1’s as blue.

imshow(BW,[1 0 0; 0 0 1])

or

imview(BW,[1 0 0; 0 0 1])
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Displaying RGB Images
RGB images, also called true-color images, represent color values directly, 
rather than through a colormap. An RGB image is an m-by-n-by-3 array. For 
each pixel (r,c) in the image, the color is represented by the triplet (r,c,1:3). 

To display an RGB image, using either imshow or imview, specify the image 
matrix as an argument. For example, this code reads an RGB image into the 
MATLAB workspace and then displays the image.

RGB = imread( peppers.png');
imshow(RGB)

or

imview(RGB)

Systems that use 24 bits per screen pixel can display true-color images directly, 
because they allocate 8 bits (256 levels) each to the red, green, and blue color 
planes. On systems with fewer colors, imshow displays the image using a 
combination of color approximation and dithering. See “Working with Different 
Screen Bit Depths” on page 13-3 for more information.
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Note  If you display a color image and it appears in black and white, check if 
the image is an indexed image. With indexed images, you must specify the 
colormap associated with the image. For more information, see “Displaying 
Indexed Images” on page 3-24. 
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Special Display Techniques
In addition to imshow and imview, the toolbox includes functions that perform 
specialized display operations, or exercise more direct control over the display 
format. These functions, together with the MATLAB graphics functions, 
provide a range of image display options.

This section includes the following topics:

• “Adding a Colorbar” on page 3-31

• “Displaying All Frames of a Multiframe Image at Once” on page 3-32

• “Converting a Multiframe Image to a Movie” on page 3-34

• “Texture Mapping” on page 3-35

Adding a Colorbar
To display an image with a colorbar that indicates the range of intensity 
values, use the imshow function to display the image in a MATLAB figure 
window and then call the colorbar function. When you add a colorbar to an 
axes object that contains an image object, the colorbar indicates the data values 
that the different colors in the image correspond to. You cannot add a colorbar 
to an image displayed in the Image Viewer.

Seeing the correspondence between data values and the colors displayed by 
using a colorbar is especially useful if you are displaying unconventional range 
data as an image, as described under “Displaying Intensity Images That Have 
Unconventional Ranges” on page 3-25. 

In the example below, a grayscale image of class uint8 is filtered, resulting in 
data that is no longer in the range [0,255].

RGB = imread('saturn.png');
I = rgb2gray(RGB);
h = [1 2 1; 0 0 0; -1 -2 -1];
I2 = filter2(h,I);
imshow(I2,[]), colorbar
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Displaying All Frames of a Multiframe Image at 
Once
To view all the frames in a multiframe array at one time, use the montage 
function. montage divides a figure window into multiple display regions and 
displays each image in a separate region.

The syntax for montage is similar to the imshow syntax. To display a 
multiframe intensity image, the syntax is

montage(I)

To display a multiframe indexed image, the syntax is

montage(X,map)

Note  All the frames in a multiframe indexed array must use the same 
colormap.

Original Image Courtesy of NASA
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This example loads and displays all frames of a multiframe indexed image. The 
example initializes an array to hold the 27 frames in the multiframe image file 
and then loops, using imread to read a single frame from the image file at each 
iteration.

mri = uint8(zeros(128,128,1,27));

for frame=1:27
[mri(:,:,:,frame),map] = imread('mri.tif',frame);

end
montage(mri,map);

All Frames of Multiframe Image Displayed in One Figure
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montage displays the first frame in the first position of the first row, the next 
frame in the second position of the first row, and so on. montage arranges the 
frames so that they roughly form a square.

Converting a Multiframe Image to a Movie
To create a MATLAB movie from a multiframe image array, use the immovie 
function. This example creates a movie from a multiframe indexed image.

mov = immovie(X,map);

In the example, X is a four-dimensional array of images that you want to use 
for the movie.

You can play the movie in MATLAB using the movie function.

movie(mov);

This example loads the multiframe image mri.tif and makes a movie out of it. 
It won’t do any good to show the results here, so try it out; it’s fun to watch.

mri = uint8(zeros(128,128,1,27)); 
for frame=1:27

[mri(:,:,:,frame),map] = imread('mri.tif',frame);
end

mov = immovie(mri,map);
movie(mov);

Note that immovie displays the movie as it is being created, so you actually see 
the movie twice. The movie runs much faster the second time (using movie). 

Note  To view a MATLAB movie, you must have MATLAB installed. To make 
a movie that can be run outside MATLAB, use the MATLAB avifile and 
addframe functions to create an AVI file. AVI files can be created using 
indexed and RGB images of classes uint8 and double, and don’t require a 
multiframe image. For instructions on creating an AVI file, see the 
Development Environment section in the MATLAB documentation.
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Texture Mapping
When you use imshow or imview to view an image, MATLAB displays the image 
in two dimensions. However, it is also possible to map an image onto a 
parametric surface, such as a sphere, or below a surface plot. The warp function 
creates these displays by texture mapping the image. Texture mapping is a 
process that maps an image onto a surface grid using interpolation. 

This example texture-maps an image of a test pattern onto a cylinder.

[x,y,z] = cylinder;
I = imread('testpat1.png');
warp(x,y,z,I);

An Image Texture Mapped onto a Cylinder

The image might not map onto the surface in the way that you had expected. 
One way to modify the way the texture map appears is to change the settings 
of the Xdir, Ydir, and Zdir properties. For more information, see “Changing 
Axis Direction” in the MATLAB Graphics documentation.

For more information about texture mapping, see the reference entry for the 
warp function.
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Printing Images
If you want to output a MATLAB image to use in another application (such as 
a word-processing program or graphics editor), use imwrite to create a file in 
the appropriate format. See “Writing a Graphics Image” on page 2-17 for 
details.

If you want to print an image, use imshow to display the image in a MATLAB 
figure window. You cannot print an image from the Image Viewer.

Once the image is displayed in a figure window, you can use either the 
MATLAB print command or the Print option from the File menu of the figure 
window to print the image. When you print from the figure window, the output 
includes nonimage elements such as labels, titles, and other annotations.

The output reflects the settings of various properties of Handle Graphic 
objects. In some cases, you might need to change the settings of certain 
properties to get the results you want. Here are some tips that might be helpful 
when you print images:

• Image colors print as shown on the screen. This means that images are not 
affected by the figure object’s InvertHardcopy property.

• To ensure that printed images have the proper size and aspect ratio, set the 
figure object’s PaperPositionMode property to auto. When 
PaperPositionMode is set to auto, the width and height of the printed figure 
are determined by the figure’s dimensions on the screen. By default, the 
value of PaperPositionMode is manual. If you want the default value of 
PaperPositionMode to be auto, you can add this line to your startup.m file.

set(0,'DefaultFigurePaperPositionMode','auto')

For detailed information about printing with File/Print or the print command 
(and for information about Handle Graphics), see “Printing and Exporting 
Figures with MATLAB” in the MATLAB Graphics documentation. For a 
complete list of options for the print command, enter help print at the 
MATLAB command-line prompt or see the print command reference page in 
the MATLAB documentation. 
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Setting Toolbox Display Preferences
You can use Image Processing Toolbox preferences to control certain 
characteristics of how imshow and imview display images on your screen. For 
example, using toolbox preferences, you can suppress the display of axes and 
tick marks in a figure window by imshow or specify the initial magnification 
used by imview. 

This section 

• Lists the preferences supported by the toolbox

• Describes how to get the current value of a preference using the iptgetpref 
function

• Describes how to set the value of a preference using the iptsetpref function

Toolbox Preferences
The Image Processing Toolbox supports several preferences that affect how 
imshow and imview display images. The following table lists these preferences 
with brief descriptions. For detailed information about toolbox preferences and 
their values, see the iptsetpref reference page.

Toolbox Preference Description

ImshowBorder Controls whether imshow displays the figure window as 
larger than the image (leaving a border between the image 
axes and the edges of the figure), or the same size as the 
image (leaving no border). 

ImshowAxesVisible Controls whether imshow displays images with the axes box 
and tick labels.

ImshowTruesize Controls whether imshow calls the truesize function. This 
preference can be overridden for a single call to imshow; see 
“Specifying the Initial Image Size” on page 3-19 for more 
details.
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Retrieving the Value of Toolbox Preferences
To determine the current value of a preference, use the iptgetpref function. 
This example uses iptgetpref to determine the value of the 
ImviewInitialMagnification preference.

iptgetpref('ImviewInitialMagnification')

ans =

   100

Preference names are case insensitive and can be abbreviated. For more 
information, see the iptgetpref reference page.

Setting the Value of Toolbox Preferences
To specify the value of a toolbox preference, use the iptsetpref function. This 
example calls iptsetpref to specify that imshow resize the figure window so 
that it fits tightly around displayed images.

iptsetpref('ImshowBorder', 'tight');

For detailed information about toolbox preferences and their values, see the 
iptsetpref reference page. 

The value you specify lasts for the duration of the current MATLAB session. To 
preserve your preference settings from one session to the next, include the 
iptsetpref commands in your startup.m file. 

ImviewInitialMagnification Controls the magnification the Image Viewer uses when it 
initially displays an image.

TrueSizeWarning Controls whether you receive a warning message if an image 
is too large for the screen.

Toolbox Preference Description
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Spatial Transformations

This chapter describes the spatial transformation functions in the Image Processing Toolbox. Spatial 
transformations map pixel locations in an input image to new locations in an output image. 

Terminology (p. 4-2) Provides definitions of image processing terms used in 
this section

Interpolation (p. 4-3) Defines interpolation, the process used to estimate the 
value of a pixel in an output image when that pixel does 
not appear in the input image 

Image Resizing (p. 4-5) Describes how to use the imresize function to change the 
size of an image

Image Rotation (p. 4-8) Describes how to use the imrotate function to rotate an 
image

Image Cropping (p. 4-10) Describes how to use the imcrop function to extract a 
rectangular portion of an image

Performing General Spatial 
Transformations (p. 4-11)

Describes the general spatial transformation capabilities 
of the toolbox
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Terminology
An understanding of the following terms will help you to use this chapter.

Term Definition

aliasing Artifacts in an image that can appear as a 
result of reducing an image’s size. When the 
size of an image is reduced, original pixels 
are downsampled to create fewer pixels. 
Aliasing that occurs as a result of size 
reduction normally appears as “stair-step” 
patterns (especially in high contrast images), 
or as “moire” (ripple-effect) patterns.

antialiasing Any method for correcting aliasing (see 
above). The method discussed in this chapter 
is low-pass filtering (see below). 

bicubic interpolation Output pixel values are calculated from a 
weighted average of pixels in the nearest 
4-by-4 neighborhood.

bilinear interpolation Output pixel values are calculated from a 
weighted average of pixels in the nearest 
2-by-2 neighborhood.

geometric operation An operation that modifies the spatial 
relations between pixels in an image. 
Examples include resizing (growing or 
shrinking), rotating, and shearing.

interpolation The process by which we estimate an image 
value at a location in between image pixels.

nearest-neighbor 
interpolation

Output pixel values are assigned the value of 
the pixel that the point falls within. No other 
pixels are considered.
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Interpolation
Interpolation is the process used to estimate an image value at a location in 
between image pixels. For example, if you resize an image so it contains more 
pixels than it did originally, the software obtains values for the additional 
pixels through interpolation. The imresize and imrotate geometric functions 
use two-dimensional interpolation as part of the operations they perform. (The 
improfile image analysis function also uses interpolation. See “Intensity 
Profile” on page 10-5 for information about this function.) 

The Image Processing Toolbox provides three interpolation methods:

• Nearest-neighbor interpolation

• Bilinear interpolation

• Bicubic interpolation

The interpolation methods all work in a fundamentally similar way. In each 
case, to determine the value for an interpolated pixel, they find the point in the 
input image that the output pixel corresponds to. They then assign a value to 
the output pixel by computing a weighted average of some set of pixels in the 
vicinity of the point. The weightings are based on the distance each pixel is 
from the point.

The methods differ in the set of pixels that are considered:

• For nearest-neighbor interpolation, the output pixel is assigned the value of 
the pixel that the point falls within. No other pixels are considered.

• For bilinear interpolation, the output pixel value is a weighted average of 
pixels in the nearest 2-by-2 neighborhood.

• For bicubic interpolation, the output pixel value is a weighted average of 
pixels in the nearest 4-by-4 neighborhood.

The number of pixels considered affects the complexity of the computation. 
Therefore the bilinear method takes longer than nearest-neighbor 
interpolation, and the bicubic method takes longer than bilinear. However, the 
greater the number of pixels considered, the more accurate the effect is, so 
there is a tradeoff between processing time and quality.
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Image Types
The functions that use interpolation take an argument that specifies the 
interpolation method. For most of these functions, the default method is 
nearest-neighbor interpolation. This method produces acceptable results for all 
image types, and is the only method that is appropriate for indexed images. For 
intensity and RGB images, however, you should generally specify bilinear or 
bicubic interpolation, because these methods produce better results than 
nearest-neighbor interpolation.

For RGB images, interpolation is performed on the red, green, and blue image 
planes individually.

For binary images, interpolation has effects that you should be aware of. If you 
use bilinear or bicubic interpolation, the computed values for the pixels in the 
output image will not all be 0 or 1. The effect on the resulting output image 
depends on the class of the input image:

• If the class of the input image is double, the output image is a grayscale 
image of class double. The output image is not binary, because it includes 
values other than 0 and 1.

• If the class of the input image is uint8, the output image is a binary image 
of class uint8. The interpolated pixel values are rounded off to 0 and 1 so the 
output image can be of class uint8.

Note  For bicubic interpolation, you might need to clamp doubles to within 
the [0 1] range.

If you use nearest-neighbor interpolation, the result is always binary, because 
the values of the interpolated pixels are taken directly from pixels in the input 
image.
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Image Resizing
To change the size of an image, use the imresize function. Using imresize, you 
can

• Specify the size of the output image

• Specify the interpolation method used 

• Specify the filter to use to prevent aliasing

Specifying the Size of the Output Image
Using imresize, you can specify the size of the output image in two ways:

• By specifying the magnification factor to be used on the image

• By specifying the dimensions of the output image

Using the Magnification Factor
To enlarge an image, specify a magnification factor greater than 1. To reduce 
an image, specify a magnification factor between 0 and 1. For example, the 
command below increases the size of the image I by 1.25 times. 

I = imread('circuit.tif');
J = imresize(I,1.25);
imshow(I)
figure, imshow(J)



4 Spatial Transformations

4-6

Specifying the Size of the Output Image
You can specify the size of the output image by passing a vector that contains 
the number of rows and columns in the output image. The following command 
creates an output image, Y, with 100 rows and 150 columns.

Y = imresize(X,[100 150])

Note  If the specified size does not produce the same aspect ratio as the input 
image, the output image is distorted.

Specifying the Interpolation Method
By default, imresize uses nearest-neighbor interpolation to determine the 
values of pixels in the output image, but you can specify other interpolation 
methods. This table lists the supported interpolation methods in order of 
complexity. See “Interpolation” on page 4-3 for more information about these 
methods.

Image Courtesy of Steve Decker and Shujaat Nadeem
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In this example, imresize uses the bilinear interpolation method. 

Y = imresize(X,[100 150],'bilinear')

Using Filters to Prevent Aliasing 
Reducing the size of an image can introduce artifacts, such as aliasing, in the 
output image because information is always lost when you reduce the size of an 
image. Aliasing appears as ripple patterns (called moiré patterns) in the output 
image.

When you reduce the size of the image using either bilinear or bicubic 
interpolation, imresize automatically applies a lowpass filter to the image 
before interpolation, to limit the impact of aliasing on the output image. You 
can specify the size of this filter or specify a different filter. 

Note  Even with lowpass filtering, resizing can introduce artifacts, because 
information is always lost when you reduce the size of an image.

The imresize function does not apply a lowpass filter if nearest-neighbor 
interpolation is used. Nearest-neighbor interpolation is primarily used for 
indexed images, and lowpass filtering is not appropriate for these images.

You can also specify a filter of your own creation. For more information about 
specifying a filter, see the reference page for imresize.

Argument Value Interpolation Method

'nearest' Nearest-neighbor interpolation (the default)

'bilinear' Bilinear interpolation

'bicubic' Bicubic interpolation
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Image Rotation
To rotate an image, use the imrotate function. imrotate accepts two primary 
arguments:

• The image to be rotated

• The rotation angle

You specify the rotation angle in degrees. If you specify a positive value, 
imrotate rotates the image counterclockwise; if you specify a negative value, 
imrotate rotates the image clockwise. This example rotates the image I 35 
degrees in the counterclockwise direction.

J = imrotate(I,35);

As optional arguments to imrotate, you can also specify

• The interpolation method

• The size of the output image

Specifying the Interpolation Method
By default, imrotate uses nearest-neighbor interpolation to determine the 
value of pixels in the output image, but you can specify other interpolation 
methods. This table lists the supported interpolation methods in order of 
complexity. See “Interpolation” on page 4-3 for more information about these 
methods. 

For example, these commands rotate an image 35° counterclockwise and use 
bilinear interpolation.

I = imread('circuit.tif');
J = imrotate(I,35,'bilinear');
imshow(I)

Argument Value Interpolation Method

'nearest' Nearest-neighbor interpolation (the default)

'bilinear' Bilinear interpolation

'bicubic' Bicubic interpolation
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figure, imshow(J)

Specifying the Size of the Output Image
By default, imrotate creates an output image large enough to include the 
entire original image. Pixels that fall outside the boundaries of the original 
image are set to 0 and appear as a black background in the output image. If you 
specify the text string crop' as an argument, imrotate crops the output 
image to be the same size as the input image. (See the reference page for 
imrotate for an example of cropping.)
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Image Cropping
To extract a rectangular portion of an image, use the imcrop function. imcrop 
accepts two primary arguments:

• The image to be cropped

• The coordinates of a rectangle that defines the crop area

If you call imcrop without specifying the crop rectangle, you can specify the 
crop rectangle interactively. In this case, the cursor changes to crosshairs when 
it is over the image. Position the crosshairs over a corner of the crop region and 
press and hold the left mouse button. When you drag the crosshairs over the 
image you specify the rectangular crop region. imcrop draws a rectangle 
around the area you are selecting. When you release the mouse button, imcrop 
creates a new image from the selected region. 

In this example, you display an image and call imcrop. The imcrop function 
displays the image in a figure window and waits for you to draw the cropping 
rectangle on the image. In the figure, the rectangle you select is shown in red. 
The example then calls imshow to view the cropped image.

imshow circuit.tif
I = imcrop;
imshow(I);
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Performing General Spatial Transformations
To perform general two-dimensional (2-D) spatial transformations, use the 
imtransform function. (For information about performing advanced 
transformations, see “Advanced Spatial Transformation Techniques” on 
page 4-13.)

The imtransform function accepts two primary arguments: 

• The image to be transformed

• A spatial transformation structure, called a TFORM, that specifies the type of 
transformation you want to perform

Specifying the Transformation Type
You specify the type of transformation you want to perform in a TFORM 
structure. There are two ways to create a TFORM structure:

• Using the maketform function

• Using the cp2tform function

Using maketform
When you use the maketform function, you can specify the type of 
transformation you want to perform. The following table lists the types of 
transformations maketform supports in alphabetical order.

Transformation Description

'affine' Transformation that can include translation, 
rotation, scaling, stretching, and shearing. Straight 
lines remain straight, and parallel lines remain 
parallel, but rectangles might become 
parallelograms.

'box' Special case of an affine transformation where each 
dimension is shifted and scaled independently.

'composite' Composition of two or more transformations.
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The 'custom' and 'composite' capabilities of maketform allow a virtually 
limitless variety of spatial transformations to be used with imtransform and/or 
tformarray.

Using cp2tform
You use cp2tform to create the TFORM when you want to perform a 
transformation that requires fitting of data points, such as a polynomial 
transformation. Chapter 5, “Image Registration,” explains how to use the 
cp2tform function to fit a 2-D transformation to a set of control points selected 
in a pair of images.

Note  When used with imtransform, TFORM structures must define a 2-D 
spatial transformation. If an image contains more than two dimensions, such 
as an RGB image, the same 2-D transformation is automatically applied to all 
2-D planes along the higher dimensions. To define an n-dimensional 
transformation, use the tformarray function.

'custom' User-defined transformation, providing the forward 
and/or inverse functions that are called by 
imtransform. 

'projective' Transformation in which straight lines remain 
straight but parallel lines converge toward vanishing 
points. (The vanishing points can fall inside or 
outside the image — even at infinity.)

Transformation Description
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Performing the Transformation
Once you define the transformation in a TFORM struct, you can perform the 
transformation by calling imtransform. 

For example, this code uses imtransform to perform a projective 
transformation of a checkerboard image. 

I = checkerboard(20,1,1);
figure; imshow(I)
T = maketform('projective',[1 1; 41 1; 41 41;   1 41],...

[5 5; 40 5; 35 30; -10 30]);
R = makeresampler('cubic','circular');
K = imtransform(I,T,R,'Size',[100 100],'XYScale',1);
figure, imshow(K)

The imtransform function options let you control many aspects of the 
transformation. For example, note how the transformed image appears to 
contain multiple copies of the original image. This is accomplished by using the 
'Size' option, to make the output image larger than the input image, and then 
specifying a padding method that extends the input image by repeating the 
pixels in a circular pattern. The Image Processing Toolbox Image 
Transformation demos provide more examples of using the imtransform 
function, and related functions, to perform different types of spatial 
transformations.

Advanced Spatial Transformation Techniques
The following functions, when used in combination, provide a vast array of 
options for defining and working with 2-D, N-D, and mixed-D spatial 
transformations: 

• maketform

• fliptform

Original 
image

Transformed 
image
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• tformfwd 

• tforminv 

• findbounds 

• makeresampler 

• tformarray

• imtransform

The imtransform, findbounds, and tformarray functions use the tformfwd 
and tforminv functions internally to encapsulate the forward transformations 
needed to determine the extent of an output image or array and/or to map the 
output pixels/array locations back to input locations. You can use tformfwd and 
tforminv to explore the geometric effects of a transformation by applying them 
to points and lines and plotting the results. They support a consistent handling 
of both image and pointwise data.

The previous example, “Performing the Transformation” on page 4-13, used 
the makeresampler function with a standard interpolation method. You can 
also use it to obtain special effects or custom processing. For example, you could 
specify your own separable filtering/interpolation kernel, build a custom 
resampler around the MATLAB interp2 or interp3 functions, or even 
implement an advanced antialiasing technique.

And, as noted, you can use tformarray to work with arbitrary-dimensional 
array transformations. The arrays do not even need to have the same 
dimensions. The output can have either a lower or higher number of 
dimensions than the input.

For example, if you are sampling 3-D data on a 2-D slice or manifold, the input 
array might have a lower dimensionality. The output dimensionality might be 
higher, for example, if you combine multiple 2-D transformations into a single 
2-D to 3-D operation.
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Image Registration

This chapter describes the image registration capabilities of the Image Processing Toolbox. Image 
registration is the process of aligning two or more images of the same scene. Image registration is 
often used as a preliminary step in other image processing applications. 

Terminology (p. 5-2) Provides definitions of image processing terms used in 
this section

Registering an Image (p. 5-4) Steps you through an example of the image registration 
process

Types of Supported Transformations 
(p. 5-13)

Lists the types of supported transformations

Selecting Control Points (p. 5-15) Describes how to use the Control Point Selection Tool 
(cpselect) to select control points in pairs of images

Using Correlation to Improve Control 
Points (p. 5-32)

Describes how to use the cpcorr function to fine-tune 
your control point selections
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Terminology
An understanding of the following terms will help you to use this chapter.

Term Definition

aligned image Output image after registration has been 
performed. The output image is derived by 
applying a transformation to the input 
image (see below) that brings it into 
alignment with the base image (see below).

base image Image against which you compare the image 
to be registered. It is also often called the 
reference image.

control point pairs Matching locations, also referred to as 
landmarks, in the input image and the base 
image. 

distortion Differences in one image as compared to 
another of the same subject. These 
differences might have occurred as a result 
of terrain relief and other changes in 
perspective when imaging the same scene 
from different viewpoints. Lens and other 
internal sensor distortions, or differences 
between sensors and sensor types, can also 
cause distortion.

global transformation Transformation in which a single 
mathematical expression applies to an entire 
image.

input image Image that you want to register. It is often 
called the observed image.
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local transformation Transformation in which different 
mathematical expressions (usually differing 
in parameters rather than form) apply to 
different regions within an image.

spatial transformation Mapping of locations of points in one image 
to new locations in another image. 

Term Definition
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Registering an Image
Image registration is the process of aligning two or more images of the same 
scene. Typically, one image, called the base image, is considered the reference 
to which the other images, called input images, are compared. The object of 
image registration is to bring the input image into alignment with the base 
image by applying a spatial transformation to the input image. 

A spatial transformation maps locations in one image to new locations in 
another image. (For more details, see Chapter 4, “Spatial Transformations.”) 
Determining the parameters of the spatial transformation needed to bring the 
images into alignment is key to the image registration process.

Image registration is often used as a preliminary step in other image 
processing applications. For example, you can use image registration to align 
satellite images of the earth’s surface or images created by different medical 
diagnostic modalities (MRI and SPECT). After registration, you can compare 
features in the images to see how a river has migrated, how an area is flooded, 
or to see if a tumor is visible in an MRI or SPECT image.

Point Mapping
The Image Processing Toolbox provides tools to support point mapping to 
determine the parameters of the transformation required to bring an image 
into alignment with another image. In point mapping, you pick points in a pair 
of images that identify the same feature or landmark in the images. Then, a 
spatial mapping is inferred from the positions of these control points. 

Image registration using point mapping involves these steps:

1 Read the images into the MATLAB workspace. 

2 Specify control point pairs in the images.

3 Save the control point pairs.

4 Fine-tune the control points using cross-correlation. (This is an optional 
step.)

5 Specify the type of transformation to be used and infer its parameters from 
the control point pairs. 
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6 Transform the unregistered image to bring it into alignment.

This process is best understood by looking at an example. See “Example: 
Registering to a Digital Orthophoto” on page 5-6 for an extended example. 

Note  You might need to perform several iterations of this process, 
experimenting with different types of transformations, before you achieve a 
satisfactory result. In some cases, you might perform successive registrations, 
removing gross global distortions first, and then removing smaller local 
distortions in subsequent passes.

The following figure provides a graphic illustration of this process. 
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Overview of Image Registration Process

Example: Registering to a Digital Orthophoto
This example registers a digital aerial photograph to a digital orthophoto 
covering the same area. Both images are centered on the business district of 
West Concord, Massachusetts. 

The aerial image is geometrically uncorrected: it includes camera perspective, 
terrain and building relief, and internal (lens) distortions, and it does not have 
any particular alignment or registration with respect to the earth. 

tform structure

imtransform

Specify control points in 
input and base images using 
cpselect

Fine-tune control points with 
cpcorr (optional)

Aligned 
image

Input 
Image

Base
Image

Determine parameters of 
spatial transformation using 
cp2tform

Image to be 
registered

Image you are 
comparing it to
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The orthophoto, supplied by the Massachusetts Geographic Information 
System (MassGIS), has been orthorectified to remove camera, perspective, and 
relief distortions (via a specialized image transformation process). It is also 
georegistered (and geocoded)—the columns and rows of the digital orthophoto 
image are aligned to the axes of the Massachusetts State Plane coordinate 
system, each pixel center corresponds to a definite geographic location, and 
every pixel is 1 meter square in map units. 

Step 1: Read the Images into MATLAB
In this example, the base image is westconcordorthophoto.png, the MassGIS 
georegistered orthophoto. It is a panchromatic (grayscale) image. The image to 
be registered is westconcordaerial.png, a digital aerial photograph supplied 
by mPower3/Emerge, and is a visible-color RGB image.

orthophoto = imread('westconcordorthophoto.png');
figure, imshow(orthophoto)
unregistered = imread('westconcordaerial.png');
figure, imshow(unregistered)

You do not have to read the images into the MATLAB workspace. The 
cpselect function accepts file specifications for grayscale images. However, if 
you want to use cross-correlation to tune your control point positioning, the 
images must be in the workspace.
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Step 2: Choose Control Points in the Images
The toolbox provides an interactive tool, called the Control Point Selection 
Tool, that you can use to pick pairs of corresponding control points in both 
images. Control points are landmarks that you can find in both images, like a 
road intersection, or a natural feature.

To start this tool, enter cpselect at the MATLAB prompt, specifying as 
arguments the input and base images.

Note  The unregistered image is an RGB image. Because the Control Point 
Selection Tool only accepts grayscale images, the example passes only one 
plane of the color image to cpselect.

cpselect(unregistered(:,:,1),orthophoto)

Aerial Photo Image Orthophoto Image
Image Courtesy of mPower3/Emerge Image Courtesy of MassGIS
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The cpselect function displays two views of both the input image and the base 
image in which you can pick control points by pointing and clicking. For more 
information, see “Selecting Control Points” on page 5-15. This figure shows the 
Control Point Selection Tool with four pairs of control points selected. The 
number of control point pairs you pick is at least partially determined by the 
type of transformation you want to perform (specified in Step 5). See “Types of 
Supported Transformations” on page 5-13 for information about the minimum 
number of points required by each transformation.

Step 3: Save the Control Point Pairs to the MATLAB Workspace 
In the Control Point Selection Tool, click the File menu and choose the Save 
Points to Workspace option. See “Saving Control Points” on page 5-30 for 
more information. 
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For example, the Control Point Selection Tool returns the following set of 
control points in the input image. These values represent spatial coordinates; 
the left column are x-coordinates, the right column are y-coordinates.

input_points =
  120.7086   93.9772
  319.2222   78.9202
  127.9838  291.6312
  352.0729  281.1445

Step 4: Fine-Tune the Control Point Pair Placement
This is an optional step that uses cross-correlation to adjust the position of the 
control points you selected with cpselect. See “Using Correlation to Improve 
Control Points” on page 5-32 for more information.

Note  cpcorr can only adjust points for images that are the same scale and 
have the same orientation. Because the Concord image is rotated in relation to 
the base image, cpcorr cannot tune the control points. When it cannot tune 
the points, cpcorr returns the input points unmodified.

input_points_corr = cpcorr(input_points,base_points,...
unregistered(:,:,1),orthophoto)

input_points_corr =
  120.7086   93.9772
  319.2222   78.9202
  127.1046  289.8935
352.0729  281.1445

Step 5: Specify the Type of Transformation and Infer Its Parameters
In this step, you pass the control points to the cp2tform function that 
determines the parameters of the transformation needed to bring the image 
into alignment. cp2tform is a data-fitting function that determines the 
transformation based on the geometric relationship of the control points. 
cp2tform returns the parameters in a geometric transformation structure, 
called a TFORM structure. 

When you use cp2tform, you must specify the type of transformation you want 
to perform. The cp2tform function can infer the parameters for five types of 
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transformations. You must choose which transformation will correct the type 
of distortion present in the input image. See “Types of Supported 
Transformations” on page 5-13 for more information. Images can contain more 
than one type of distortion.

The predominant distortion in the aerial image of West Concord (the input 
image) results from the camera perspective. Ignoring terrain relief, which is 
minor in this area, image registration can correct for this using a projective 
transformation. The projective transformation also rotates the image into 
alignment with the map coordinate system underlying the base digital 
orthophoto image. (Given sufficient information about the terrain and camera, 
you could correct these other distortions at the same time by creating a 
composite transformation with maketform. See “Performing General Spatial 
Transformations” on page 4-11 for more information.)

mytform = cp2tform(input_points,base_points,'projective');

Step 6: Transform the Unregistered Image
As the final step in image registration, transform the input image to bring it 
into alignment with the base image. You use imtransform to perform the 
transformation, passing it the input image and the TFORM structure, which 
defines the transformation. imtransform returns the transformed image. For 
more information about using imtransform, see Chapter 4, “Spatial 
Transformations.”

registered = imtransform(unregistered,mytform)

Note  imtransform applies the transformation defined in mytform, which is 
based on control points picked in only one plane of the RGB image, to all three 
planes of the input image. 
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Compare the transformed image to the base image to see how the registration 
came out. 

Registered Image Orthophoto Image
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Types of Supported Transformations
The cp2tform function can infer the parameters for six types of 
transformations. This table lists the transformations in order of complexity, 
with examples of each type of distortion. 

The first four transformations, 'linear conformal', 'affine', 'projective', 
and 'polynomial' are global transformations. In these transformations, a 
single mathematical expression applies to an entire image. The last two 
transformations, 'piecewise linear' and 'lwm' (local weighted mean), are 
local transformations. In these transformations, different mathematical 
expressions apply to different regions within an image. 

When exploring how different transformations affect the images you are 
working with, try the global transformations first. If these transformations are 
not satisfactory, try the local transformations: the piecewise linear 
transformation first and then the local weighted mean transformation.

Transformation Type Description Minimum 
Control Points

Example

'linear conformal' Use this transformation when 
shapes in the input image are 
unchanged, but the image is 
distorted by some combination of 
translation, rotation, and scaling. 
Straight lines remain straight, and 
parallel lines are still parallel. 

2 pairs

'affine' Use this transformation when 
shapes in the input image exhibit 
shearing. Straight lines remain 
straight, and parallel lines remain 
parallel, but rectangles become 
parallelograms.

3 pairs
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'projective' Use this transformation when the 
scene appears tilted. Straight lines 
remain straight, but parallel lines 
converge toward vanishing points 
(which might or might not fall 
within the image).

4 pairs

'polynomial' Use this transformation when 
objects in the image are curved. The 
higher the order of the polynomial, 
the better the fit, but the result can 
contain more curves than the base 
image.

6 pairs 
(order 2)

10 pairs 
(order 3)

16 pairs 
(order 4)

 

'piecewise linear' Use this transformation when parts 
of the image appear distorted 
differently.

4 pairs

'lwm' Use this transformation (local 
weighted mean), when the 
distortion varies locally and 
piecewise linear is not sufficient. 

6 pairs 
(12 pairs 
recommended)



Selecting Control Points

5-15

Selecting Control Points
The toolbox includes an interactive tool that enables you to specify control 
points in the images you want to register. The tool displays the images side by 
side. When you are satisfied with the number and placement of the control 
points, you can save the control points.

Using the Control Point Selection Tool
To specify control points in a pair of images you want to register, use the 
Control Point Selection Tool, cpselect. The tool displays the image you want 
to register, called the input image, next to the image you want to compare it to, 
called the base image or reference image. 

Specifying control points is a four-step process:

1 Start the tool, specifying the input image and the base image.

2 View the images, looking for visual elements that you can identify in both 
images. cpselect provides many ways to navigate around the image, 
panning and zooming to view areas of the image in more detail.

3 Specify matching control point pairs in the input image and the base image.

4 Save the control points in the MATLAB workspace.

The following figure shows the default appearance of the tool when you first 
start it. 
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Control Point Selection Tool

Starting the Control Point Selection Tool
To use the Control Point Selection Tool, enter the cpselect command at the 
MATLAB prompt. As arguments, specify the image you want to register (the 
input image), and the image you want to compare it to (the base image). 

To illustrate, this code fragment reads an image into a variable, moon_base, in 
the MATLAB workspace. It then creates another version of the image with a 

Zoom in 
and out

Overview 
windows

Select 
points

Detail views

Lock relative 
magnification of images

Detail 
rectangle

Use point 
prediction

Move the 
detail image

Specify 
magnification

Default Cursor
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deliberate size distortion, called moon_input. This is the image that needs 
registration to remove the size distortion. The code then starts the cpselect 
tool, specifying the two images. 

moon_base = imread('moon.tif );
moon_input = imresize(moon_base, 1.2); 
cpselect(moon_input, moon_base);

The cpselect command has other optional arguments. For example, you can 
restart a control point selection session by including a cpstruct structure as 
the third argument. For more information about restarting sessions, see 
“Saving Control Points” on page 5-30. For complete details, see the cpselect 
reference page.

Default Views of the Images
When the Control Point Selection Tool starts, it contains four image display 
windows. The top two windows are called the Detail windows. These windows 
show a closeup view of a portion of the images you are working with. The input 
image is on the left and the base image is on the right. The two windows at the 
bottom of the interface are called the Overview windows. These windows show 
the images in their entirety, at the largest scale that fits the window. The input 
overview image is on the left and the base overview image is on the right.

Superimposed on the image in the Overview windows is a rectangle, called the 
detail rectangle. This rectangle defines the part of the image that is visible in 
the Detail window. By default, at startup, the detail rectangle covers one 
quarter of the entire image and is positioned over the center of the image.
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Viewing the Images
By default, cpselect displays the entire base and input images in the 
Overview windows and displays a closeup view of a portion of these images in 
the Detail windows. However, to find visual elements that are common to both 
images, you might want to change the section of the image displayed in the 
detail view or zoom in on a part of the image to view it in more detail. The 
following sections describe the different ways to change your view of the 
images:

• “Using Scroll Bars to View Other Parts of an Image” on page 5-19

• “Using the Detail Rectangle to Change the View” on page 5-19

• “Panning the Image Displayed in the Detail Window” on page 5-19

• “Zooming In and Out on an Image” on page 5-20

• “Specifying the Magnification of the Images” on page 5-21

Detail 
windows

Detail 
rectangles

Overview 
windows

Input

Base
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• “Locking the Relative Magnification of the Input and Base Images” on 
page 5-22

Using Scroll Bars to View Other Parts of an Image
To view parts of an image that are not visible in the Detail or Overview 
windows, use the scroll bars provided in each window. 

As you scroll the image in the Detail window, note how the detail rectangle 
moves over the image in the Overview window. The position of the detail 
rectangle always shows the portion of the image in the Detail window. 

Using the Detail Rectangle to Change the View
To get a closer view of any part of the image, move the detail rectangle in the 
Overview window over that section of the image. cpselect displays that 
section of the image in the Detail window at a higher magnification than the 
overview window. 

To move the detail rectangle,

1 Click the Default Cursor button  in the toolbar.

2 Move the pointer into the detail rectangle. The cursor changes to the fleur 
shape, .

3 Press and hold the mouse button to drag the detail rectangle anywhere on 
the image. 

Note  As you move the detail rectangle over the image in the Overview 
window, the view of the image displayed in the Detail window changes.

Panning the Image Displayed in the Detail Window
To change the section of the image displayed in the Detail window, use the pan 
tool to move the image in the window. 

To use the pan tool,

1 Click the Drag Images to Pan button  in the toolbar.
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2 Move the pointer over the image in the Detail window. The cursor changes 
to the fleur shape, .

3 Press and hold the mouse button and drag the image in the Detail window. 

Note  As you move the image in the Detail window, the detail rectangle in the 
Overview window moves.

Zooming In and Out on an Image
To enlarge an image to get a closer look or shrink an image to see the whole 
image in context, use the Zoom buttons on the button bar. (You can also zoom 
in or out on an image by changing the magnification. See “Specifying the 
Magnification of the Images” on page 5-21 for more information.)

To zoom in or zoom out on the base or input images,

1 Click the appropriate magnifying glass button.
 

2 Move the pointer over the image you want to zoom in or out on. The cursor 
changes to crosshairs, .

You can zoom in or out on either the input or the base images, in either the 
Detail or Overview windows. To keep the relative magnifications of the 
base and input images synchronized, click the Lock ratio check box. See 
“Locking the Relative Magnification of the Input and Base Images” on 
page 5-22 for more information. 

Zoom in Zoom out



Selecting Control Points

5-21

Note  If you zoom in close on the image displayed in the Overview window, 
the detail rectangle might no longer be visible.

You can use the zoom tool in two ways:

- Position the cursor over a location in the image and click the mouse. With 
each click, cpselect changes the magnification of the image by a preset 
amount. (See “Specifying the Magnification of the Images” on page 5-21 for 
a list of some of these magnifications.) cpselect centers the new view of 
the image on the spot where you clicked.

- Alternatively, you can position the cursor over a location in the image and, 
while pressing and holding the mouse button, draw a rectangle defining 
the area you want to zoom in or out on. cpselect magnifies the image so 
that the chosen section fills the Detail window. cpselect resizes the detail 
rectangle in the Overview window as well.

Note  When you zoom in or out on an image, notice how the magnification 
value changes. 

Specifying the Magnification of the Images
To enlarge an image to get a closer look or to shrink an image to see the whole 
image in context, use the magnification edit box. (You can also use the Zoom 
buttons to enlarge or shrink an image. See “Zooming In and Out on an Image” 
on page 5-20 for more information.)

To change the magnification of an image,

1 Move the cursor into the magnification edit box of the window you want to 
change. The cursor changes to the text entry cursor. 

Note  Each Detail window and Overview window has its own magnification 
edit box.
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2 Type a new value in the magnification edit box and press Enter, or click the 
menu associated with the edit box and choose from a list of preset 
magnifications. cpselect changes the magnification of the image and 
displays the new view in the appropriate window.

Locking the Relative Magnification of the Input and Base Images
To keep the relative magnification of the input and base images automatically 
synchronized in the Detail or Overview windows, click the Lock Ratio check 
box. The two Detail windows and the two Overview windows each have their 
own Lock ratio check boxes. 

When the Lock Ratio check box is selected, cpselect changes the 
magnification of both the input and base images when you zoom in or out on 
either one of the images or specify a magnification value for either of the 
images. 

Magnification edit box Magnification menu

Lock magnification ratio check box
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Specifying Matching Control Point Pairs
The primary function of the Control Point Selection Tool is to enable you to pick 
control points in the image to be registered, the input image, and the image to 
which you are comparing it, the base image. When you start cpselect, the 
point selection tool is enabled, by default. 

You specify control points by pointing and clicking in the input and base 
images, in either the Detail or the Overview windows. Each point you specify 
in the input image must have a match in the base image. The following sections 
describe the ways you can use the Control Point Selection Tool to choose control 
point pairs:

• “Picking Control Point Pairs Manually”

• “Using Control Point Prediction” on page 5-25

This section also describes how to move control points after you’ve created 
them and how to delete control points. 

Picking Control Point Pairs Manually
To specify a pair of control points in your images,

1 Click the Control Point Selection button . Control point selection mode 
is active by default.

2 Position the cursor over a feature you have visually selected in any of the 
images displayed. The cursor changes to a pointing finger, .

You can pick control points in either of the Detail windows, input or base, or 
in either of the Overview windows, input or base. You also can work in 
either direction: input-to-base image, or base-to-input image. 

3 Click the mouse button. cpselect places a control point symbol at the 
position you specified, in both the Detail window and the Overview window. 
(The appearance of the control point symbol indicates its current state. 
Initially, control points are in an active, unmatched state. See “Control Point 
States” on page 5-27 for more information.
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Note  Depending on where in the image you pick control points, the symbol 
for the point might be visible in the Overview window, but not in the Detail 
window.

4 To create the match for this control point, move the cursor into the 
corresponding Detail or Overview window. For example, if you started in 
an input window, move the cursor to a base window. 

5 Click the mouse button. cpselect places a control point symbol at the 
position you specified, in both the Detail and Overview windows. Because 
this control point completes a pair, the appearance of this symbol indicates 
an active, matched state. Note that the appearance of the first control point 
you selected (in step 3) also changes to an active, matched state. 

You pick pairs of control points by moving from a view of the input image to a 
view of the base image, or vice versa. You can pick several control points in one 
view of the image, and then move to the corresponding window to locate their 
matches. To match an unmatched control point, select it to make it active, and 
then pick a point in the corresponding view window. When you select a match 
for a control point, the symbols for both points change to indicate their matched 
state. You can move or delete control points after you create them.

The following figure illustrates control points in several states. 
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Using Control Point Prediction
Instead of picking matching control points by moving the cursor between 
corresponding Detail or Overview windows, you can let the Control Point 
Selection Tool estimate the match for the control points you specify, 
automatically. The Control Point Selection Tool determines the position of the 
matching control point based on the geometric relationship of the previously 
selected control points. 

Active 
unmatched

Unmatched

Matched
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Note  By default, the Control Point Selection Tool does not include predicted 
points in the set of valid control points returned in input_points or 
base_points. To include predicted points, you must accept them by selecting 
the points and fine-tuning their position with the cursor. When you move a 
predicted point, the Control Point Selection Tool changes the symbol to 
indicate that it has changed to a standard control point. For more information, 
see “Moving Control Points” on page 5-28.

To illustrate point prediction, this figure shows four control points selected in 
the input image, where the points form the four corners of a square. (The 
control points selections in the figure do not attempt to identify any landmarks 
in the image.) The figure shows the picking of a fourth point, in the left window, 
and the corresponding predicted point in the right window. Note how the 
Control Point Selection Tool places the predicted point at the same location 
relative to the other control points, forming the bottom right corner of the 
square. 

Note  Because the Control Point Selection Tool predicts control point 
locations based on the locations of the previous control points, you cannot use 
point prediction until you have a minimum of two pairs of matched points. 
Until this minimum is met, the Control Point Prediction button is disabled.

Control point selected manually Predicted control point 
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To use control point prediction,

1 Click the Control Point Prediction button .

2 Position the cursor anywhere in any of the images displayed. The cursor 
changes to a pointing finger, .

You can pick control points in either of the Detail windows, input or base, or 
in either of the Overview windows, input or base. You also can work in 
either direction: input-to-base image or base-to-input image. 

3 Click either mouse button. The Control Point Selection Tool places a control 
point symbol at the position you specified and places another control point 
symbol for a matching point in all the other windows. The symbol for the 
predicted point contains the letter “P,” indicating that it’s a predicted control 
point. 

This figure illustrates predicted points in active unmatched, matched, and 
predicted states. For a complete description of all point states, see “Control 
Point States” on page 5-27. 

Control Point States
The appearance of control point symbols indicates their current state. When 
you first pick a control point, its state is active and unmatched. When you pick 

Predicted 
control point

Active predicted 
control point
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the match for a control point, the appearance of both symbols changes to 
indicate their matched status. 

This table lists all the possible control point states with their symbols. 
cpselect displays this list in a separate window called a Legend. The Legend 
is visible by default, but you can control its visibility using the Legend option 
from the View menu. 

Moving Control Points
To move a control point,

1 Click the Control Point Selection button  or the Default Cursor button 
.

2 Position the cursor over the control point you want to move. 

3 Press and hold the mouse button and drag the control point. The state of the 
control point changes to active when you move it.

Control Point States

Symbol State Description

Active unmatched The point is currently selected but does 
not have a matching point. This is the 
initial state of most points.

Active matched The point is currently selected and has a 
matching point.

Active predicted The point is a predicted point. If you 
move its position, the point changes to 
active matched state. 

Unmatched The point is not selected and it is 
unmatched. You must select it before you 
can create its matching point.

Matched The point has a matching point. 

Predicted This point was added by cpselect 
during point prediction.
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If you move a predicted control point, the state of the control point changes to 
a regular (nonpredicted) control point. 

Deleting Control Points
To delete a control point, and optionally its matching point,

1 Click the Control Point Selection button  or the Default Cursor button 
.

2 Click the control point you want to delete. Its state changes to active. If the 
control point has a match, both points become active.

3 Delete the point (or points) using one of these methods:

- Pressing the Backspace key

- Pressing the Delete key

- Choosing one of the delete options from the Edit menu 

Using this menu you can delete individual points or pairs of matched 
points, in the input or base images.

Undoing and Redoing Control Point Selections
You can undo a deletion or series of deletions using the Undo Delete option on 
the cpselect Edit menu. 

After undoing a deletion, you can delete the points again using the Redo 
option, also on the Edit menu.

Delete options

Undo options
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Saving Control Points
After you specify control point pairs, you must save them in the MATLAB 
workspace to make them available for the next step in image registration, 
processing by cp2tform. 

To save control points to the MATLAB workspace,

1 Select File on the Control Point Selection Tool menu bar. 

2 Choose the Save Points to Workspace option. The Control Point Selection 
Tool displays this dialog box:

By default, the Control Point Selection Tool saves the x-coordinates and 
y-coordinates that specify the locations of the control points you selected in two 
arrays named input_points and base_points, although you can specify other 
names. These are n-by-2 arrays, where n is the number of valid control point 
pairs you selected. For example, this is an example of the input_points array 
if you picked four pairs of control points. The values in the left column 
represent the x-coordinates; the values in the right column represent the 
y-coordinates.

input_points =

  215.6667  262.3333
  225.7778  311.3333
  156.5556  340.1111
  270.8889  368.8889

Whenever you exit the Control Point Selection Tool, it asks if you want to save 
your control points. 
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Saving Your Control Point Selection Session
To save the current state of the Control Point Selection Tool, select the 
Structure with all points check box in the Save Points to Workspace dialog 
box. 

This option saves the positions of all the control points you specified and their 
current states in a cpstruct structure. 

cpstruct = 

         inputPoints: [4x2 double]
          basePoints: [4x2 double]
      inputBasePairs: [4x2 double]
                 ids: [4x1 double]
        inputIdPairs: [4x2 double]
         baseIdPairs: [4x2 double]
    isInputPredicted: [4x1 double]
     isBasePredicted: [4x1 double]

You can use the cpstruct to restart a control point selection session at the 
point where you left off. 

This option is useful if you are picking many points over a long time and want 
to preserve unmatched and predicted points when you resume work. The 
Control Point Selection Tool does not include unmatched and predicted points 
in the input_points and base_points arrays.

To extract the arrays of valid control point coordinates from a cpstruct, use 
the cpstruct2pairs function. 
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Using Correlation to Improve Control Points
You might want to fine-tune the control points you selected using cpselect. 
Using cross-correlation, you can sometimes improve the points you selected by 
eye using the Control Point Selection Tool. 

To use cross-correlation, pass sets of control points in the input and base 
images, along with the images themselves, to the cpcorr function.

input_pts_adj= cpcorr(input_points, base_points, input, base);

The cpcorr function defines 11-by-11 regions around each control point in the 
input image and around the matching control point in the base image, and then 
calculates the correlation between the values at each pixel in the region. Next, 
the cpcorr function looks for the position with the highest correlation value 
and uses this as the optimal position of the control point. The cpcorr function 
only moves control points up to 4 pixels based on the results of the 
cross-correlation.

Note  Features in the two images must be at the same scale and have the 
same orientation. They cannot be rotated relative to each other.

If cpcorr cannot correlate some of the control points, it returns their values in 
input_points unmodified.



 

6
Neighborhood and Block 
Operations

This chapter discusses these generic block processing functions. Topics covered include

Terminology (p. 6-2) Provides definitions of image processing terms used in 
this section

Block Processing Operations (p. 6-3) Provides an overview of the types of block processing 
operations supported by the toolbox

Sliding Neighborhood Operations 
(p. 6-4)

Defines sliding neighborhood operations and describes 
how you can use them to implement many types of 
filtering operations

Distinct Block Operations (p. 6-8) Describes block operations

Column Processing (p. 6-11) Describes how to process sliding neighborhoods or 
distinct blocks as columns
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Terminology
An understanding of the following terms will help you to use this section. 

Term Definition

block operation Operation in which an image is processed in 
blocks rather than all at once. The blocks have 
the same size across the image. Some operation 
is applied to one block at a time. The blocks are 
reassembled to form an output image.

border padding Additional rows and columns temporarily 
added to the border(s) of an image when some of 
the blocks extend outside the image. The 
additional rows and columns normally contain 
zeros.

center pixel Pixel at the center of a neighborhood.

column processing Operation in which neighborhoods are reshaped 
into columns before processing in order to speed 
up computation time. 

distinct block 
operation

Block operation in which the blocks do not 
overlap.

neighborhood 
operation

Operation in which each output pixel is 
computed from a set of neighboring input 
pixels. Convolution, dilation, and median 
filtering are examples of neighborhood 
operations. A neighborhood operation can also 
be called a sliding neighborhood operation.

overlap Extra rows and columns of pixels outside a 
block whose values are taken into account when 
processing the block. These extra pixels cause 
distinct blocks to overlap one another. The 
blkproc function enables you to specify an 
overlap.
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Block Processing Operations
Certain image processing operations involve processing an image in sections 
called blocks, rather than processing the entire image at once. The Image 
Processing Toolbox provides several functions for specific operations that work 
with blocks, for example, the imdilate function for image dilation. In addition, 
the toolbox provides more generic functions for processing an image in blocks. 
This section discusses these generic block processing functions.

To use one of the functions, you supply information about the size of the blocks, 
and specify a separate function to use to process the blocks. The block 
processing function does the work of breaking the input image into blocks, 
calling the specified function for each block, and reassembling the results into 
an output image.

Types of Block Processing Operations
Using these functions, you can perform various block processing operations, 
including sliding neighborhood operations and distinct block operations:

• In a sliding neighborhood operation, the input image is processed in a 
pixelwise fashion. That is, for each pixel in the input image, some operation 
is performed to determine the value of the corresponding pixel in the output 
image. The operation is based on the values of a block of neighboring pixels.

• In a distinct block operation, the input image is processed a block at a time. 
That is, the image is divided into rectangular blocks, and some operation is 
performed on each block individually to determine the values of the pixels in 
the corresponding block of the output image.

In addition, the toolbox provides functions for column processing operations. 
These operations are not actually distinct from block operations; instead, they 
are a way of speeding up block operations by rearranging blocks into matrix 
columns.

Note that even if you do not use these block processing functions, the 
information here might be useful to you, as it includes concepts fundamental 
to many areas of image processing. In particular, the discussion of sliding 
neighborhood operations is applicable to linear filtering and morphological 
operations. See Chapter 7, “Linear Filtering and Filter Design,” and Chapter 
9, “Morphological Operations,” for information about these applications.
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Sliding Neighborhood Operations
A sliding neighborhood operation is an operation that is performed a pixel at a 
time, with the value of any given pixel in the output image being determined 
by the application of an algorithm to the values of the corresponding input 
pixel’s neighborhood. A pixel’s neighborhood is some set of pixels, defined by 
their locations relative to that pixel, which is called the center pixel. The 
neighborhood is a rectangular block, and as you move from one element to the 
next in an image matrix, the neighborhood block slides in the same direction.

The following figure shows the neighborhood blocks for some of the elements in 
a 6-by-5 matrix with 2-by-3 sliding blocks. The center pixel for each 
neighborhood is marked with a dot.

Neighborhood Blocks in a 6-by-5 Matrix

The center pixel is the actual pixel in the input image being processed by the 
operation. If the neighborhood has an odd number of rows and columns, the 
center pixel is actually in the center of the neighborhood. If one of the 
dimensions has even length, the center pixel is just to the left of center or just 
above center. For example, in a 2-by-2 neighborhood, the center pixel is the 
upper left one. 

For any m-by-n neighborhood, the center pixel is

floor(([m n]+1)/2)

In the 2-by-3 block shown in Figure , the center pixel is (1,2), or the pixel in the 
second column of the top row of the neighborhood.
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To perform a sliding neighborhood operation,

1 Select a single pixel.

2 Determine the pixel’s neighborhood.

3 Apply a function to the values of the pixels in the neighborhood. This 
function must return a scalar.

4 Find the pixel in the output image whose position corresponds to that of the 
center pixel in the input image. Set this output pixel to the value returned 
by the function.

5 Repeat steps 1 through 4 for each pixel in the input image.

For example, the function might be an averaging operation that sums the 
values of the neighborhood pixels and then divides the result by the number of 
pixels in the neighborhood. The result of this calculation is the value of the 
output pixel.

Padding Borders
As the neighborhood block slides over the image, some of the pixels in a 
neighborhood might be missing, especially if the center pixel is on the border 
of the image. For example, if the center pixel is the pixel in the upper left corner 
of the image, the neighborhoods include pixels that are not part of the image.

To process these neighborhoods, sliding neighborhood operations pad the 
borders of the image, usually with 0’s. In other words, these functions process 
the border pixels by assuming that the image is surrounded by additional rows 
and columns of 0’s. These rows and columns do not become part of the output 
image and are used only as parts of the neighborhoods of the actual pixels in 
the image.

Linear and Nonlinear Filtering
You can use sliding neighborhood operations to implement many kinds of 
filtering operations. One example of a sliding neighbor operation is 
convolution, which is used to implement linear filtering. MATLAB provides the 
conv and filter2 functions for performing convolution, and the toolbox 
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provides the imfilter function. See Chapter 7, “Linear Filtering and Filter 
Design,” for more information about these functions.

In addition to convolution, there are many other filtering operations you can 
implement through sliding neighborhoods. Many of these operations are 
nonlinear in nature. For example, you can implement a sliding neighborhood 
operation where the value of an output pixel is equal to the standard deviation 
of the values of the pixels in the input pixel’s neighborhood.

You can use the nlfilter function to implement a variety of sliding 
neighborhood operations. nlfilter takes as input arguments an image, a 
neighborhood size, and a function that returns a scalar, and returns an image 
of the same size as the input image. The value of each pixel in the output image 
is computed by passing the corresponding input pixel’s neighborhood to the 
function. For example, this call computes each output pixel by taking the 
standard deviation of the values of the input pixel’s 3-by-3 neighborhood (that 
is, the pixel itself and its eight contiguous neighbors).

I2 = nlfilter(I,[3 3],'std2');

You can write an M-file to implement a specific function, and then use this 
function with nlfilter. For example, this command processes the matrix I in 
2-by-3 neighborhoods with a function called myfun.m.

nlfilter(I,[2 3],@myfun);

@myfun is an example of a function handle. You can also use an inline function. 
For example:

f = inline('sqrt(min(x(:)))');
I2 = nlfilter(I,[2 2],f);

The example below uses nlfilter to set each pixel to the maximum value in 
its 3-by-3 neighborhood.

I = imread('tire.tif');
f = inline('max(x(:))');
I2 = nlfilter(I,[3 3],f);
imshow(I);
figure, imshow(I2);
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Each Output Pixel Set to Maximum Input Neighborhood Value

Many operations that nlfilter can implement run much faster if the 
computations are performed on matrix columns rather than rectangular 
neighborhoods. For information about this approach, see the reference page for 
colfilt.

Note  nlfilter is an example of a “function function.” For more information 
on how to use this kind of function, see “Function Functions” in the MATLAB 
documentation. For more information on inline functions, see inline in the 
MATLAB Function Reference documentation. For more information on 
function handles, see function_handle in the MATLAB Function Reference 
documentation.
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Distinct Block Operations
Distinct blocks are rectangular partitions that divide a matrix into m-by-n 
sections. Distinct blocks overlay the image matrix starting in the upper left 
corner, with no overlap. If the blocks don’t fit exactly over the image, the 
toolbox adds zero padding so that they do. The following figure shows a 
15-by-30 matrix divided into 4-by-8 blocks.

Image Divided into Distinct Blocks

The zero padding process adds 0’s to the bottom and right of the image matrix, 
as needed. After zero padding, the matrix is size 16-by-32.

The function blkproc performs distinct block operations. blkproc extracts 
each distinct block from an image and passes it to a function you specify. 
blkproc assembles the returned blocks to create an output image.

For example, the command below processes the matrix I in 4-by-6 blocks with 
the function myfun.

I2 = blkproc(I,[4 6],@myfun);

You can specify the function as an inline function. For example:

f =  inline('mean2(x)*ones(size(x))');
I2 = blkproc(I,[4 6],f);
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The example below uses blkproc to set every pixel in each 8-by-8 block of an 
image matrix to the average of the elements in that block.

I = imread('tire.tif');
f = inline('uint8(round(mean2(x)*ones(size(x))))');
I2 = blkproc(I,[8 8],f);
imshow(I)
figure, imshow(I2);

Notice that inline computes the mean of the block and then multiplies the 
result by a matrix of ones, so that the output block is the same size as the input 
block. As a result, the output image is the same size as the input image. 
blkproc does not require that the images be the same size; however, if this is 
the result you want, you must make sure that the function you specify returns 
blocks of the appropriate size.

Note  blkproc is an example of a “function function.” For more information 
on how to use this kind of function, see the “Function Functions” section in the 
MATLAB documentation.

Overlap
When you call blkproc to define distinct blocks, you can specify that the blocks 
overlap each other, that is, you can specify extra rows and columns of pixels 
outside the block whose values are taken into account when processing the 
block. When there is an overlap, blkproc passes the expanded block (including 
the overlap) to the specified function. 
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The following figure shows the overlap areas for some of the blocks in a 
15-by-30 matrix with 1-by-2 overlaps. Each 4-by-8 block has a one-row overlap 
above and below, and a two-column overlap on each side. In the figure, shading 
indicates the overlap. The 4-by-8 blocks overlay the image matrix starting in 
the upper left corner.
 

Image Divided into Distinct Blocks with Specified Overlaps

To specify the overlap, you provide an additional input argument to blkproc. 
To process the blocks in the figure above with the function myfun, the call is

B = blkproc(A,[4 8],[1 2],@myfun)

Overlap often increases the amount of zero padding needed. For example, in 
the figure, the original 15-by-30 matrix became a 16-by-32 matrix with zero 
padding. When the 15-by-30 matrix includes a 1-by-2 overlap, the padded 
matrix becomes an 18-by-36 matrix. The outermost rectangle in the figure 
delineates the new boundaries of the image after padding has been added to 
accommodate the overlap plus block processing. Notice that in the preceding 
figure, padding has been added to the left and top of the original image, not just 
to the right and bottom.
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Column Processing
The toolbox provides functions that you can use to process sliding 
neighborhoods or distinct blocks as columns. This approach is useful for 
operations that MATLAB performs columnwise; in many cases, column 
processing can reduce the execution time required to process an image. 

For example, suppose the operation you are performing involves computing the 
mean of each block. This computation is much faster if you first rearrange the 
blocks into columns, because you can compute the mean of every column with 
a single call to the mean function, rather than calling mean for each block 
individually.

You can use the colfilt function to implement column processing. This 
function

1 Reshapes each sliding or distinct block of an image matrix into a column in 
a temporary matrix

2 Passes the temporary matrix to a function you specify

3 Rearranges the resulting matrix back into the original shape

Sliding Neighborhoods
For a sliding neighborhood operation, colfilt creates a temporary matrix that 
has a separate column for each pixel in the original image. The column 
corresponding to a given pixel contains the values of that pixel’s neighborhood 
from the original image. 

The following figure illustrates this process. In this figure, a 6-by-5 image 
matrix is processed in 2-by-3 neighborhoods. colfilt creates one column for 
each pixel in the image, so there are a total of 30 columns in the temporary 
matrix. Each pixel’s column contains the value of the pixels in its 
neighborhood, so there are six rows. colfilt zero-pads the input image as 
necessary. For example, the neighborhood of the upper left pixel in the figure 
has two zero-valued neighbors, due to zero padding.



6 Neighborhood and Block Operations

6-12

colfilt Creates a Temporary Matrix for Sliding Neighborhood

The temporary matrix is passed to a function, which must return a single value 
for each column. (Many MATLAB functions work this way, for example, mean, 
median, std, sum, etc.) The resulting values are then assigned to the 
appropriate pixels in the output image.

colfilt can produce the same results as nlfilter with faster execution time; 
however, it might use more memory. The example below sets each output pixel 
to the maximum value in the input pixel’s neighborhood, producing the same 
result as the nlfilter example shown in “Linear and Nonlinear Filtering” on 
page 6-5.

I2 = colfilt(I,[3 3],'sliding',@max);

Distinct Blocks
For a distinct block operation, colfilt creates a temporary matrix by 
rearranging each block in the image into a column. colfilt pads the original 
image with 0’s, if necessary, before creating the temporary matrix.

The following figure illustrates this process. A 6-by-16 image matrix is 
processed in 4-by-6 blocks. colfilt first zero-pads the image to make the size 
8-by-18 (six 4-by-6 blocks), and then rearranges the blocks into six columns of 
24 elements each.
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colfilt Creates a Temporary Matrix for Distinct Block Operation

After rearranging the image into a temporary matrix, colfilt passes this 
matrix to the function. The function must return a matrix of the same size as 
the temporary matrix. If the block size is m-by-n, and the image is mm-by-nn, the 
size of the temporary matrix is (m*n)-by-(ceil(mm/m)*ceil(nn/n)). After the 
function processes the temporary matrix, the output is rearranged into the 
shape of the original image matrix.

This example sets all the pixels in each 8-by-8 block of an image to the mean 
pixel value for the block, producing the same result as the blkproc example in 
“Distinct Block Operations” on page 6-8.
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I = im2double(imread('tire.tif'));
f = inline('ones(64,1)*mean(x)');
I2 = colfilt(I,[8 8],'distinct',f);

Notice that the inline function computes the mean of the block and then 
multiplies the result by a vector of ones, so that the output block is the same 
size as the input block. As a result, the output image is the same size as the 
input image.

Restrictions
You can use colfilt to implement many of the same distinct block operations 
that blkproc performs. However, colfilt has certain restrictions that 
blkproc does not:

• The output image must be the same size as the input image.

• The blocks cannot overlap.

For situations that do not satisfy these constraints, use blkproc.



 

7
Linear Filtering and Filter 
Design

The Image Processing Toolbox provides a number of functions for designing and implementing 
two-dimensional linear filters for image data. This chapter describes these functions and how to use 
them effectively. 

Terminology (p. 7-2) Provides definitions of image processing terms used in 
this section

Linear Filtering (p. 7-4) Provides an explanation of linear filtering and how it is 
implemented in the toolbox. This topic describes filtering 
in terms of the spatial domain, and is accessible to 
anyone doing image processing.

Filter Design (p. 7-17) Discusses designing two-dimensional finite impulse 
response (FIR) filters. This section assumes you are 
familiar with working in the frequency domain.
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Terminology
An understanding of the following terms will help you to use this chapter. Note 
that this table includes brief definitions of terms related to filter design; a 
detailed discussion of these terms and the theory behind filter design is outside 
the scope of this user’s guide.

Term Definition

convolution Neighborhood operation in which each output pixel is a weighted 
sum of neighboring input pixels. The weights are defined by the 
convolution kernel. Image processing operations implemented with 
convolution include smoothing, sharpening, and edge enhancement.

convolution kernel Matrix of weights used to perform convolution. A convolution kernel 
is a correlation kernel that has been rotated 180 degrees.

correlation Neighborhood operation in which each output pixel is a weighted 
sum of neighboring input pixels. The weights are defined by the 
correlation kernel. Correlation is closely related mathematically to 
convolution. 

correlation kernel Matrix of weights used to perform correlation. The filter design 
functions in the Image Processing Toolbox return correlation 
kernels. A correlation kernel is a convolution kernel that has been 
rotated 180 degrees.

FIR filter Filter whose response to a single point, or impulse, has finite extent. 
FIR stands for finite impulse response. An FIR filter can be 
implemented using convolution. All filter design functions in the 
Image Processing Toolbox return FIR filters.

frequency response Mathematical function describing the gain of a filter in response to 
different input frequencies.

neighborhood operation Operation in which each output pixel is computed from a set of 
neighboring input pixels. Convolution, dilation, and median 
filtering are examples of neighborhood operations.
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ripples Oscillations around a constant value. The frequency response of a 
practical filter often has ripples where the frequency response of an 
ideal filter is flat.

window method Filter design method that multiples the ideal impulse response by a 
window function, which tapers the ideal impulse response. The 
resulting filter’s frequency response approximates a desired 
frequency response.

Term Definition
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Linear Filtering
Filtering is a technique for modifying or enhancing an image. For example, you 
can filter an image to emphasize certain features or remove other features.

Filtering is a neighborhood operation, in which the value of any given pixel in 
the output image is determined by applying some algorithm to the values of the 
pixels in the neighborhood of the corresponding input pixel. A pixel’s 
neighborhood is some set of pixels, defined by their locations relative to that 
pixel. (See Chapter 6, “Neighborhood and Block Operations,” for a general 
discussion of neighborhood operations.)

Linear filtering is filtering in which the value of an output pixel is a linear 
combination of the values of the pixels in the input pixel’s neighborhood. 

This section discusses linear filtering in MATLAB and the Image Processing 
Toolbox. It includes

• A description of filtering, using convolution and correlation

• A description of how to use the imfilter function to perform filtering

• A discussion about using predefined filter types

See “Filter Design” on page 7-17 for information about how to design filters.

Convolution
Linear filtering of an image is accomplished through an operation called 
convolution. In convolution, the value of an output pixel is computed as a 
weighted sum of neighboring pixels. The matrix of weights is called the 
convolution kernel, also known as the filter.

For example, suppose the image is

A = [17  24   1   8  15
     23   5   7  14  16
      4   6  13  20  22
     10  12  19  21   3
     11  18  25   2   9]
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and the convolution kernel is

h = [8   1   6
     3   5   7
     4   9   2]

The following figure shows how to compute the (2,4) output pixel using these 
steps:

1 Rotate the convolution kernel 180 degrees about its center element.

2 Slide the center element of the convolution kernel so that it lies on top of the 
(2,4) element of A.

3 Multiply each weight in the rotated convolution kernel by the pixel of A 
underneath.

4 Sum the individual products from step 3.

Hence the (2,4) output pixel is 

Computing the (2,4) Output of Convolution

1 2⋅ 8 9⋅ 15 4⋅ 7 7⋅ 14 5⋅ 16 3⋅ 13 6⋅ 20 1⋅ 22 8⋅ 575=+ + + + + + + +

Image pixel values

Values of rotated convolution kernel

Center of kernel

17

23

4

10

11

24

5

6

12

18

1

7

13

19

25

8

14

20

21

2

15

16

22

3

9

2 9 4

7 5 3

816



7 Linear Filtering and Filter Design

7-6

Correlation
The operation called correlation is closely related to convolution. In correlation, 
the value of an output pixel is also computed as a weighted sum of neighboring 
pixels. The difference is that the matrix of weights, in this case called the 
correlation kernel, is not rotated during the computation. The following figure 
shows how to compute the (2,4) output pixel of the correlation of A, assuming h 
is a correlation kernel instead of a convolution kernel, using these steps:

1 Slide the center element of the correlation kernel so that lies on top of the 
(2,4) element of A.

2 Multiply each weight in the correlation kernel by the pixel of A underneath.

3 Sum the individual products from step 3.

The (2,4) output pixel from the correlation is

Computing the (2,4) Output of Correlation

1 8⋅ 8 1⋅ 15 6⋅ 7 3⋅ 14 5⋅ 16 7⋅ 13 4⋅ 20 9⋅ 22 2⋅ 585=+ + + + + + + +

Values of correlation kernel

Center of kernel
Image pixel values
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24
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6
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1

7
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8
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2
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22

3

9

8 1 6

3

4 9 2

75
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Filtering Using imfilter
Filtering of images, either by correlation or convolution, can be performed 
using the toolbox function imfilter. This example filters an image with a 
5-by-5 filter containing equal weights. Such a filter is often called an averaging 
filter.

I = imread('coins.png');
h = ones(5,5) / 25;
I2 = imfilter(I,h);
imshow(I), title('Original Image');
figure, imshow(I2), title('Filtered Image')

Data Types
The imfilter function handles data types similarly to the way the image 
arithmetic functions do, as described in “Image Arithmetic Truncation Rules” 
on page 2-30. The output image has the same data type, or numeric class, as 
the input image. The imfilter function computes the value of each output 
pixel using double-precision, floating-point arithmetic. If the result exceeds the 
range of the data type, the imfilter function truncates the result to that data 
type's allowed range. If it is an integer data type, imfilter rounds fractional 
values.

Because of the truncation behavior, you might sometimes want to consider 
converting your image to a different data type before calling imfilter. In this 
example, the output of imfilter has negative values when the input is of class 
double.

Original Image Filtered Image
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A = magic(5)

A =
    17    24     1     8    15
    23     5     7    14    16
     4     6    13    20    22
    10    12    19    21     3
    11    18    25     2     9

h = [-1 0 1]

h =
    -1     0     1

imfilter(A,h)

ans =
    24   -16   -16    14    -8
     5   -16     9     9   -14
     6     9    14     9   -20
    12     9     9   -16   -21
    18    14   -16   -16    -2

Notice that the result has negative values. Now suppose A is of class uint8, 
instead of double.

A = uint8(magic(5));
imfilter(A,h)

ans =

    24     0     0    14     0
     5     0     9     9     0
     6     9    14     9     0
    12     9     9     0     0
    18    14     0     0     0

Since the input to imfilter is of class uint8, the output also is of class uint8, 
and so the negative values are truncated to 0. In such cases, it might be 
appropriate to convert the image to another type, such as a signed integer type, 
single, or double, before calling imfilter.
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Correlation and Convolution Options
The imfilter function can perform filtering using either correlation or 
convolution. It uses correlation by default, because the filter design functions, 
described in “Filter Design” on page 7-17, and the fspecial function, described 
in “Using Predefined Filter Types” on page 7-15, produce correlation kernels.

However, if you want to perform filtering using convolution instead, you can 
pass the string 'conv' as an optional input argument to imfilter. For 
example:

A = magic(5);
h = [-1 0 1]
imfilter(A,h)   % filter using correlation

ans =
    24   -16   -16    14    -8
     5   -16     9     9   -14
     6     9    14     9   -20
    12     9     9   -16   -21
    18    14   -16   -16    -2

imfilter(A,h,'conv')   % filter using convolution

ans =

   -24    16    16   -14     8
    -5    16    -9    -9    14
    -6    -9   -14    -9    20
   -12    -9    -9    16    21
   -18   -14    16    16     2
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Boundary Padding Options
When computing an output pixel at the boundary of an image, a portion of the 
convolution or correlation kernel is usually off the edge of the image, as 
illustrated in the following figure.

When the Values of the Kernel Fall Outside the Image

The imfilter function normally fills in these off-the-edge image pixels by 
assuming that they are 0. This is called zero padding and is illustrated in the 
following figure.
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Zero Padding of Outside Pixels

When you filter an image, zero padding can result in a dark band around the 
edge of the image, as shown in this example.

I = imread('eight.tif');
h = ones(5,5) / 25;
I2 = imfilter(I,h);
imshow(I), title('Original Image');
figure, imshow(I2), title('Filtered Image with Black Border')

Center of kernel

Outside pixels are 
assumed to be 0.

17

23

4

10

11

24

5

6

12

18

1

7

13

19

25

8

14

20

21

2

15

16

22

3

9

0
8 1 6

0 0

3 5 7

294



7 Linear Filtering and Filter Design

7-12

To eliminate the zero-padding artifacts around the edge of the image, imfilter 
offers an alternative boundary padding method called border replication. In 
border replication, the value of any pixel outside the image is determined by 
replicating the value from the nearest border pixel. This is illustrated in the 
following figure.

Replicated Boundary Pixels

Original Image Filtered Image with Black Border

These pixel values are replicated 
from boundary pixels.
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To filter using border replication, pass the additional optional argument 
'replicate' to imfilter.

I3 = imfilter(I,h,'replicate');
figure, imshow(I3); 
title('Filtered Image with Border Replication')

The imfilter function supports other boundary padding options, such as 
'circular' and 'symmetric'. See the reference page for imfilter for details.

Multidimensional Filtering
The imfilter function can handle both multidimensional images and 
multidimensional filters. A convenient property of filtering is that filtering a 
three-dimensional image with a two-dimensional filter is equivalent to filtering 
each plane of the three-dimensional image individually with the same 
two-dimensional filter. This example shows how easy it is to filter each color 
plane of a true-color image with the same filter:

1 Read in an RGB image and display it.

rgb = imread('peppers.png');
imshow(rgb);

Filtered Image with Border Replication
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2 Filter the image and display it.

h = ones(5,5)/25;
rgb2 = imfilter(rgb,h);
figure, imshow(rgb2)

Relationship to Other Filtering Functions
MATLAB has several two-dimensional and multidimensional filtering 
functions. The function filter2 performs two-dimensional correlation, conv2 
performs two-dimensional convolution, and convn performs multidimensional 
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convolution. Each of these filtering functions always converts the input to 
double, and the output is always double. These other filtering functions 
always assume the input is zero padded, and they do not support other padding 
options.

In contrast, the imfilter function does not convert input images to double. 
The imfilter function also offers a flexible set of boundary padding options, as 
described in “Boundary Padding Options” on page 7-10.

Using Predefined Filter Types
The fspecial function produces several kinds of predefined filters, in the form 
of correlation kernels. After creating a filter with fspecial, you can apply it 
directly to your image data using imfilter. This example illustrates applying 
an unsharp masking filter to an intensity image. The unsharp masking filter 
has the effect of making edges and fine detail in the image more crisp.

I = imread('moon.tif');
h = fspecial('unsharp');
I2 = imfilter(I,h);
imshow(I), title('Original Image')
figure, imshow(I2), title('Filtered Image')
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Original Image Filtered Image
Image Courtesy of Michael Myers
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Filter Design
This section describes working in the frequency domain to design filters. Topics 
discussed include 

• Finite impulse response (FIR) filters, the class of linear filter that the toolbox 
supports

• The frequency transformation method, which transforms a one-dimensional 
FIR filter into a two-dimensional FIR filter

• The frequency sampling method, which creates a filter based on a desired 
frequency response

• The windowing method, which multiplies the ideal impulse response with a 
window function to generate the filter

• Creating the desired frequency response matrix

• Computing the frequency response of a filter

This section assumes you are familiar with working in the frequency domain. 
This topic is discussed in many signal processing and image processing 
textbooks.

Note  Most of the design methods described in this section work by creating a 
two-dimensional filter from a one-dimensional filter or window created using 
functions from the Signal Processing Toolbox. Although this toolbox is not 
required, you might find it difficult to design filters in the Image Processing 
Toolbox if you do not have the Signal Processing Toolbox as well.

FIR Filters
The Image Processing Toolbox supports one class of linear filter, the 
two-dimensional finite impulse response (FIR) filter. FIR filters have several 
characteristics that make them ideal for image processing in the MATLAB 
environment:

• FIR filters are easy to represent as matrices of coefficients.

• Two-dimensional FIR filters are natural extensions of one-dimensional FIR 
filters. 
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• There are several well-known, reliable methods for FIR filter design.

• FIR filters are easy to implement. 

• FIR filters can be designed to have linear phase, which helps prevent 
distortion.

Another class of filter, the infinite impulse response (IIR) filter, is not as 
suitable for image processing applications. It lacks the inherent stability and 
ease of design and implementation of the FIR filter. Therefore, this toolbox 
does not provide IIR filter support.

Frequency Transformation Method
The frequency transformation method transforms a one-dimensional FIR filter 
into a two-dimensional FIR filter. The frequency transformation method 
preserves most of the characteristics of the one-dimensional filter, particularly 
the transition bandwidth and ripple characteristics. This method uses a 
transformation matrix, a set of elements that defines the frequency 
transformation. 

The toolbox function ftrans2 implements the frequency transformation 
method. This function’s default transformation matrix produces filters with 
nearly circular symmetry. By defining your own transformation matrix, you 
can obtain different symmetries. (See Jae S. Lim, Two-Dimensional Signal and 
Image Processing, 1990, for details.)

The frequency transformation method generally produces very good results, as 
it is easier to design a one-dimensional filter with particular characteristics 
than a corresponding two-dimensional filter. For instance, the next example 
designs an optimal equiripple one-dimensional FIR filter and uses it to create 
a two-dimensional filter with similar characteristics. The shape of the 
one-dimensional frequency response is clearly evident in the two-dimensional 
response.

b = remez(10,[0 0.4 0.6 1],[1 1 0 0]);
h = ftrans2(b);
[H,w] = freqz(b,1,64,'whole');
colormap(jet(64))
plot(w/pi-1,fftshift(abs(H)))
figure, freqz2(h,[32 32])
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One-Dimensional Frequency Response (left) and Corresponding 
Two-Dimensional Frequency Response (right)

Frequency Sampling Method
The frequency sampling method creates a filter based on a desired frequency 
response. Given a matrix of points that define the shape of the frequency 
response, this method creates a filter whose frequency response passes through 
those points. Frequency sampling places no constraints on the behavior of the 
frequency response between the given points; usually, the response ripples in 
these areas. 

The toolbox function fsamp2 implements frequency sampling design for 
two-dimensional FIR filters. fsamp2 returns a filter h with a frequency 
response that passes through the points in the input matrix Hd. The example 
below creates an 11-by-11 filter using fsamp2 and plots the frequency response 
of the resulting filter. (The freqz2 function in this example calculates the 
two-dimensional frequency response of a filter. See “Computing the Frequency 
Response of a Filter” on page 7-22 for more information.)

Hd = zeros(11,11); Hd(4:8,4:8) = 1;
[f1,f2] = freqspace(11,'meshgrid');
mesh(f1,f2,Hd), axis([-1 1 -1 1 0 1.2]), colormap(jet(64))
h = fsamp2(Hd);
figure, freqz2(h,[32 32]), axis([-1 1 -1 1 0 1.2])
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Desired Two-Dimensional Frequency Response (left) and Actual 
Two-Dimensional Frequency Response (right)

Notice the ripples in the actual frequency response, compared to the desired 
frequency response. These ripples are a fundamental problem with the 
frequency sampling design method. They occur wherever there are sharp 
transitions in the desired response.

You can reduce the spatial extent of the ripples by using a larger filter. 
However, a larger filter does not reduce the height of the ripples, and requires 
more computation time for filtering. To achieve a smoother approximation to 
the desired frequency response, consider using the frequency transformation 
method or the windowing method.

Windowing Method
The windowing method involves multiplying the ideal impulse response with a 
window function to generate a corresponding filter. Like the frequency 
sampling method, the windowing method produces a filter whose frequency 
response approximates a desired frequency response. The windowing method, 
however, tends to produce better results than the frequency sampling method.

The toolbox provides two functions for window-based filter design, fwind1 and 
fwind2. fwind1 designs a two-dimensional filter by using a two-dimensional 
window that it creates from one or two one-dimensional windows that you 
specify. fwind2 designs a two-dimensional filter by using a specified 
two-dimensional window directly. 
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fwind1 supports two different methods for making the two-dimensional 
windows it uses:

• Transforming a single one-dimensional window to create a two-dimensional 
window that is nearly circularly symmetric, by using a process similar to 
rotation

• Creating a rectangular, separable window from two one-dimensional 
windows, by computing their outer product

The example below uses fwind1 to create an 11-by-11 filter from the desired 
frequency response Hd. Here, the hamming function from the Signal Processing 
Toolbox is used to create a one-dimensional window, which fwind1 then 
extends to a two-dimensional window.

Hd = zeros(11,11); Hd(4:8,4:8) = 1;
[f1,f2] = freqspace(11,'meshgrid');
mesh(f1,f2,Hd), axis([-1 1 -1 1 0 1.2]), colormap(jet(64))
h = fwind1(Hd,hamming(11));
figure, freqz2(h,[32 32]), axis([-1 1 -1 1 0 1.2])

Desired Two-Dimensional Frequency Response (left) and Actual 
Two-Dimensional Frequency Response (right)

Creating the Desired Frequency Response Matrix
The filter design functions fsamp2, fwind2, and fwind2 all create filters based 
on a desired frequency response magnitude matrix. You can create an 
appropriate desired frequency response matrix using the freqspace function. 
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freqspace returns correct, evenly spaced frequency values for any size 
response. If you create a desired frequency response matrix using frequency 
points other than those returned by freqspace, you might get unexpected 
results, such as nonlinear phase.

For example, to create a circular ideal lowpass frequency response with cutoff 
at 0.5, use

[f1,f2] = freqspace(25,'meshgrid');
Hd = zeros(25,25); d = sqrt(f1.^2 + f2.^2) < 0.5;
Hd(d) = 1;
mesh(f1,f2,Hd)

Ideal Circular Lowpass Frequency Response

Note that for this frequency response, the filters produced by fsamp2, fwind1, 
and fwind2 are real. This result is desirable for most image processing 
applications. To achieve this in general, the desired frequency response should 
be symmetric about the frequency origin (f1 = 0, f2 = 0).

Computing the Frequency Response of a Filter
The freqz2 function computes the frequency response for a two-dimensional 
filter. With no output arguments, freqz2 creates a mesh plot of the frequency 
response. For example, consider this FIR filter,

h =[0.1667    0.6667    0.1667
    0.6667   -3.3333    0.6667
    0.1667    0.6667    0.1667];
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This command computes and displays the 64-by-64 point frequency response of 
h.

freqz2(h)

Frequency Response of a Two-Dimensional Filter

To obtain the frequency response matrix H and the frequency point vectors f1 
and f2, use output arguments

[H,f1,f2] = freqz2(h);

freqz2 normalizes the frequencies f1 and f2 so that the value 1.0 corresponds 
to half the sampling frequency, or π radians.

For a simple m-by-n response, as shown above, freqz2 uses the 
two-dimensional fast Fourier transform function fft2. You can also specify 
vectors of arbitrary frequency points, but in this case freqz2 uses a slower 
algorithm. 

See “Fourier Transform” on page 8-3 for more information about the fast 
Fourier transform and its application to linear filtering and filter design.
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8

Transforms

The usual mathematical representation of an image is a function of two spatial variables: . The 
value of the function at a particular location  represents the intensity of the image at that point. 
The term transform refers to an alternative mathematical representation of an image. 

This chapter defines several important transforms and shows examples of their application to image 
processing. 

Terminology (p. 8-2) Provides definitions of image processing terms used in 
this section

Fourier Transform (p. 8-3) Defines the Fourier transform and some of its 
applications in image processing

Discrete Cosine Transform (p. 8-17) Describes the discrete cosine transform (DCT) of an 
image and its application, particularly in image 
compression

Radon Transform (p. 8-21) Describes how the Image Processing Toolbox radon 
function computes projections of an image matrix along 
specified directions

Fan-Beam Projection Data (p. 8-35) Describes how the Image Processing Toolbox radon 
function computes projections of an image matrix along 
specified directions

f x y,( )
x y,( )
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Terminology
An understanding of the following terms will help you to use this chapter. Note 
that this table includes brief definitions of terms related to transforms; a 
detailed discussion of these terms and the theory behind transforms is outside 
the scope of this user’s guide.

Term Definition

discrete transform Transform whose input and output values are discrete samples, 
making it convenient for computer manipulation. Discrete 
transforms implemented by MATLAB and the Image Processing 
Toolbox include the discrete Fourier transform (DFT) and the 
discrete cosine transform (DCT).

frequency domain Domain in which an image is represented by a sum of periodic 
signals with varying frequency.

inverse transform Operation that when performed on a transformed image produces 
the original image.

spatial domain Domain in which an image is represented by intensities at given 
points in space. This is the most common representation for image 
data.

transform Alternative mathematical representation of an image. For example, 
the Fourier transform is a representation of an image as a sum of 
complex exponentials of varying magnitudes, frequencies, and 
phases. Transforms are useful for a wide range of purposes, 
including convolution, enhancement, feature detection, and 
compression. 
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Fourier Transform 
The Fourier transform is a representation of an image as a sum of complex 
exponentials of varying magnitudes, frequencies, and phases. The Fourier 
transform plays a critical role in a broad range of image processing 
applications, including enhancement, analysis, restoration, and compression.

This section includes the following subsections:

• “Definition of Fourier Transform”

• “Discrete Fourier Transform” on page 8-8, including a discussion of fast 
Fourier transform

• “Applications of the Fourier Transform” on page 8-11 (sample applications 
using Fourier transforms)

Definition of Fourier Transform
If  is a function of two discrete spatial variables m and n, then the 
two-dimensional Fourier transform of  is defined by the relationship 

The variables ω1 and ω2 are frequency variables; their units are radians per 
sample.  is often called the frequency-domain representation of 

.  is a complex-valued function that is periodic both in and 
, with period . Because of the periodicity, usually only the range 

 is displayed. Note that  is the sum of all the values of 
. For this reason,  is often called the constant component or DC 

component of the Fourier transform. (DC stands for direct current; it is an 
electrical engineering term that refers to a constant-voltage power source, as 
opposed to a power source whose voltage varies sinusoidally.)

The inverse two-dimensional Fourier transform is given by

f m n,( )
f m n,( )

F ω1 ω2,( )   f m n,( )e jω– 1me jω– 2n

n ∞–=

∞

∑
m ∞–=

∞

∑=

F ω1 ω2,( )
f m n,( ) F ω1 ω2,( ) ω1
ω2 2π
π  ω1 ω2 π≤,≤– F 0 0,( )

f m n,( ) F 0 0,( )

f m n,( ) 1

4π2
---------   F ω1 ω2,( )e

jω1m
e

jω2n
  ω1 ω2dd

ω2 π–=

π

∫ω1 π–=

π
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Roughly speaking, this equation means that  can be represented as a 
sum of an infinite number of complex exponentials (sinusoids) with different 
frequencies. The magnitude and phase of the contribution at the frequencies 

 are given by .

Visualizing the Fourier Transform
To illustrate, consider a function  that equals 1 within a rectangular 
region and 0 everywhere else. To simplify the diagram,  is shown as a 
continuous function, even though the variables m and n are discrete.

Rectangular Function

The following figure shows, as a mesh plot, the magnitude of the Fourier 
transform, , of the rectangular function shown in the preceding 
figure. The mesh plot of the magnitude is a common way to visualize the 
Fourier transform.

f m n,( )

ω1 ω2,( ) F ω1 ω2,( )

f m n,( )
f m n,( )

m

n

f(m,n)

F ω1 ω2,( )



Fourier Transform

8-5

Magnitude Image of a Rectangular Function

The peak at the center of the plot is , which is the sum of all the values 
in . The plot also shows that  has more energy at high 
horizontal frequencies than at high vertical frequencies. This reflects the fact 
that horizontal cross sections of  are narrow pulses, while vertical cross 
sections are broad pulses. Narrow pulses have more high-frequency content 
than broad pulses. 

ω1 (horizontal frequency)

ω
2  (vertical frequency)

F 0 0,( )
f m n,( ) F ω1 ω2,( )

f m n,( )
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Another common way to visualize the Fourier transform is to display 
 as an image, as shown.

Log of the Fourier Transform of a Rectangular Function

Using the logarithm helps to bring out details of the Fourier transform in 
regions where  is very close to 0.
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Examples of the Fourier transform for other simple shapes are shown below.

Fourier Transforms of Some Simple Shapes
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Discrete Fourier Transform
Working with the Fourier transform on a computer usually involves a form of 
the transform known as the discrete Fourier transform (DFT). There are two 
principal reasons for using this form:

• The input and output of the DFT are both discrete, which makes it 
convenient for computer manipulations.

• There is a fast algorithm for computing the DFT known as the fast Fourier 
transform (FFT).

The DFT is usually defined for a discrete function  that is nonzero only 
over the finite region  and . The two-dimensional 
M-by-N DFT and inverse M-by-N DFT relationships are given by

The values  are the DFT coefficients of . The zero-frequency 
coefficient, , is often called the “DC component.” DC is an electrical 
engineering term that stands for direct current. (Note that matrix indices in 
MATLAB always start at 1 rather than 0; therefore, the matrix elements 
f(1,1) and F(1,1) correspond to the mathematical quantities  and 

, respectively.)

The MATLAB functions fft, fft2, and fftn implement the fast Fourier 
transform algorithm for computing the one-dimensional DFT, two-dimensional 
DFT, and N-dimensional DFT, respectively. The functions ifft, ifft2, and 
ifftn compute the inverse DFT.

f m n,( )
0 m M 1–≤ ≤ 0 n N 1–≤ ≤

F p q,( )   f m n,( )e j 2π M⁄( )pm– e j 2π N⁄( )qn–    
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∑
m 0=

M 1–
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p 0 1 … M 1–, , ,=

q 0 1 … N 1–, , ,=

f m n,( ) 1
MN
----------   F p q,( )ej 2π M⁄( )pmej 2π N⁄( )qn
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Relationship to the Fourier Transform
The DFT coefficients  are samples of the Fourier transform .

Example

1 Construct a matrix f that is similar to the function f(m,n) in the example in 
“Definition of Fourier Transform” on page 8-3. Remember that f(m,n) is 
equal to 1 within the rectangular region and 0 elsewhere. Use a binary 
image to represent f(m,n).

f = zeros(30,30);
f(5:24,13:17) = 1;
imshow(f,'notruesize')

2 Compute and visualize the 30-by-30 DFT of f with these commands.

F = fft2(f);
F2 = log(abs(F));
imshow(F2,[-1 5],'notruesize'); colormap(jet); colorbar

F p q,( ) F ω1 ω2,( )

F p q,( ) F ω1 ω2,( )
ω1 2πp M⁄=

ω2 2πq N⁄=

= p 0 1 … M 1–, , ,=

q 0 1 … N 1–, , ,=
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Discrete Fourier Transform Computed Without Padding

This plot differs from the Fourier transform displayed in “Visualizing the 
Fourier Transform” on page 8-4. First, the sampling of the Fourier 
transform is much coarser. Second, the zero-frequency coefficient is 
displayed in the upper left corner instead of the traditional location in the 
center.

3 To obtain a finer sampling of the Fourier transform, add zero padding to f 
when computing its DFT. The zero padding and DFT computation can be 
performed in a single step with this command.

F = fft2(f,256,256);

This command zero-pads f to be 256-by-256 before computing the DFT. 

imshow(log(abs(F)),[-1 5]); colormap(jet); colorbar
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Discrete Fourier Transform Computed with Padding

4 The zero-frequency coefficient, however, is still displayed in the upper left 
corner rather than the center. You can fix this problem by using the function 
fftshift, which swaps the quadrants of F so that the zero-frequency 
coefficient is in the center.

F = fft2(f,256,256);
F2 = fftshift(F);
imshow(log(abs(F2)),[-1 5]); colormap(jet); colorbar

The resulting plot is identical to the one shown in “Visualizing the Fourier 
Transform” on page 8-4.

Applications of the Fourier Transform
This section presents a few of the many image processing-related applications 
of the Fourier transform.

Frequency Response of Linear Filters 
The Fourier transform of the impulse response of a linear filter gives the 
frequency response of the filter. The function freqz2 computes and displays a 
filter’s frequency response. The frequency response of the Gaussian 
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convolution kernel shows that this filter passes low frequencies and attenuates 
high frequencies.

h = fspecial('gaussian');
freqz2(h)

Frequency Response of a Gaussian Filter

See “Linear Filtering and Filter Design” on page 7-1 for more information 
about linear filtering, filter design, and frequency responses.

Fast Convolution 
A key property of the Fourier transform is that the multiplication of two 
Fourier transforms corresponds to the convolution of the associated spatial 
functions. This property, together with the fast Fourier transform, forms the 
basis for a fast convolution algorithm.

Note  The FFT-based convolution method is most often used for large inputs. 
For small inputs it is generally faster to use imfilter.
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To illustrate, this example performs the convolution of A and B, where A is an 
M-by-N matrix and B is a P-by-Q matrix:

1 Create two matrices.

A = magic(3);
B = ones(3);

2 Zero-pad A and B so that they are at least (M+P–1)-by-(N+Q–1). (Often A and 
B are zero-padded to a size that is a power of 2 because fft2 is fastest for 
these sizes.) The example pads the matrices to be 8-by-8.

A(8,8) = 0;
B(8,8) = 0;

3 Compute the two-dimensional DFT of A and B using fft2.

4 Multiply the two DFTs together.

5 Compute the inverse two-dimensional DFT of the result using ifft2. 

The following code performs steps 3, 4, and 5 in the procedure.

C = ifft2(fft2(A).*fft2(B));

6 Extract the nonzero portion of the result and remove the imaginary part 
caused by roundoff error. 

C = C(1:5,1:5);
C = real(C)

C =

    8.0000    9.0000   15.0000    7.0000    6.0000
   11.0000   17.0000   30.0000   19.0000   13.0000
   15.0000   30.0000   45.0000   30.0000   15.0000
    7.0000   21.0000   30.0000   23.0000    9.0000
    4.0000   13.0000   15.0000   11.0000    2.0000

Locating Image Features
The Fourier transform can also be used to perform correlation, which is closely 
related to convolution. Correlation can be used to locate features within an 
image; in this context correlation is often called template matching. 
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This example illustrates how to use correlation to locate occurrences of the 
letter “a” in an image containing text: 

1 Read in the sample image.

bw = imread('text.png');

2 Create a template for matching by extracting the letter “a” from the image.

a = bw(32:45,88:98); 

You can also create the template image by using the interactive version of 
imcrop, using the pixval function to determine the coordinates of features 
in an image. 

The following figure shows both the original image and the template.

imshow(bw);
figure, imshow(a);

 

Image (left) and the Template to Correlate (right)

3 Compute the correlation of the template image a with the original image bw 
by rotating the template image by 180o and then using the FFT-based 
convolution technique described in “Fast Convolution” on page 8-12. 
(Convolution is equivalent to correlation if you rotate the convolution kernel 
by 180o.) To match the template to the image, use the fft2 and ifft2 
functions.
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C = real(ifft2(fft2(bw) .* fft2(rot90(a,2),256,256)));

The following image shows the result of the correlation. Bright peaks in the 
image correspond to occurrences of the letter. 

figure, imshow(C,[]) % Scale image to appropriate display range.

Correlated Image

4 To view the locations of the template in the image, find the maximum pixel 
value and then define a threshold value that is less than this maximum. The 
locations of these peaks are indicated by the white spots in the thresholded 
correlation image. (To make the locations easier to see in this figure, the 
thresholded image has been dilated to enlarge the size of the points.)

max(C(:))
ans =

68.0000

thresh = 60; % Use a threshold that s a little less than max.
figure, imshow(C > thresh)% Display showing pixels over threshold.
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Correlated, Thresholded Image Showing Template Locations
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Discrete Cosine Transform 
The discrete cosine transform (DCT) represents an image as a sum of sinusoids 
of varying magnitudes and frequencies. The dct2 function in the Image 
Processing Toolbox computes the two-dimensional discrete cosine transform 
(DCT) of an image. The DCT has the property that, for a typical image, most of 
the visually significant information about the image is concentrated in just a 
few coefficients of the DCT. For this reason, the DCT is often used in image 
compression applications. For example, the DCT is at the heart of the 
international standard lossy image compression algorithm known as JPEG. 
(The name comes from the working group that developed the standard: the 
Joint Photographic Experts Group.)

The two-dimensional DCT of an M-by-N matrix A is defined as follows.

The values  are called the DCT coefficients of A. (Note that matrix indices 
in MATLAB always start at 1 rather than 0; therefore, the MATLAB matrix 
elements A(1,1) and B(1,1) correspond to the mathematical quantities  
and , respectively.)

The DCT is an invertible transform, and its inverse is given by
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The inverse DCT equation can be interpreted as meaning that any M-by-N 
matrix A can be written as a sum of  functions of the form

These functions are called the basis functions of the DCT. The DCT coefficients 
, then, can be regarded as the weights applied to each basis function. For 

8-by-8 matrices, the 64 basis functions are illustrated by this image.

The 64 Basis Functions of an 8-by-8 Matrix

Horizontal frequencies increase from left to right, and vertical frequencies 
increase from top to bottom. The constant-valued basis function at the upper 
left is often called the DC basis function, and the corresponding DCT coefficient 

is often called the DC coefficient.

The DCT Transform Matrix 
The Image Processing Toolbox offers two different ways to compute the DCT. 
The first method is to use the function dct2. dct2 uses an FFT-based algorithm 
for speedy computation with large inputs. The second method is to use the DCT 
transform matrix, which is returned by the function dctmtx and might be more 
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efficient for small square inputs, such as 8-by-8 or 16-by-16. The M-by-M 
transform matrix T is given by

For an M-by-M matrix A, T*A is an M-by-M matrix whose columns contain the 
one-dimensional DCT of the columns of A. The two-dimensional DCT of A can 
be computed as B=T*A*T'. Since T is a real orthonormal matrix, its inverse is 
the same as its transpose. Therefore, the inverse two-dimensional DCT of B is 
given by T'*B*T.

DCT and Image Compression 
In the JPEG image compression algorithm, the input image is divided into 
8-by-8 or 16-by-16 blocks, and the two-dimensional DCT is computed for each 
block. The DCT coefficients are then quantized, coded, and transmitted. The 
JPEG receiver (or JPEG file reader) decodes the quantized DCT coefficients, 
computes the inverse two-dimensional DCT of each block, and then puts the 
blocks back together into a single image. For typical images, many of the DCT 
coefficients have values close to zero; these coefficients can be discarded 
without seriously affecting the quality of the reconstructed image.

The example code below computes the two-dimensional DCT of 8-by-8 blocks in 
the input image, discards (sets to zero) all but 10 of the 64 DCT coefficients in 
each block, and then reconstructs the image using the two-dimensional inverse 
DCT of each block. The transform matrix computation method is used.

I = imread('cameraman.tif');
I = im2double(I);
T = dctmtx(8);
B = blkproc(I,[8 8],'P1*x*P2',T,T');
mask = [1   1   1   1   0   0   0   0

1   1   1   0   0   0   0   0
1   1   0   0   0   0   0   0
1   0   0   0   0   0   0   0
0   0   0   0   0   0   0   0
0   0   0   0   0   0   0   0
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0   0   0   0   0   0   0   0
0   0   0   0   0   0   0   0];

B2 = blkproc(B,[8 8],'P1.*x',mask);
I2 = blkproc(B2,[8 8],'P1*x*P2',T',T);
imshow(I), figure, imshow(I2)

Although there is some loss of quality in the reconstructed image, it is clearly 
recognizable, even though almost 85% of the DCT coefficients were discarded. 
To experiment with discarding more or fewer coefficients, and to apply this 
technique to other images, try running the demo function dctdemo.

Image Courtesy of MIT
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Radon Transform 
The radon function in the Image Processing Toolbox computes projections of an 
image matrix along specified directions. A projection of a two-dimensional 
function f(x,y) is a set of line integrals. The radon function computes the line 
integrals from multiple sources along parallel paths, or beams, in a certain 
direction. The beams are spaced 1 pixel unit apart. To represent an image, the 
radon function takes multiple, parallel-beam projections of the image from 
different angles by rotating the source around the center of the image. The 
following figure shows a single projection at a specified rotation angle. 

Parallel-Beam Projection at Rotation Angle Theta

Note  For information about creating projection data from line integrals 
along paths that radiate from a single source, called fan-beam projections, see 
“Fan-Beam Projection Data” on page 8-35. To convert parallel-beam projection 
data to fan-beam projection data, use the para2fan function.

For example, the line integral of f(x,y) in the vertical direction is the projection 
of f(x,y) onto the x-axis; the line integral in the horizontal direction is the 
projection of f(x,y) onto the y-axis. The following figure shows horizontal and 
vertical projections for a simple two-dimensional function.

x

y

f(x,y)
Source

Sensors

 Rotation angle theta
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Horizontal and Vertical Projections of a Simple Function

Projections can be computed along any angle θ. In general, the Radon 
transform of f(x,y) is the line integral of f parallel to the y′-axis

where

The following figure illustrates the geometry of the Radon transform.

x

y

Projection onto the x-axis

Pr
oj

ec
tio

n 
on

to
 th

e 
y-

ax
isf(x,y)

Rθ x ′( ) f x ′ θcos y ′ θsin–  x ′ θsin y ′ θcos+( , ) y ′d
∞–

∞

∫=

x ′
y ′

θcos θsin
θsin– θcos

x
y

=



Radon Transform

8-23

Geometry of the Radon Transform

This command computes the Radon transform of I for the angles specified in 
the vector theta.

[R,xp] = radon(I,theta);

The columns of R contain the Radon transform for each angle in theta. The 
vector xp contains the corresponding coordinates along the x′-axis. The center 
pixel of I is defined to be floor((size(I)+1)/2); this is the pixel on the x′-axis 
corresponding to .

The commands below compute and plot the Radon transform at 0° and 45° of 
an image containing a single square object. 

I = zeros(100,100);

x

y

x′

y′

x′

f(x,y)
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I(25:75, 25:75) = 1;
imshow(I)

[R,xp] = radon(I,[0 45]);
figure; plot(xp,R(:,1)); title('R_{0^o} (x\prime)')
figure; plot(xp,R(:,2)); title('R_{45^o} (x\prime)')

Two Radon Transforms of a Square Function

Note  xp is the same for all projection angles.

The Radon transform for a large number of angles is often displayed as an 
image. In this example, the Radon transform for the square image is computed 
at angles from 0° to 180°, in 1° increments.

theta = 0:180;
[R,xp] = radon(I,theta);
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imagesc(theta,xp,R);
title('R_{\theta} (X\prime)');
xlabel('\theta (degrees)');
ylabel('X\prime');
set(gca,'XTick',0:20:180);
colormap(hot);
colorbar

Radon Transform Using 180 Projections
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Using the Radon Transform to Detect Lines
The Radon transform is closely related to a common computer vision operation 
known as the Hough transform. You can use the radon function to implement 
a form of the Hough transform used to detect straight lines. The steps are

1 Compute a binary edge image using the edge function.

I = fitsread('solarspectra.fts');
I = mat2gray(I);
BW = edge(I);
imshow(I), figure, imshow(BW)

2 Compute the Radon transform of the edge image.

theta = 0:179;
[R,xp] = radon(BW,theta);
figure, imagesc(theta, xp, R); colormap(hot);
xlabel('\theta (degrees)'); ylabel('x\prime');
title('R_{\theta} (x\prime)');
colorbar

Original Image Edge Image
Image Courtesy of Ann Walker
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Radon Transform of an Edge Image

3 Find the locations of strong peaks in the Radon transform matrix. The 
locations of these peaks correspond to the locations of straight lines in the 
original image.

In the following figure, the strongest peaks in R correspond to  and 
. The line perpendicular to that angle and located at  is 

shown below, superimposed in red on the original image. The Radon transform 
geometry is shown in black. Notice that the other strong lines parallel to the 
red line also appear as peaks at  in the transform. Also, the lines 
perpendicular to this line appear as peaks at .

θ 1°=
x ′ 80–= x ′ 80–=

θ 1°=
θ 91°=
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Radon Transform Geometry and the Strongest Peak (Red)

Inverse Radon Transform 
The iradon function performs the inverse Radon transform, which is 
commonly used in tomography applications. This transform inverts the Radon 
transform (which was introduced in the previous section), and can therefore be 
used to reconstruct images from projection data. 

As described in “Radon Transform” on page 8-21, given an image I and a set of 
angles theta, the radon function can be used to calculate the Radon transform.

R = radon(I,theta);

The function iradon can then be called to reconstruct the image I.

IR = iradon(R,theta);

In the example above, projections are calculated from the original image I. In 
most application areas, there is no original image from which projections are 
formed. For example, in X-ray absorption tomography, projections are formed 
by measuring the attenuation of radiation that passes through a physical 
specimen at different angles. The original image can be thought of as a cross 
section through the specimen, in which intensity values represent the density 
of the specimen. Projections are collected using special purpose hardware, and 
then an internal image of the specimen is reconstructed by iradon. This allows 
for noninvasive imaging of the inside of a living body or another opaque object. 

x’ = -80°

theta = 1°
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iradon reconstructs an image from parallel-beam projections. In parallel-beam 
geometry, each projection is formed by combining a set of line integrals through 
an image at a specific angle. 

The following figure illustrates how parallel-beam geometry is applied in X-ray 
absorption tomography. Note that there is an equal number of n emitters and 
n sensors. Each sensor measures the radiation emitted from its corresponding 
emitter, and the attenuation in the radiation gives a measure of the integrated 
density, or mass, of the object. This corresponds to the line integral that is 
calculated in the Radon transform. 

The parallel-beam geometry used in the figure is the same as the geometry that 
was described in “Radon Transform” on page 8-21. f(x,y) denotes the brightness 
of the image and is the projection at angle theta.Rθ x ′( )
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Parallel-Beam Projections Through an Object

Another geometry that is commonly used is fan-beam geometry, in which there 
is one source and n sensors. For more information, see “Fan-Beam Projection 
Data” on page 8-35. To convert parallel-beam projection data into fan-beam 
projection data, use the para2fan function.

Improving the Results
iradon uses the filtered backprojection algorithm to compute the inverse Radon 
transform. This algorithm forms an approximation of the image I based on the 
projections in the columns of R. A more accurate result can be obtained by using 
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more projections in the reconstruction. As the number of projections (the length 
of theta) increases, the reconstructed image IR more accurately approximates 
the original image I. The vector theta must contain monotonically increasing 
angular values with a constant incremental angle ∆θ. When the scalar ∆θ is 
known, it can be passed to iradon instead of the array of theta values. Here is 
an example.

IR = iradon(R,Dtheta);

The filtered backprojection algorithm filters the projections in R and then 
reconstructs the image using the filtered projections. In some cases, noise can 
be present in the projections. To remove high frequency noise, apply a window 
to the filter to attenuate the noise. Many such windowed filters are available 
in iradon. The example call to iradon below applies a Hamming window to the 
filter. See the iradon reference page for more information.

IR = iradon(R,theta,'Hamming');

iradon also enables you to specify a normalized frequency, D, above which the 
filter has zero response. D must be a scalar in the range [0,1]. With this option, 
the frequency axis is rescaled so that the whole filter is compressed to fit into 
the frequency range [0,D]. This can be useful in cases where the projections 
contain little high-frequency information but there is high-frequency noise. In 
this case, the noise can be completely suppressed without compromising the 
reconstruction. The following call to iradon sets a normalized frequency value 
of 0.85.

IR = iradon(R,theta,0.85);

Example: Reconstructing an Image from Parallel 
Projection Data
The commands below illustrate how to reconstruct an image from parallel 
projection data. The test image is the Shepp-Logan head phantom, which can 
be generated by the Image Processing Toolbox function phantom. The phantom 
image illustrates many of the qualities that are found in real-world 
tomographic imaging of human heads. The bright elliptical shell along the 
exterior is analogous to a skull, and the many ellipses inside are analogous to 
brain features. 

1 Create a Shepp-Logan head phantom image.
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P = phantom(256);
imshow(P)

2 Compute the Radon transform of the phantom brain for three different sets 
of theta values. R1 has 18 projections, R2 has 36 projections, and R3 has 90 
projections. 

theta1 = 0:10:170; [R1,xp] = radon(P,theta1);
theta2 = 0:5:175;  [R2,xp] = radon(P,theta2);
theta3 = 0:2:178;  [R3,xp] = radon(P,theta3);

3 Display a plot of one of the Radon transforms of the Shepp-Logan head 
phantom. The following figure shows R3, the transform with 90 projections.

figure, imagesc(theta3,xp,R3); colormap(hot); colorbar
xlabel('\theta'); ylabel('x\prime');
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Radon Transform of Head Phantom Using 90 Projections

Note how some of the features of the input image appear in this image of the 
transform. The first column in the Radon transform corresponds to a 
projection at 0° that is integrating in the vertical direction. The centermost 
column corresponds to a projection at 90°, which is integrating in the 
horizontal direction. The projection at 90° has a wider profile than the 
projection at 0° due to the larger vertical semiaxis of the outermost ellipse of 
the phantom.

4 Reconstruct the head phantom image from the projection data created in 
step 2 and display the results.

I1 = iradon(R1,10);
I2 = iradon(R2,5);
I3 = iradon(R3,2);
imshow(I1)
figure, imshow(I2)
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figure, imshow(I3)

The following figure shows the results of all three reconstructions. Notice 
how image I1, which was reconstructed from only 18 projections, is the least 
accurate reconstruction. Image I2, which was reconstructed from 36 
projections, is better, but it is still not clear enough to discern clearly the 
small ellipses in the lower portion of the image. I3, reconstructed using 90 
projections, most closely resembles the original image. Notice that when the 
number of projections is relatively small (as in I1 and I2), the reconstruction 
can include some artifacts from the back projection. 

Inverse Radon Transforms of the Shepp-Logan Head Phantom

I1 I2

I3
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Fan-Beam Projection Data
The fanbeam function in the Image Processing Toolbox computes projections of 
an image matrix along specified directions. A projection of a two-dimensional 
function f(x,y) is a set of line integrals. The fanbeam function computes the line 
integrals along paths that radiate from a single source, forming a fan shape. To 
represent an image, the fanbeam function takes multiple projections of the 
image from different angles by rotating the source around the center of the 
image. The following figure shows a single fan-beam projection at a specified 
rotation angle. 

Fan-Beam Projection at Rotation Angle Theta

This section

• Describes how to use the fanbeam function to generate fan-beam projection 
data

• Describes how to reconstruct an image from fan-beam projection data

• Shows an example that creates a fan-beam projection of an image and then 
reconstructs the image from the fan-beam projection data 
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Note  For information about creating projection data from line integrals 
along parallel paths, see “Radon Transform” on page 8-21. To convert 
fan-beam projection data to parallel-beam projection data, use the fan2para 
function.

Computing Fan-Beam Projection Data
To compute fan-beam projection data, use the fanbeam function. You specify as 
arguments an image and the distance between the vertex of the fan-beam 
projections and the center of rotation (the center pixel in the image). The 
fanbeam function determines the number of beams, based on the size of the 
image and the settings of fanbeam parameters. 

By default, fanbeam positions the sensors along an arc at distance D from the 
center of rotation, and spaces the sensors at 1 degree intervals. Using the 
FanSensorSpacing parameter, you can specify a different angle between each 
beam. Using the FanSensorGeometry parameter, you can optionally specify 
that fanbeam position sensors along a straight line, rather than an arc. With 
this geometry, you specify the spacing between sensors in pixels. In this case, 
only the sensor aligned with the center pixel is distance D from the center of 
rotation.

fanbeam takes projections at different angles by rotating the source around the 
center pixel at 1 degree intervals. Using the FanRotationIncrement parameter 
you can specify a different rotation angle increment. 

The following figures illustrate both these geometries.

The first figure illustrates geometry used by the fanbeam function when 
FanSensorGeometry is set to 'arc' (the default). Note how you specify the 
distance between sensors by specifying the angular spacing of the beams.
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Fan-Beam Projection with Arc Geometry

The following figure illustrates geometry used by the fanbeam function when 
FanSensorGeometry is set to 'line'. In this figure, note how you specify the 
position of the sensors by specifying the distance between them in pixels. 
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Fan-Beam Projection with Line Geometry

Reconstructing an Image from Fan-Beam Projection 
Data 
To reconstruct an image from fan-beam projection data, use the ifanbeam 
function. With this function, you specify as arguments the projection data and 
the distance between the vertex of the fan-beam projections and the center of 
rotation when the projection data was created. For example, this code recreates 
the image I from the projection data P and distance D.

I = ifanbeam(P,D);
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By default, the ifanbeam function assumes that the fan-beam projection data 
was created using the arc fan sensor geometry, with beams spaced at 1 degree 
angles and projections taken at 1 degree increments over a full 360 degree 
range. As with the fanbeam function, you can use ifanbeam parameters to 
specify other values for these characteristics of the projection data. Use the 
same values for these parameters that were used when the projection data was 
created. For more information about these parameters, see “Computing 
Fan-Beam Projection Data” on page 8-36.

The ifanbeam function converts the fan-beam projection data to parallel-beam 
projection data with the fan2para function, and then calls the iradon function 
to perform the image reconstruction. For this reason, the ifanfeam function 
supports certain iradon parameters, which it passes to the iradon function. 
See “Inverse Radon Transform” on page 8-28 for more information about the 
iradon function.

Working with Fan-Beam Projection Data
The commands below illustrate how to use fanbeam and ifanbeam to form 
projections from a sample image and then reconstruct the image from the 
projections. The test image is the Shepp-Logan head phantom, which can be 
generated by the Image Processing Toolbox function phantom. The phantom 
image illustrates many of the qualities that are found in real-world 
tomographic imaging of human heads. 

1 Generate the test image and display it.

P = phantom(256);
imshow(P)
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2 Compute fan-beam projection data of the test image, using the 
FanSensorSpacing parameter to vary the sensor spacing. The example uses 
the fanbeam arc geometry, so you specify the spacing between sensors by 
specifying the angular spacing of the beams. The first call spaces the beams 
at 2 degrees; the second at 1 degree; and the third at 0.25 degrees. In each 
call, the distance between the center of rotation and vertex of the projections 
is constant at 250 pixels. In addition, fanbeam rotates the projection around 
the center pixel at 1 degree increments. 

D = 250;

dsensor1 = 2;
F1 = fanbeam(P,D,'FanSensorSpacing',dsensor1);

dsensor2 = 1;
F2 = fanbeam(P,D,'FanSensorSpacing',dsensor2);

dsensor3 = 0.25
[F3, sensor_pos3, fan_rot_angles3] = fanbeam(P,D,... 
'FanSensorSpacing',dsensor3);

3 Plot the projection data F3. Because fanbeam calculates projection data at 
rotation angles from 0 to 360 degrees, the same patterns occur at an offset 
of 180 degrees. The same features are being sampled from both sides. 
Compare this plot to the plot of the parallel-beam projection data of the head 
phantom on page 8-33. 

figure, imagesc(fan_rot_angles3, sensor_pos3, F3)
colormap(hot); colorbar
xlabel('Fan Rotation Angle (degrees)')
ylabel('Fan Sensor Position (degrees)')
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4 Reconstruct the image from the fan-beam projection data using ifanbeam. In 
each reconstruction, match the fan sensor spacing with the spacing used 
when the projection data was created in step 2. The example uses the 
OutputSize parameter to constrain the output size of each reconstruction to 
be the same as the size of the original image |P|.

output_size = max(size(P));

Ifan1 = ifanbeam(F1,D, 
'FanSensorSpacing',dsensor1,'OutputSize',output_size);

figure, imshow(Ifan1)

Ifan2 = ifanbeam(F2,D, 
'FanSensorSpacing',dsensor2,'OutputSize',output_size);

figure, imshow(Ifan2)

Ifan3 = ifanbeam(F3,D, 
'FanSensorSpacing',dsensor3,'OutputSize',output_size);
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figure, imshow(Ifan3)

The following figure shows the result of each transform. Note how the 
quality of the reconstruction gets better as the number of beams in the 
projection increases. The first image, Ifan1, was created using 2 degree 
spacing of the beams; the second image, ifan2, was created using 1 degree 
spacing of the beams; the third image, ifan3, was created using 0.25 spacing 
of the beams. 

Reconstruction of the Head Phantom Image from Fan-Beam Projections

Ifan1 Ifan2

Ifan3
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Morphological Operations

Morphology is a technique of image processing based on shapes. The value of each pixel in the output 
image is based on a comparison of the corresponding pixel in the input image with its neighbors. By 
choosing the size and shape of the neighborhood, you can construct a morphological operation that is 
sensitive to specific shapes in the input image.

This chapter describes the Image Processing Toolbox morphological functions. You can use these 
functions to perform common image processing tasks, such as contrast enhancement, noise removal, 
thinning, skeletonization, filling, and segmentation. 

Terminology (p. 9-2) Provides definitions of image processing terms used in 
this section

Dilation and Erosion (p. 9-4) Defines the two fundamental morphological operations, 
dilation and erosion, and some of the morphological 
image processing operations that are based on 
combinations of these operations

Morphological Reconstruction (p. 9-19) Describes morphological reconstruction and the toolbox 
functions that use this type of processing

Distance Transform (p. 9-37) Describes how to use the bwdist function to compute the 
distance transform of an image

Objects, Regions, and Feature 
Measurement (p. 9-40)

Describes functions that return information about a 
binary image

Lookup Table Operations (p. 9-44) Describes functions that perform lookup table operations



9 Morphological Operations

9-2

Terminology
An understanding of the following terms will help you to use this chapter.

Term Definition

background In a binary image, pixels that are off, i.e., set to the value 0, 
are considered the background. When you view a binary 
image, the background pixels appear black. 

connectivity Criteria that describe how pixels in an image form a 
connected group. For example, a connected component is 
“8-connected” if diagonally adjacent pixels are considered to 
be touching; otherwise, it is “4-connected.” The toolbox 
supports 2-D as well as multidimensional connectivities. See 
“Pixel Connectivity” on page 9-23 for more information.

foreground In a binary image, pixels that are on, i.e., set to the value 1, 
are considered the foreground. When you view a binary image, 
the foreground pixels appear white.

global maxima Highest regional maxima in the image. See the entry for 
regional maxima in this table for more information.

global minima Lowest regional minima in the image. See the entry for 
regional minima in this table for more information.

morphology A broad set of image processing operations that process 
images based on shapes. Morphological operations apply a 
structuring element to an input image, creating an output 
image of the same size. The most basic morphological 
operations are dilation and erosion.

neighborhood Set of pixels that are defined by their locations relative to the 
pixel of interest. A neighborhood can be defined by a 
structuring element or by specifying a connectivity. 

object Set of pixels in a binary image that form a connected group. In 
the context of this chapter, “object” and “connected 
component” are equivalent. 
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packed binary image Method of compressing binary images that can speed up the 
processing of the image. 

regional maxima Connected set of pixels of constant intensity from which it is 
impossible to reach a point with higher intensity without first 
descending; that is, a connected component of pixels with the 
same intensity value, t, surrounded by pixels that all have a 
value less than t. 

regional minima Connected set of pixels of constant intensity from which it is 
impossible to reach a point with lower intensity without first 
ascending; that is, a connected component of pixels with the 
same intensity value, t, surrounded by pixels that all have a 
value greater than t.

structuring element Matrix used to define a neighborhood shape and size for 
morphological operations, including dilation and erosion. It 
consists of only 0’s and 1’s and can have an arbitrary shape 
and size. The pixels with values of 1 define the neighborhood. 

Term Definition
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Dilation and Erosion
Dilation and erosion are two fundamental morphological operations. Dilation 
adds pixels to the boundaries of objects in an image, while erosion removes 
pixels on object boundaries. The number of pixels added or removed from the 
objects in an image depends on the size and shape of the structuring element 
used to process the image. 

The following sections

• Provide important background information about how the dilation and 
erosion functions operate

• Describe structuring elements and how to create them 

• Describe how to perform a morphological dilation

• Describe how to perform a morphological erosion

• Describe some of the common operations that are based on dilation and 
erosion

• Describe toolbox functions that are based on dilation and erosion

To view an extended example that uses morphological processing to solve an 
image processing problem, see the Image Processing Toolbox watershed 
segmentation demo. 

Understanding Dilation and Erosion
In the morphological dilation and erosion operations, the state of any given 
pixel in the output image is determined by applying a rule to the corresponding 
pixel and its neighbors in the input image. The rule used to process the pixels 
defines the operation as a dilation or an erosion. This table lists the rules for 
both dilation and erosion.
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The following figure illustrates the dilation of a binary image. Note how the 
structuring element defines the neighborhood of the pixel of interest, which is 
circled. (See “Structuring Elements” on page 9-7 for more information.) The 
dilation function applies the appropriate rule to the pixels in the neighborhood 
and assigns a value to the corresponding pixel in the output image. In the 
figure, the morphological dilation function sets the value of the output pixel to 
1 because one of the elements in the neighborhood defined by the structuring 
element is on.

Morphological Dilation of a Binary Image

Rules for Grayscale Dilation and Erosion

Operation Rule

Dilation The value of the output pixel is the maximum value of all 
the pixels in the input pixel’s neighborhood. In a binary 
image, if any of the pixels is set to the value 1, the output 
pixel is set to 1.

Erosion The value of the output pixel is the minimum value of all 
the pixels in the input pixel’s neighborhood. In a binary 
image, if any of the pixels is set to 0, the output pixel is 
set to 0.

1 0 0 0 0 

     0 1 0 0 0

     0 0 1 0 0

     0 0 0 1 0

     0 0 0 0 1

Structuring Element

Input Image

1 1

1 1     0     0 0

     0     0     1     0 0

     0     0     0     1 0

     0     0     0     0 1

Output Image

1 1 1
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The following figure illustrates this processing for a grayscale image. The 
figure shows the processing of a particular pixel in the input image. Note how 
the function applies the rule to the input pixel’s neighborhood and uses the 
highest value of all the pixels in the neighborhood as the value of the 
corresponding pixel in the output image. 
 

Morphological Dilation of a Grayscale Image

Processing Pixels at Image Borders
Morphological functions position the origin of the structuring element, its 
center element, over the pixel of interest in the input image. For pixels at the 
edge of an image, parts of the neighborhood defined by the structuring element 
can extend past the border of the image. 

To process border pixels, the morphological functions assign a value to these 
undefined pixels, as if the functions had padded the image with additional rows 
and columns. The value of these padding pixels varies for dilation and erosion 
operations. The following table describes the padding rules for dilation and 
erosion for both binary and grayscale images.

16 14 14 17 19 15 21

53 57 61 62 64 60 68

126 128 124 122 125 125 127

132 130 133 132 131 132 130

140 138 137 143 138 137 134

143 141 138 142 140 134 144

138 142 137 139 138 132 136

1 1 1

Structuring Element

Input Image Output Image

16 16  17 17    19    15    21

57

128

132

140

143

142
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Note  By using the minimum value for dilation operations and the maximum 
value for erosion operations, the toolbox avoids border effects, where regions 
near the borders of the output image do not appear to be homogeneous with 
the rest of the image. For example, if erosion padded with a minimum value, 
eroding an image would result in a black border around the edge of the output 
image. 

Structuring Elements
An essential part of the dilation and erosion operations is the structuring 
element used to probe the input image. Two-dimensional, or flat, structuring 
elements consist of a matrix of 0’s and 1’s, typically much smaller than the 
image being processed. The center pixel of the structuring element, called the 
origin, identifies the pixel of interest — the pixel being processed. The pixels in 
the structuring element containing 1’s define the neighborhood of the 
structuring element. These pixels are also considered in dilation or erosion 
processing. Three-dimensional, or nonflat, structuring elements use 0’s and 1’s 
to define the extent of the structuring element in the x- and y-planes and add 
height values to define the third dimension.

Rules for Padding Images

Operation Rule

Dilation Pixels beyond the image border are assigned the 
minimum value afforded by the data type.

For binary images, these pixels are assumed to be set to 0. 
For grayscale images, the minimum value for uint8 
images is 0. 

Erosion Pixels beyond the image border are assigned the 
maximum value afforded by the data type.

For binary images, these pixels are assumed to be set to 1. 
For grayscale images, the maximum value for uint8 
images is 255.
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The Origin of a Structuring Element
The morphological functions use this code to get the coordinates of the origin of 
structuring elements of any size and dimension. 

origin = floor((size(nhood)+1)/2)

(In this code nhood is the neighborhood defining the structuring element. 
Because structuring elements are MATLAB objects, you cannot use the size of 
the STREL object itself in this calculation. You must use the STREL getnhood 
method to retrieve the neighborhood of the structuring element from the STREL 
object. For information about other STREL object methods, see the strel 
function reference page.) 

For example, the following illustrates a diamond-shaped structuring element.

Origin of a Diamond-Shaped Structuring Element

Creating a Structuring Element
The toolbox dilation and erosion functions accept structuring element objects, 
called STRELs. You use the strel function to create STRELs of any arbitrary size 
and shape. The strel function also includes built-in support for many common 
shapes, such as lines, diamonds, disks, periodic lines, and balls.

Note  You typically choose a structuring element the same size and shape as 
the objects you want to process in the input image. For example, to find lines 
in an image, create a linear structuring element.

Origin

 0     0     0     1     0     0     0

     0     0     1     1     1     0     0

     0     1     1     1     1     1     0

     1     1     1     1     1     1     1

     0     1     1     1     1     1     0

     0     0     1     1     1     0     0

     0     0     0     1     0     0     0

Structuring Element
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For example, this code creates a flat, diamond-shaped structuring element.

se = strel('diamond',3)
se =
 
Flat STREL object containing 25 neighbors.
Decomposition: 3 STREL objects containing a total of 13 neighbors

Neighborhood:
     0     0     0     1     0     0     0
     0     0     1     1     1     0     0
     0     1     1     1     1     1     0
     1     1     1     1     1     1     1
     0     1     1     1     1     1     0
     0     0     1     1     1     0     0
     0     0     0     1     0     0     0

Structuring Element Decomposition
To enhance performance, the strel function might break structuring elements 
into smaller pieces, a technique known as structuring element decomposition. 

For example, dilation by an 11-by-11 square structuring element can be 
accomplished by dilating first with a 1-by-11 structuring element, and then 
with an 11-by-1 structuring element. This results in a theoretical speed 
improvement of a factor of 5.5, although in practice the actual speed 
improvement is somewhat less. 

Structuring element decompositions used for the 'disk' and 'ball' shapes 
are approximations; all other decompositions are exact. Decomposition is not 
used with an arbitrary structuring element unless it is a flat structuring 
element whose neighborhood is all 1’s.

To view the sequence of structuring elements used in a decomposition, use the 
STREL getsequence method. The getsequence function returns an array of the 
structuring elements that form the decomposition. For example, here are the 
structuring elements created in the decomposition of a diamond-shaped 
structuring element.

sel = strel('diamond',4)
sel =
Flat STREL object containing 41 neighbors.
Decomposition: 3 STREL objects containing a total of 13 neighbors
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Neighborhood:
     0     0     0     0     1     0     0     0     0
     0     0     0     1     1     1     0     0     0
     0     0     1     1     1     1     1     0     0
     0     1     1     1     1     1     1     1     0
     1     1     1     1     1     1     1     1     1
     0     1     1     1     1     1     1     1     0
     0     0     1     1     1     1     1     0     0
     0     0     0     1     1     1     0     0     0
     0     0     0     0     1     0     0     0     0

seq = getsequence(sel)
seq =
3x1 array of STREL objects

seq(1)
ans =
Flat STREL object containing 5 neighbors.

Neighborhood:
     0     1     0
     1     1     1
     0     1     0

seq(2)
ans =
Flat STREL object containing 4 neighbors.

Neighborhood:
     0     1     0
     1     0     1
     0     1     0

seq(3)
ans =
Flat STREL object containing 4 neighbors.

Neighborhood:
     0     0     1     0     0
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     0     0     0     0     0
     1     0     0     0     1
     0     0     0     0     0
     0     0     1     0     0

Dilating an Image
To dilate an image, use the imdilate function. The imdilate function accepts 
two primary arguments:

• The input image to be processed (grayscale, binary, or packed binary image)

• A structuring element object, returned by the strel function, or a binary 
matrix defining the neighborhood of a structuring element

imdilate also accepts two optional arguments: PADOPT and PACKOPT. The 
PADOPT argument affects the size of the output image. The PACKOPT argument 
identifies the input image as packed binary. (See the bwpack reference page for 
information about binary image packing.)

This example dilates a simple binary image containing one rectangular object.

BW = zeros(9,10);
BW(4:6,4:7) = 1
BW = 
     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0
     0     0     0     1     1     1     1     0     0     0
     0     0     0     1     1     1     1     0     0     0
     0     0     0     1     1     1     1     0     0     0
     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0

To expand all sides of the foreground component, the example uses a 3-by-3 
square structuring element object. (For more information about using the 
strel function, see “Structuring Elements” on page 9-7.)

SE = strel('square',3)
SE =
 
Flat STREL object containing 3 neighbors.
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Neighborhood:
     1     1     1

1     1     1
     1     1     1

To dilate the image, pass the image BW and the structuring element SE to the 
imdilate function. Note how dilation adds a rank of 1’s to all sides of the 
foreground object.

BW2 = imdilate(BW,SE)

Eroding an Image
To erode an image, use the imerode function. The imerode function accepts two 
primary arguments:

• The input image to be processed (grayscale, binary, or packed binary image)

• A structuring element object, returned by the strel function, or a binary 
matrix defining the neighborhood of a structuring element

imerode also accepts three optional arguments: PADOPT, PACKOPT, and M. 

The PADOPT argument affects the size of the output image. The PACKOPT 
argument identifies the input image as packed binary. If the image is packed 
binary, M identifies the number of rows in the original image. (See the bwpack 
reference page for more information about binary image packing.)

BW2 =
0 0 0 0 0 0 0 0 0 0

     0 0 0 0 0 0 0 0 0 0
     0 0 1 1 1 1 1 1 0 0
     0 0 1 1 1 1 1 1 0 0
     0 0 1 1 1 1 1 1 0 0
     0 0 1 1 1 1 1 1 0 0
     0 0 1 1 1 1 1 1 0 0
     0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0
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The following example erodes the binary image circbw.tif:

1 Read the image into the MATLAB workspace.

BW1 = imread('circbw.tif');

2 Create a structuring element. The following code creates a diagonal 
structuring element object. (For more information about using the strel 
function, see “Structuring Elements” on page 9-7.)

SE = strel('arbitrary ,eye(5));
SE=
 
Flat STREL object containing 5 neighbors.

Neighborhood:
     1     0     0     0     0
     0     1     0     0     0
     0     0     1     0     0
     0     0     0     1     0
     0     0     0     0     1

3 Call the imerode function, passing the image BW and the structuring element 
SE as arguments. 

BW2 = imerode(BW1,SE);

Notice the diagonal streaks on the right side of the output image. These are 
due to the shape of the structuring element.

imshow(BW1)
figure, imshow(BW2)
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Combining Dilation and Erosion
Dilation and erosion are often used in combination to implement image 
processing operations. For example, the definition of a morphological opening 
of an image is an erosion followed by a dilation, using the same structuring 
element for both operations. The related operation, morphological closing of an 
image, is the reverse: it consists of dilation followed by an erosion with the 
same structuring element.

The following section uses imdilate and imerode to illustrate how to 
implement a morphological opening. Note, however, that the toolbox already 
includes the imopen function, which performs this processing. The toolbox 
includes functions that perform many common morphological operations. See 
“Dilation- and Erosion-Based Functions” on page 9-16 for a complete list. 

Morphological Opening
You can use morphological opening to remove small objects from an image 
while preserving the shape and size of larger objects in the image. For example, 
you can use the imopen function to remove all the circuit lines from the original 
circuit image, circbw.tif, creating an output image that contains only the 
rectangular shapes of the microchips. 

Original Image Eroded Image
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To morphologically open the image, perform these steps: 

1 Read the image into the MATLAB workspace.

BW1 = imread('circbw.tif');

2 Create a structuring element. 

SE = strel('rectangle ,[40 30]);

The structuring element should be large enough to remove the lines when 
you erode the image, but not large enough to remove the rectangles. It 
should consist of all 1’s, so it removes everything but large contiguous 
patches of foreground pixels. 

3 Erode the image with the structuring element. 

BW2 = imerode(BW1,SE);
imshow(BW2)

This removes all the lines, but also shrinks the rectangles.

4 To restore the rectangles to their original sizes, dilate the eroded image 
using the same structuring element, SE.

BW3 = imdilate(BW2,SE);
imshow(BW3)
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Dilation- and Erosion-Based Functions 
This section describes two common image processing operations that are based 
on dilation and erosion:

• Skeletonization

• Perimeter determination

This table lists other functions in the toolbox that perform common 
morphological operations that are based on dilation and erosion. For more 
information about these functions, see their reference pages.

Dilation- and Erosion-Based Functions

Function Morphological Definition

bwhitmiss Logical AND of an image, eroded with one structuring 
element, and the image’s complement, eroded with a 
second structuring element.

imbothat Subtracts the original image from a morphologically 
closed version of the image. Can be used to find 
intensity troughs in an image.

imclose Dilates an image and then erodes the dilated image 
using the same structuring element for both operations.
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Skeletonization
To reduce all objects in an image to lines, without changing the essential 
structure of the image, use the bwmorph function. This process is known as 
skeletonization. 

BW1 = imread('circbw.tif'); 
BW2 = bwmorph(BW1,'skel',Inf);
imshow(BW1)
figure, imshow(BW2)

Perimeter Determination
The bwperim function determines the perimeter pixels of the objects in a binary 
image. A pixel is considered a perimeter pixel if it satisfies both of these 
criteria:

• The pixel is on.

imopen Erodes an image and then dilates the eroded image 
using the same structuring element for both operations.

imtophat Subtracts a morphologically opened image from the 
original image. Can be used to enhance contrast in an 
image. 

Dilation- and Erosion-Based Functions

Function Morphological Definition (Continued)

Original Image Skeletonization of Image
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• One (or more) of the pixels in its neighborhood is off.

For example, this code finds the perimeter pixels in a binary image of a circuit 
board.

BW1 = imread('circbw.tif'); 
BW2 = bwperim(BW1);
imshow(BW1)
figure, imshow(BW2)

Original Image Perimeters Determined
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Morphological Reconstruction
Morphological reconstruction is another major part of morphological image 
processing. Based on dilation, morphological reconstruction has these unique 
properties:

• Processing is based on two images, a marker and a mask, rather than one 
image and a structuring element.

• Processing repeats until stability; i.e., the image no longer changes.

• Processing is based on the concept of connectivity, rather than a structuring 
element.

This section 

• Provides background information about morphological reconstruction and 
describes how to use the imreconstruct function

• Describes how pixel connectivity affects morphological reconstruction 

• Describes how to use the imfill function, which is based on morphological 
reconstruction

• Describes a group of functions, all based on morphological reconstruction, 
that process image extrema, i.e., the areas of high and low intensity in 
images

Marker and Mask
Morphological reconstruction processes one image, called the marker, based on 
the characteristics of another image, called the mask. The high points, or 
peaks, in the marker image specify where processing begins. The processing 
continues until the image values stop changing.

To illustrate morphological reconstruction, consider this simple image. It 
contains two primary regions, the blocks of pixels containing the values 14 and 
18. The background is primarily all set to 10, with some pixels set to 11.
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To morphologically reconstruct this image, perform these steps:

1 Create a marker image. As with the structuring element in dilation and 
erosion, the characteristics of the marker image determine the processing 
performed in morphological reconstruction. The peaks in the marker image 
should identify the location of objects in the mask image that you want to 
emphasize. 

One way to create a marker image is to subtract a constant from the mask 
image, using imsubtract. 

marker = imsubtract(A,2)
marker =
     8     8     8     8     8     8     8     8     8     8
     8    12    12    12     8     8     9     8     9     8
     8    12    12    12     8     8     8     9     8     8
     8    12    12    12     8     8     9     8     9     8
     8     8     8     8     8     8     8     8     8     8
     8     9     8     8     8    16    16    16     8     8
     8     8     8     9     8    16    16    16     8     8
     8     8     9     8     8    16    16    16     8     8
     8     9     8     9     8     8     8     8     8     8
     8     8     8     8     8     8     9     8     8     8

2 Call the imreconstruct function to morphologically reconstruct the image. 
In the output image, note how all the intensity fluctuations except the 
intensity peak have been removed.

A = [10    10    10    10    10    10    10    10    10    10;
10    14    14    14    10    10    11    10    11    10;
10    14    14    14    10    10    10    11    10    10;
10    14    14    14    10    10    11    10    11    10;
10    10    10    10    10    10    10    10    10    10;
10    11    10    10    10    18    18    18    10    10;
10    10    10    11    10    18    18    18    10    10;
10    10    11    10    10    18    18    18    10    10;
10    11    10    11    10    10    10    10    10    10;
10 10 10 10 10 10 11 10 10 10];
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recon = imreconstruct(marker, mask)

Understanding Morphological Reconstruction
Morphological reconstruction can be thought of conceptually as repeated 
dilations of the marker image until the contour of the marker image fits under 
the mask image. In this way, the peaks in the marker image “spread out”, or 
dilate. 

This figure illustrates this processing in 1-D. Each successive dilation is 
constrained to lie underneath the mask. When further dilation ceases to 
change the image, processing stops. The final dilation is the reconstructed 
image. (Note: the actual implementation of this operation in the toolbox is done 
much more efficiently. See the imreconstruct reference page for more details.) 
The figure shows the successive dilations of the marker. 

recon =
10    10    10    10    10    10    10    10    10    10
10    12    12    12    10    10    10    10    10    10
10    12    12    12    10    10    10    10    10    10
10    12    12    12    10    10    10    10    10    10
10    10    10    10    10    10    10    10    10    10
10    10    10    10    10    16    16    16    10    10
10    10    10    10    10    16    16    16    10    10
10    10    10    10    10    16    16    16    10    10
10    10    10    10    10    10    10    10    10    10
10    10    10    10    10    10    10    10    10    10
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Repeated Dilations of Marker Image, Constrained by Mask

Marker

Mask

Repeated dilations of marker image

Image
Reconstructed
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Pixel Connectivity
Morphological processing starts at the peaks in the marker image and spreads 
throughout the rest of the image based on the connectivity of the pixels. 
Connectivity defines which pixels are connected to other pixels. 

For example, this binary image contains one foreground object—all the pixels 
that are set to 1. If the foreground is 4-connected, the image has one 
background object, and all the pixels are set to 0. However, if the foreground is 
8-connected, the foreground makes a closed loop and the image has two 
separate background objects: the pixels in the loop and the pixels outside the 
loop. 

0     0     0     0     0     0     0     0
0     1     1     1     1     1     0     0
0     1     0     0     0     1     0     0
0     1     0     0     0     1     0     0
0     1     0     0     0     1     0     0
0     1     1     1     1     0     0     0
0     0     0     0     0     0     0     0
0     0     0     0     0     0     0     0

Defining Connectivity in an Image
The following table lists all the standard two- and three-dimensional 
connectivities supported by the toolbox. See these sections for more 
information:

• “Choosing a Connectivity”

• “Specifying Custom Connectivities”
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Supported Connectivities

Two-Dimensional Connectivities

4-connected Pixels are connected if their edges touch. This 
means that a pair of adjoining pixels are part of the 
same object only if they are both on and are 
connected along the horizontal or vertical direction.

8-connected Pixels are connected if their edges or corners touch. 
This means that if two adjoining pixels are on, they 
are part of the same object, regardless of whether 
they are connected along the horizontal, vertical, or 
diagonal direction.

Three-Dimensional Connectivities

6-connected Pixels are connected if their faces touch. 

18-connected Pixels are connected if their faces or edges touch.

26-connected Pixels are connected if their faces, edges, or corners 
touch.

6 faces

6 faces +
12 edges

6 faces +
12 edges +
8 corners
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Choosing a Connectivity
The type of neighborhood you choose affects the number of objects found in an 
image and the boundaries of those objects. For this reason, the results of many 
morphology operations often differ depending upon the type of connectivity you 
specify. 

For example, if you specify a 4-connected neighborhood, this binary image 
contains two objects; if you specify an 8-connected neighborhood, the image has 
one object. 

0     0     0     0     0     0
0     1     1     0     0     0
0     1     1     0     0     0
0     0     0     1     1     0
0     0     0     1     1     0

Specifying Custom Connectivities
You can also define custom neighborhoods by specifying a 3-by-3-by-...-by-3 
array of 0’s and 1’s. The 1-valued elements define the connectivity of the 
neighborhood relative to the center element. 

For example, this array defines a “North/South” connectivity that has the effect 
of breaking up an image into independent columns. 

CONN = [ 0 1 0; 0 1 0; 0 1 0 ]
CONN =
     0     1     0
     0     1     0
     0     1     0

Note  Connectivity arrays must be symmetric about their center element. 
Also, you can use a 2-D connectivity array with a 3-D image; the connectivity 
affects each “page” in the 3-D image.
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Flood-Fill Operations
The imfill function performs a flood-fill operation on binary and grayscale 
images. For binary images, imfill changes connected background pixels (0’s) 
to foreground pixels (1’s), stopping when it reaches object boundaries. For 
grayscale images, imfill brings the intensity values of dark areas that are 
surrounded by lighter areas up to the same intensity level as surrounding 
pixels. (In effect, imfill removes regional minima that are not connected to the 
image border. See “Finding Areas of High or Low Intensity” for more 
information.) This operation can be useful in removing irrelevant artifacts 
from images. 

This section includes information about

• Specifying the connectivity in flood-fill operations

• Specifying the starting point for binary image fill operations

• Filling holes in binary or grayscale images

Specifying Connectivity
For both binary and grayscale images, the boundary of the fill operation is 
determined by the connectivity you specify.

Note  imfill differs from the other object-based operations in that it operates 
on background pixels. When you specify connectivity with imfill, you are 
specifying the connectivity of the background, not the foreground. 

The implications of connectivity can be illustrated with this matrix.

BW = [ 0     0     0     0     0     0     0     0;
0     1     1     1     1     1     0     0;
0     1     0     0     0     1     0     0;
0     1     0     0     0     1     0     0;
0     1     0     0     0     1     0     0;
0     1     1     1     1     0     0     0;
0     0     0     0     0     0     0     0;
0     0     0     0     0     0     0     0];

If the background is 4-connected, this binary image contains two separate 
background elements (the part inside the loop and the part outside). If the 
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background is 8-connected, the pixels connect diagonally, and there is only one 
background element.

Specifying the Starting Point
For binary images, you can specify the starting point of the fill operation by 
passing in the location subscript or by using imfill in interactive mode, 
selecting starting pixels with a mouse. See the reference page for imfill for 
more information about using imfill interactively.

For example, if you call imfill, specifying the pixel BW(4,3) as the starting 
point, imfill only fills the inside of the loop because, by default, the 
background is 4-connected. 

imfill(BW,[4 3])

ans =
0     0     0     0     0     0     0     0
0     1     1     1     1     1     0     0
0     1     1     1     1     1     0     0
0     1     1     1     1     1     0     0
0     1     1     1     1     1     0     0
0     1     1     1     1     0     0     0
0     0     0     0     0     0     0     0
0     0     0     0     0     0     0     0

If you specify the same starting point, but use an 8-connected background 
connectivity, imfill fills the entire image.

imfill(BW,[4 3],8)

ans =
1     1     1     1     1     1     1     1
1     1     1     1     1     1     1     1
1     1     1     1     1     1     1     1
1     1     1     1     1     1     1     1
1     1     1     1     1     1     1     1
1     1     1     1     1     1     1     1
1     1     1     1     1     1     1     1
1     1     1     1     1     1     1     1
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Filling Holes
A common use of the flood-fill operation is to fill holes in images. For example, 
suppose you have an image, binary or grayscale, in which the foreground 
objects represent spheres. In the image, these objects should appear as disks, 
but instead are donut shaped because of reflections in the original photograph. 
Before doing any further processing of the image, you might want to first fill in 
the “donut holes” using imfill.

Because the use of flood-fill to fill holes is so common, imfill includes special 
syntax to support it for both binary and grayscale images. In this syntax, you 
just specify the argument 'holes'; you do not have to specify starting locations 
in each hole. 

To illustrate, this example fills holes in a grayscale image of a spinal column. 

[X,map] = imread('spine.tif');
I = ind2gray(X,map);
Ifill = imfill(I,'holes');
imshow(I);figure, imshow(Ifill)

Original After Filling Holes
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Finding Peaks and Valleys
Grayscale images can be thought of in three dimensions: the x- and y-axes 
represent pixel positions and the z-axis represents the intensity of each pixel. 
In this interpretation, the intensity values represent elevations, as in a 
topographical map. The areas of high intensity and low intensity in an image, 
peaks and valleys in topographical terms, can be important morphological 
features because they often mark relevant image objects. 

For example, in an image of several spherical objects, points of high intensity 
could represent the tops of the objects. Using morphological processing, these 
maxima can be used to identify objects in an image. 

This section covers these topics: 

• “Understanding the Maxima and Minima Functions” 

• “Finding Areas of High or Low Intensity” on page 9-30

• “Suppressing Minima and Maxima” on page 9-31

• “Imposing a Minimum” on page 9-33

Understanding the Maxima and Minima Functions
An image can have multiple regional maxima or minima but only a single 
global maximum or minimum. Determining image peaks or valleys can be used 
to create marker images that are used in morphological reconstruction. 

This figure illustrates the concept in 1-D. 

Regional maxima

Regional minima Global minimum

Global maximum
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Finding Areas of High or Low Intensity
The toolbox includes functions that you can use to find areas of high or low 
intensity in an image:

• The imregionalmax and imregionalmin functions identify all regional 
minima or maxima. 

• The imextendedmax and imextendedmin functions identify all regional 
minima or maxima that are greater than or less than a specified threshold. 

The functions accept a grayscale image as input and return a binary image as 
output. In the output binary image, the regional minima or maxima are set to 
1; all other pixels are set to 0.

For example, this simple image contains two primary regional maxima, the 
blocks of pixels containing the value 13 and 18, and several smaller maxima, 
set to 11.

The binary image returned by imregionalmax pinpoints all these regional 
maxima.

A = [10    10    10    10    10    10    10    10    10    10;
10    13    13    13    10    10    11    10    11    10;
10    13    13    13    10    10    10    11    10    10;
10    13    13    13    10    10    11    10    11    10;
10    10    10    10    10    10    10    10    10    10;
10    11    10    10    10    18    18    18    10    10;
10    10    10    11    10    18    18    18    10    10;
10    10    11    10    10    18    18    18    10    10;
10    11    10    11    10    10    10    10    10    10;
10 10 10 10 10 10 11 10 10 10];
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B = imregionalmax(A)

You might want only to identify areas of the image where the change in 
intensity is extreme; that is, the difference between the pixel and neighboring 
pixels is greater than (or less than) a certain threshold. For example, to find 
only those regional maxima in the sample image, A, that are at least two units 
higher than their neighbors, use imextendedmax.

B = imextendedmax(A,2)

Suppressing Minima and Maxima
In an image, every small fluctuation in intensity represents a regional 
minimum or maximum. You might only be interested in significant minima or 
maxima and not in these smaller minima and maxima caused by background 
texture. 

To remove the less significant minima and maxima but retain the significant 
minima and maxima, use the imhmax or imhmin function. With these functions, 

B =
0     0     0     0     0     0     0     0     0     0

     0     1     1     1     0     0     1     0     1     0
     0     1     1     1     0     0     0     1     0     0
     0     1     1     1     0     0     1     0     1     0
     0     0     0     0     0     0     0     0     0     0
     0     1     0     0     0     1     1     1     0     0
     0     0     0     1     0     1     1     1     0     0
     0     0     1     0     0     1     1     1     0     0
     0     1     0     1     0     0     0     0     0     0
     0     0     0     0     0     0     1     0     0     0

B =
     0     0     0     0     0     0     0     0     0     0
     0     1     1     1     0     0     0     0     0     0
     0     1     1     1     0     0     0     0     0     0
     0     1     1     1     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     1     1     1     0     0
     0     0     0     0     0     1     1     1     0     0
     0     0     0     0     0     1     1     1     0     0
     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0
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you can specify a contrast criteria or threshold level, h, that suppresses all 
maxima whose height is less than h or whose minima are greater than h. 

Note  The imregionalmin, imregionalmax, imextendedmin, and 
imextendedmax functions return a binary image that marks the locations of 
the regional minima and maxima in an image. The imhmax and imhmin 
functions produce an altered image. 

For example, this simple image contains two primary regional maxima, the 
blocks of pixels containing the value 14 and 18, and several smaller maxima, 
set to 11.

To eliminate all regional maxima except the two significant maxima, use 
imhmax, specifying a threshold value of 2. Note that imhmax only affects the 
maxima; none of the other pixel values are changed. The two significant 
maxima remain, although their heights are reduced.

A = [10    10    10    10    10    10    10    10    10    10;
    10    14    14    14    10    10    11    10    11    10;
    10    14    14    14    10    10    10    11    10    10;
    10    14    14    14    10    10    11    10    11    10;
    10    10    10    10    10    10    10    10    10    10;
    10    11    10    10    10    18    18    18    10    10;
    10    10    10    11    10    18    18    18    10    10;
    10    10    11    10    10    18    18    18    10    10;
    10    11    10    11    10    10    10    10    10    10;
    10 10 10 10 10 10 11 10 10 10];
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B = imhmax(A,2)

This figure takes the second row from the sample image to illustrate in 1-D how 
imhmax changes the profile of the image.

Imposing a Minimum
You can emphasize specific minima (dark objects) in an image using the 
imimposemin function. The imimposemin function uses morphological 
reconstruction to eliminate all minima from the image except the minima you 
specify.

To illustrate the process of imposing a minimum, this code creates a simple 
image containing two primary regional minima and several other regional 
minima. 

mask = uint8(10*ones(10,10));
mask(6:8,6:8) = 2;
mask(2:4,2:4) = 7;

B =
    10    10    10    10    10    10    10    10    10    10
    10    12    12    12    10    10    10    10    10    10
    10    12    12    12    10    10    10    10    10    10
    10    12    12    12    10    10    10    10    10    10
    10    10    10    10    10    10    10    10    10    10
    10    10    10    10    10    16    16    16    10    10
    10    10    10    10    10    16    16    16    10    10
    10    10    10    10    10    16    16    16    10    10
    10    10    10    10    10    10    10    10    10    10
    10    10    10    10    10    10    10    10    10    10

Original profile

h-maxima transform
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mask(3,3) = 5;
mask(2,9) = 9
mask(3,8) = 9
mask(9,2) = 9
mask(8,3) = 9

Creating a Marker Image
To obtain an image that emphasizes the two deepest minima and removes all 
others, create a marker image that pinpoints the two minima of interest. You 
can create the marker image by explicitly setting certain pixels to specific 
values or by using other morphological functions to extract the features you 
want to emphasize in the mask image.

This example uses imextendedmin to get a binary image that shows the 
locations of the two deepest minima. 

marker = imextendedmin(mask,1)

mask = 10    10    10    10    10    10    10    10    10    10
10     7     7     7    10    10    10    10     9    10
10     7     6     7    10    10    10     9    10    10
10     7     7     7    10    10    10    10    10    10
10    10    10    10    10    10    10    10    10    10
10    10    10    10    10     2     2     2    10    10
10    10    10    10    10     2     2     2    10    10
10    10     9    10    10     2     2     2    10    10
10     9    10    10    10    10    10    10    10    10
10    10    10    10    10    10    10    10    10    10

marker = 0     0     0     0     0     0     0     0     0     0
0     0     0     0     0     0     0     0     0     0
0     0     1     0     0     0     0     0     0     0
0     0     0     0     0     0     0     0     0     0
0     0     0     0     0     0     0     0     0     0
0     0     0     0     0     1     1     1     0     0
0     0     0     0     0     1     1     1     0     0
0     0     0     0     0     1     1     1     0     0
0     0     0     0     0     0     0     0     0     0
0     0     0     0     0     0     0     0     0     0
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Applying the Marker Image to the Mask
Now use imimposemin to create new minima in the mask image at the points 
specified by the marker image. Note how imimposemin sets the values of pixels 
specified by the marker image to the lowest value supported by the datatype (0 
for uint8 values). imimposemin also changes the values of all the other pixels 
in the image to eliminate the other minima. 

I = imimposemin(mask,marker)
I =

11    11    11    11    11    11    11    11    11    11
    11     8     8     8    11    11    11    11    11    11
    11     8     0     8    11    11    11    11    11    11
    11     8     8     8    11    11    11    11    11    11
    11    11    11    11    11    11    11    11    11    11
    11    11    11    11    11     0     0     0    11    11
    11    11    11    11    11     0     0     0    11    11
    11    11    11    11    11     0     0     0    11    11
    11    11    11    11    11    11    11    11    11    11
    11    11    11    11    11    11    11    11    11    11

This figure illustrates in 1-D how imimposemin changes the profile of row 2 of 
the image.
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Imposing a Minimum

Three regional minima

Single minimum

Image after minima 

Original image

Original image

Marker image
superimposed

imposition

Original image

Single minimum
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Distance Transform
The distance transform provides a metric or measure of the separation of 
points in the image. The Image Processing Toolbox provides a function, bwdist, 
that calculates the distance between each pixel that is set to off (0) and the 
nearest nonzero pixel for binary images. 

The bwdist function supports several distance metrics, listed in the following 
table.

Distance Metrics

Distance Metric Description Illustration

Euclidean The Euclidean distance is the 
straight-line distance between two 
pixels. 

City Block The city block distance metric 
measures the path between the 
pixels based on a 4-connected 
neighborhood. Pixels whose edges 
touch are 1 unit apart; pixels 
diagonally touching are 2 units 
apart. 
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This example creates a binary image containing two intersecting circular 
objects. 

center1 = -10; 
center2 = -center1; 
dist = sqrt(2*(2*center1)^2); 
radius = dist/2 * 1.4; 
lims = [floor(center1-1.2*radius) ceil(center2+1.2*radius)]; 
[x,y] = meshgrid(lims(1):lims(2)); 
bw1 = sqrt((x-center1).^2 + (y-center1).^2) <= radius; 
bw2 = sqrt((x-center2).^2 + (y-center2).^2) <= radius; 
bw = bw1 | bw2; 
figure, imshow(bw), title('bw') 

Chessboard The chessboard distance metric 
measures the path between the 
pixels based on an 8-connected 
neighborhood. Pixels whose edges 
or corners touch are 1 unit apart. 

Quasi-Euclidean The quasi-Euclidean metric 
measures the total Euclidean 
distance along a set of horizontal, 
vertical, and diagonal line 
segments. 

Distance Metrics (Continued)

Distance Metric Description Illustration
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To compute the distance transform of the complement of the binary image, use 
the bwdist function. In the image of the distance transform, note how the 
centers of the two circular areas are white.

D = bwdist(~bw); 
figure, imshow(D,[]), title('Distance transform of ~bw') 
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Objects, Regions, and Feature Measurement 
The toolbox includes several functions that return information about the 
features in a binary image, including

• Connected-component labeling, and using the label matrix to get statistics 
about an image

• Selecting objects in a binary image

• Finding the area of the foreground of a binary image

• Finding the Euler number of a binary image

Connected-Component Labeling 
The bwlabel and the bwlabeln functions perform connected-component 
labeling, which is a method for identifying each object in a binary image. The 
bwlabel function supports 2-D inputs only; the bwlabeln function supports 
inputs of any dimension. 

These functions return a matrix, called a label matrix. A label matrix is an 
image, the same size as the input image, in which the objects in the input image 
are distinguished by different integer values in the output matrix. For 
example, bwlabel can identify the objects in this binary image.

BW = [0     0     0     0     0     0     0     0;
0     1     1     0     0     1     1     1;
0     1     1     0     0     0     1     1;
0     1     1     0     0     0     0     0;
0     0     0     1     1     0     0     0;
0     0     0     1     1     0     0     0;
0     0     0     1     1     0     0     0;
0     0     0     0     0     0     0     0];
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X = bwlabel(BW,4)
X =

0     0     0     0     0     0     0     0
0     1     1     0     0     3     3     3
0     1     1     0     0     0     3     3
0     1     1     0     0     0     0     0
0     0     0     2     2     0     0     0
0     0     0     2     2     0     0     0
0     0     0     2     2     0     0     0
0     0     0     0     0     0     0     0

In the output matrix, the 1’s represent one object, the 2’s a second object, and 
the 3’s a third. (If you had used 8-connected neighborhoods (the default), there 
would be only two objects, because the first and second objects would be a single 
object, connected along the diagonal.)

Viewing a Label Matrix
The label matrix returned by bwlabel or bwlabeln is of class double; it is not 
a binary image. One way to view it is to display it as a pseudocolor indexed 
image, using label2rgb. In the pseudocolor image, each number that identifies 
an object in the label matrix is used as an index value into the associated 
colormap matrix. When you view a label matrix as an RGB image, the objects 
in the image are easier to distinguish. 

To illustrate this technique, this example uses label2rgb to view the label 
matrix X. The call to label2rgb specifies one of the standard MATLAB 
colormaps, jet. The third argument, 'k', specifies the background color 
(black). 

X = bwlabel(BW1,4);
RGB = label2rgb(X, @jet, 'k');
imshow(RGB,'notruesize')
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Using Color to Distinguish Objects in a Binary Image

Selecting Objects in a Binary Image
You can use the bwselect function to select individual objects in a binary 
image. You specify pixels in the input image, and bwselect returns a binary 
image that includes only those objects from the input image that contain one of 
the specified pixels.

You can specify the pixels either noninteractively or with a mouse. For 
example, suppose you want to select objects in the image displayed in the 
current axes. You type

BW2 = bwselect;

The cursor changes to crosshairs when it is over the image. Click the objects 
you want to select; bwselect displays a small star over each pixel you click. 
When you are done, press Return. bwselect returns a binary image consisting 
of the objects you selected, and removes the stars.

See the reference page for bwselect for more information.

Finding the Area of the Foreground of a Binary 
Image 
The bwarea function returns the area of a binary image. The area is a measure 
of the size of the foreground of the image. Roughly speaking, the area is the 
number of on pixels in the image.
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bwarea does not simply count the number of pixels set to on, however. Rather, 
bwarea weights different pixel patterns unequally when computing the area. 
This weighting compensates for the distortion that is inherent in representing 
a continuous image with discrete pixels. For example, a diagonal line of 50 
pixels is longer than a horizontal line of 50 pixels. As a result of the weighting 
bwarea uses, the horizontal line has area of 50, but the diagonal line has area 
of 62.5. 

This example uses bwarea to determine the percentage area increase in 
circbw.tif that results from a dilation operation.

BW = imread('circbw.tif'); 
SE = ones(5);
BW2 = imdilate(BW,SE);
increase = (bwarea(BW2) - bwarea(BW))/bwarea(BW);
increase =

    0.3456

See the reference page for bwarea for more information about the weighting 
pattern.

Finding the Euler Number of a Binary Image
The bweuler function returns the Euler number for a binary image. The Euler 
number is a measure of the topology of an image. It is defined as the total 
number of objects in the image minus the number of holes in those objects. You 
can use either 4- or 8-connected neighborhoods. 

This example computes the Euler number for the circuit image, using 
8-connected neighborhoods.

BW1 = imread('circbw.tif'); 
eul = bweuler(BW1,8)

eul =

   -85

In this example, the Euler number is negative, indicating that the number of 
holes is greater than the number of objects.
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Lookup Table Operations 
Certain binary image operations can be implemented most easily through 
lookup tables. A lookup table is a column vector in which each element 
represents the value to return for one possible combination of pixels in a 
neighborhood.

You can use the makelut function to create lookup tables for various 
operations. makelut creates lookup tables for 2-by-2 and 3-by-3 neighborhoods. 
This figure illustrates these types of neighborhoods. Each neighborhood pixel 
is indicated by an x, and the center pixel is the one with a circle.

For a 2-by-2 neighborhood, there are 16 possible permutations of the pixels in 
the neighborhood. Therefore, the lookup table for this operation is a 16-element 
vector. For a 3-by-3 neighborhood, there are 512 permutations, so the lookup 
table is a 512-element vector.

Once you create a lookup table, you can use it to perform the desired operation 
by using the applylut function.

The example below illustrates using lookup table operations to modify an 
image containing text. You begin by writing a function that returns 1 if three 
or more pixels in the 3-by-3 neighborhood are 1; otherwise, it returns 0. You 
then call makelut, passing in this function as the first argument, and using the 
second argument to specify a 3-by-3 lookup table.

f = inline('sum(x(:)) >= 3');
lut = makelut(f,3);

lut is returned as a 512-element vector of 1’s and 0’s. Each value is the output 
from the function for one of the 512 possible permutations.

x

x x

x

xx

x

x

x x

x x x

2-by-2 neighborhood 3-by-3 neighborhood
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You then perform the operation using applylut.

BW1 = imread('text.png'); 
BW2 = applylut(BW1,lut);
imshow(BW1)
figure, imshow(BW2)

Image Before and After Applying Lookup Table Operation

For information about how applylut maps pixel combinations in the image to 
entries in the lookup table, see the reference page for applylut.

Note  You cannot use makelut and applylut for neighborhoods of sizes other 
than 2-by-2 or 3-by-3. These functions support only 2-by-2 and 3-by-3 
neighborhoods, because lookup tables are not practical for neighborhoods 
larger than 3-by-3. For example, a lookup table for a 4-by-4 neighborhood 
would have 65,536 entries.
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10
Analyzing and Enhancing 
Images

This chapter describes the Image Processing Toolbox functions that support a range of standard 
image processing operations for analyzing and enhancing images. 

Terminology (p. 10-2) Provides definitions of image processing terms used in 
this section

Pixel Values and Statistics (p. 10-3) Describes the toolbox functions that return information 
about the data values that make up an image

Image Analysis (p. 10-12) Describes the toolbox functions that return information 
about the structure of an image

Intensity Adjustment (p. 10-21) Describes the toolbox functions used to improve an image 
by intensity adjustment 

Noise Removal (p. 10-34) Describes the toolbox functions used to improve an image 
by removing noise 
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Terminology
An understanding of the following terms will help you to use this chapter.

Term Definition

adaptive filter Filter whose properties vary across an image depending on 
the local characteristics of the image pixels.

contour Path in an image along which the image intensity values are 
equal to a constant.

edge Curve that follows a path of rapid change in image intensity. 
Edges are often associated with the boundaries of objects in a 
scene. Edge detection is used to identify the edges in an 
image.

property Quantitative measurement of an image or image region. 
Examples of image region properties include centroid, 
bounding box, and area.

histogram Graph used in image analysis that shows the distribution of 
intensities in an image. You can use the information in a 
histogram to choose an appropriate enhancement operation. 
For example, if an image histogram shows that the range of 
intensity values is small, you can use an intensity adjustment 
function to spread the values across a wider range.

noise Errors in the image acquisition process that result in pixel 
values that do not reflect the true intensities of the real scene. 

profile Set of intensity values taken from regularly spaced points 
along a line segment or multiline path in an image. For points 
that do not fall on the center of a pixel, the intensity values 
are interpolated.

quadtree decomposition Image analysis technique that partitions an image into 
homogeneous blocks.
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Pixel Values and Statistics 
The Image Processing Toolbox provides several functions that return 
information about the data values that make up an image. These functions 
return information about image data in various forms, including

• Data values for selected pixels (pixval, impixel) 

• Data values along a path in an image (improfile)

• Contour plot of the image data (imcontour)

• Histogram of the image data (imhist)

• Summary statistics for the image data (mean2, std2, corr2)

• Feature measurements for image regions (regionprops)

Pixel Selection
The toolbox includes two functions that provide information about the color 
data values of image pixels you specify:

• The pixval function interactively displays the data values for pixels as you 
move the cursor over the image. pixval can also display the Euclidean 
distance between two pixels. 

• The impixel function returns the data values for a selected pixel or set of 
pixels. You can supply the coordinates of the pixels as input arguments, or 
you can select pixels using a mouse.

Note  For indexed images, pixval and impixel both show the RGB values 
stored in the colormap, not the index values.

To use pixval, you first display an image and then enter the pixval command. 
pixval installs a black bar at the bottom of the figure, which displays the (x,y) 
coordinates for whatever pixel the cursor is currently over and the color data 
for that pixel.

If you click the image and hold down the mouse button while you move the 
cursor, pixval also displays the Euclidean distance between the point you 
clicked and the current cursor location. pixval draws a line between these 



10 Analyzing and Enhancing Images

10-4

points to indicate the distance being measured. When you release the mouse 
button, the line and the distance display disappear.

pixval gives you more immediate results than impixel, but impixel has the 
advantage of returning its results in a variable, and it can be called either 
interactively or noninteractively. If you call impixel with no input arguments, 
the cursor changes to crosshairs when it is over the image. You can then click 
the pixels of interest; impixel displays a small star over each pixel you select. 
When you are done selecting pixels, press Return. impixel returns the color 
values for the selected pixels, and the stars disappear.

This example illustrates how to use impixel: 

1 Display an image. 

imshow canoe.tif

2 Call impixel to select points. 

vals = impixel

Click several points in the image to select pixels. When you are finished 
selecting points, press Return. 

*

*
*
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The impixel function returns the pixel values in vals.

vals =

0.1294    0.1294    0.1294
0.5176         0         0
0.7765    0.6118    0.4196

Notice that the second pixel, which is part of the canoe, is pure red; its green 
and blue values are both 0.

Intensity Profile
The improfile function calculates and plots the intensity values along a line 
segment or a multiline path in an image. You can supply the coordinates of the 
line segments as input arguments, or you can define the desired path using a 
mouse. In either case, improfile uses interpolation to determine the values of 
equally spaced points along the path. (By default, improfile uses 
nearest-neighbor interpolation, but you can specify a different method. For 
more information, see “Interpolation” on page 4-3.) improfile works best with 
intensity and RGB images.

For a single line segment, improfile plots the intensity values in a 
two-dimensional view. For a multiline path, improfile plots the intensity 
values in a three-dimensional view.

If you call improfile with no arguments, the cursor changes to crosshairs 
when it is over the image. You can then specify line segments by clicking the 
endpoints; improfile draws a line between each two consecutive points you 
select. When you finish specifying the path, press Return. improfile displays 
the plot in a new figure. 

In this example, you call improfile and specify a single line with the mouse. 
In this figure, the line is shown in red, and is drawn from top to bottom.

I = fitsread('solarspectra.fts');
imshow(I,[]);
improfile
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improfile displays a plot of the data along the line. Notice the peaks and 
valleys and how they correspond to the light and dark bands in the image.

Plot Produced by improfile

The example below shows how improfile works with an RGB image. Use 
imshow to display the image in a figure window. Call improfile without any 
arguments and trace a line segment in the image interactively. In the figure, 

Image Courtesy of Ann Walker
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the black line indicates a line segment drawn from top to bottom. Double-click 
to end the line segment. 

imshow peppers.png
improfile

RGB Image with Line Segment Drawn with improfile

The improfile function displays a plot of the intensity values along the line 
segment. The plot includes separate lines for the red, green, and blue 
intensities. In the plot, notice how low the blue values are at the beginning of 
the plot where the line traverses the orange pepper. 
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Plot of Intensity Values Along a Line Segment in an RGB Image

Image Contours
You can use the toolbox function imcontour to display a contour plot of the data 
in an intensity image. This function is similar to the contour function in 
MATLAB, but it automatically sets up the axes so their orientation and aspect 
ratio match the image.

This example displays an intensity image of grains of rice and a contour plot of 
the image data:

1 Read an intensity image and display it.

I = imread('rice.png');
imshow(I)
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2 Display a contour plot of the intensity image.

figure, imcontour(I,3)

You can use the clabel function to label the levels of the contours. See the 
description of clabel in the MATLAB Function Reference for details.

Image Histogram
An image histogram is a chart that shows the distribution of intensities in an 
indexed or intensity image. The image histogram function imhist creates this 
plot by making n equally spaced bins, each representing a range of data values. 
It then calculates the number of pixels within each range. 
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The following example displays an image of grains of rice and a histogram 
based on 64 bins. The histogram shows a peak at around 100, corresponding to 
the dark gray background in the image. For information about how to modify 
an image by changing the distribution of its histogram, see “Adjusting 
Intensity Values to a Specified Range” on page 10-22.

1 Read image and display it.

I = imread('rice.png');
imshow(I)

2 Display histogram of image.

figure, imhist(I)
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Summary Statistics
You can compute standard statistics of an image using the mean2, std2, and 
corr2 functions. mean2 and std2 compute the mean and standard deviation of 
the elements of a matrix. corr2 computes the correlation coefficient between 
two matrices of the same size. 

These functions are two-dimensional versions of the mean, std, and corrcoef 
functions described in the MATLAB Function Reference.

Region Property Measurement
You can use the regionprops function to compute properties for image regions. 
For example, regionprops can measure such properties as the area, center of 
mass, and bounding box for a region you specify. See the reference page for 
regionprops for more information.
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Image Analysis
Image analysis techniques return information about the structure of an image. 
This section describes toolbox functions that you can use for these image 
analysis techniques:

• “Edge Detection”

• “Boundary Tracing” on page 10-13

• “Quadtree Decomposition” on page 10-18

Edge Detection
You can use the edge function to detect edges, which are those places in an 
image that correspond to object boundaries. To find edges, this function looks 
for places in the image where the intensity changes rapidly, using one of these 
two criteria:

• Places where the first derivative of the intensity is larger in magnitude than 
some threshold

• Places where the second derivative of the intensity has a zero crossing

edge provides a number of derivative estimators, each of which implements one 
of the definitions above. For some of these estimators, you can specify whether 
the operation should be sensitive to horizontal edges, vertical edges, or both. 
edge returns a binary image containing 1’s where edges are found and 0’s 
elsewhere.

The most powerful edge-detection method that edge provides is the Canny 
method. The Canny method differs from the other edge-detection methods in 
that it uses two different thresholds (to detect strong and weak edges), and 
includes the weak edges in the output only if they are connected to strong 
edges. This method is therefore less likely than the others to be fooled by noise, 
and more likely to detect true weak edges.

The following example illustrates the power of the Canny edge detector by 
showing the results of applying the Sobel and Canny edge detectors to the same 
image: 

1 Read image and display it.

I = imread('coins.png');
imshow(I)
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2 Apply the Sobel and Canny edge detectors to the image and display them.

BW1 = edge(I,'sobel');
BW2 = edge(I,'canny');
imshow(BW1)
figure, imshow(BW2)

For an interactive demonstration of edge detection, try running edgedemo.

Boundary Tracing
The toolbox includes two functions you can use to find the boundaries of objects 
in a binary image: 

• bwtraceboundary
• bwboundaries

Sobel Filter Canny Filter
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The bwtraceboundary function returns the row and column coordinates of all 
the pixels on the border of an object in an image. You must specify the location 
of a border pixel on the object as the starting point for the trace.

The bwboundaries function returns the row and column coordinates of border 
pixels of all the objects in an image. 

For both functions, nonzero pixels belong to an object and pixels with the value 
0 (zero) constitute the background.

The following example uses bwtraceboundary to trace the border of an object 
in a binary image and then uses bwboundaries to trace the borders of all the 
objects in the image: 

1 Read image and display it.

I = imread('coins.png');
imshow(I)

2 Convert the image to a binary image. bwtraceboundary and bwboundaries 
only work with binary images.

BW = im2bw(I);
imshow(BW)
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3 Determine the row and column coordinates of a pixel on the border of the 
object you want to trace. bwboundary uses this point as the starting location 
for the boundary tracing.

dim = size(BW)
col = round(dim(2)/2)-90;
row = min(find(BW(:,col)))

4 Call bwtraceboundary to trace the boundary from the specified point. As 
required arguments, you must specify a binary image, the row and column 
coordinates of the starting point, and the direction of the first step. The 
example specifies north ('N'). For information about this parameter, see 
“Choosing the First Step and Direction for Boundary Tracing” on 
page 10-17. 

boundary = bwtraceboundary(BW,[row, col],'N');

5 Display the original grayscale image and use the coordinates returned by 
bwtraceboundary to plot the border on the image.

imshow(I)
hold on;
plot(boundary(:,2),boundary(:,1),'g','LineWidth',3);
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6 To trace the boundaries of all the coins in the image, use the bwboundaries 
function. By default, bwboundaries finds the boundaries of all objects in an 
image, including objects inside other objects. In the binary image used in 
this example, some of the coins contain black areas that bwboundaries 
interprets as separate objects. To ensure that bwboundaries only traces the 
coins, use imfill to fill the area inside each coin. 

BW_filled = imfill(BW,'holes');
boundaries = bwboundaries(BW_filled);

bwboundaries returns a cell array, where each cell contains the row/column 
coordinates for an object in the image. 

7 Plot the borders of all the coins on the original grayscale image using the 
coordinates returned by bwboundaries.

for k=1:10
b = boundaries{k};
plot(b(:,2),b(:,1),'g','LineWidth',3);

end

Object with traced boundary
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Choosing the First Step and Direction for Boundary Tracing
For certain objects, you must take care when selecting the border pixel you 
choose as the starting point and the direction you choose for the first step 
parameter (north, south, etc.).

For example, if an object contains a hole and you select a pixel on a thin part of 
the object as the starting pixel, you can trace the outside border of the object or 
the inside border of the hole, depending on the direction you choose for the first 
step. For filled objects, the direction you select for the first step parameter is 
not as important. 

To illustrate, this figure shows the pixels traced when the starting pixel is on 
a thin part of the object and the first step is set to north and south. The 
connectivity is set to 8 (the default).
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Impact of First Step and Direction Parameters on Boundary Tracing

Quadtree Decomposition 
Quadtree decomposition is an analysis technique that involves subdividing an 
image into blocks that are more homogeneous than the image itself. This 
technique reveals information about the structure of the image. It is also useful 
as the first step in adaptive compression algorithms.

FirstStep = North Direction = Clockwise

FirstStep = South Direction = Clockwise

= Boundary pixel

= Starting point
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You can perform quadtree decomposition using the qtdecomp function. This 
function works by dividing a square image into four equal-sized square blocks, 
and then testing each block to see if it meets some criterion of homogeneity 
(e.g., if all the pixels in the block are within a specific dynamic range). If a block 
meets the criterion, it is not divided any further. If it does not meet the 
criterion, it is subdivided again into four blocks, and the test criterion is applied 
to those blocks. This process is repeated iteratively until each block meets the 
criterion. The result might have blocks of several different sizes.

For example, suppose you want to perform quadtree decomposition on a 
128-by-128 intensity image. The first step is to divide the image into four 
64-by-64 blocks. You then apply the test criterion to each block; for example, 
the criterion might be this threshold calculation.

max(block(:))  min(block(:)) <= 0.2

If one of the blocks meets this criterion, it is not divided any further; it is 
64-by-64 in the final decomposition. If a block does not meet the criterion, it is 
then divided into four 32-by-32 blocks, and the test is then applied to each of 
these blocks. The blocks that fail to meet the criterion are then divided into four 
16-by-16 blocks, and so on, until all blocks pass. Some of the blocks can be as 
small as 1-by-1, unless you specify otherwise.

To perform this quadtree decomposition, call the qtdecomp function, specifying 
the image and the threshold value as arguments. 

S = qtdecomp(I,0.27)

You specify the threshold as a value between 0 and 1, regardless of the class of 
I. If I is uint8, qtdecomp multiplies the threshold value by 255 to determine 
the actual threshold to use. If I is uint16, qtdecomp multiplies the threshold 
value by 65535.

S is returned as a sparse matrix, the same size as I. The nonzero elements of S 
represent the upper left corners of the blocks; the value of each nonzero 
element indicates the block size. 

The example below shows an image and a representation of its quadtree 
decomposition. (To see how this representation was created, see the example 
on the qtdecomp reference page.) Each black square represents a homogeneous 
block, and the white lines represent the boundaries between blocks. Notice how 
the blocks are smaller in areas corresponding to large changes in intensity in 
the image.



10 Analyzing and Enhancing Images

10-20

Image and a Representation of Its Quadtree Decomposition

You can also supply qtdecomp with a function (rather than a threshold value) 
for deciding whether to split blocks; for example, you might base the decision 
on the variance of the block. See the reference page for qtdecomp for more 
information. For an interactive demonstration of quadtree decomposition, try 
running qtdemo.

Image Courtesy of NASA
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Intensity Adjustment
Image enhancement techniques are used to improve an image, where 
“improve” is sometimes defined objectively (e.g., increase the signal-to-noise 
ratio), and sometimes subjectively (e.g., make certain features easier to see by 
modifying the colors or intensities).

Intensity adjustment is an image enhancement technique that maps an 
image’s intensity values to a new range. To illustrate, this figure shows a 
low-contrast image with its histogram. Notice in the histogram of the image 
how all the values gather in the center of the range. 

I = imread('pout.tif');
imshow(I)
figure, imhist(I,64)

If you remap the data values to fill the entire intensity range [0, 255], you can 
increase the contrast of the image. The following sections describe several 
intensity adjustment techniques, including

• “Adjusting Intensity Values to a Specified Range” on page 10-22

• “Histogram Equalization” on page 10-26

• “Contrast-Limited Adaptive Histogram Equalization” on page 10-28

• “Decorrelation Stretching” on page 10-29
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The functions described in this section apply primarily to intensity images. 
However, some of these functions can be applied to color images as well. For 
information about how these functions work with color images, see the 
reference pages for the individual functions.

Adjusting Intensity Values to a Specified Range
You can adjust the intensity values in an image using the imadjust function, 
where you specify the range of intensity values in the output image. 

For example, this code increases the contrast in a low-contrast intensity image 
by remapping the data values to fill the entire intensity range [0, 255].

I = imread('pout.tif');
J = imadjust(I);
imshow(J)
figure, imhist(J,64)

This figure displays the adjusted image and its histogram. Notice the increased 
contrast in the image, and that the histogram now fills the entire range.

Adjusted Image and Its Histogram

Specifying the Adjustment Limits
You can optionally specify the range of the input values and the output values 
using imadjust. You specify these ranges in two vectors that you pass to 
imadjust as arguments. The first vector specifies the low- and high-intensity 



Intensity Adjustment

10-23

values that you want to map. The second vector specifies the scale over which 
you want to map them. 

Note  Note that you must specify the intensities as values between 0 and 1 
regardless of the class of I. If I is uint8, the values you supply are multiplied 
by 255 to determine the actual values to use; if I is uint16, the values are 
multiplied by 65535. To learn about an alternative way to set these limits 
automatically, see “Setting the Adjustment Limits Automatically” on 
page 10-24.

For example, you can decrease the contrast of an image by narrowing the range 
of the data. In the example below, the man’s coat is too dark to reveal any 
detail. imadjust maps the range [0,51] in the uint8 input image to [128,255] 
in the output image. This brightens the image considerably, and also widens 
the dynamic range of the dark portions of the original image, making it much 
easier to see the details in the coat. Note, however, that because all values 
above 51 in the original image are mapped to 255 (white) in the adjusted image, 
the adjusted image appears washed out.

I = imread('cameraman.tif');
J = imadjust(I,[0 0.2],[0.5 1]);
imshow(I)
figure, imshow(J)

Image After Remapping and Widening the Dynamic Range

Image Courtesy of MIT
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Setting the Adjustment Limits Automatically
To use imadjust, you must typically perform two steps:

1 View the histogram of the image to determine the intensity value limits.

2 Specify these limits as a fraction between 0.0 and 1.0 so that you can pass 
them to imadjust in the [low_in high_in] vector.

For a more convenient way to specify these limits, use the stretchlim function. 
(The imadjust function uses stretchlim for its simplest syntax, imadjust(I).)

This function calculates the histogram of the image and determines the 
adjustment limits automatically. The stretchlim function returns these 
values as fractions in a vector that you can pass as the [low_in high_in] 
argument to imadjust; for example: 

I = imread('rice.png');
J = imadjust(I,stretchlim(I),[0 1]);

By default, stretchlim uses the intensity values that represent the bottom 1% 
(0.01) and the top 1% (0.99) of the range as the adjustment limits. By trimming 
the extremes at both ends of the intensity range, stretchlim makes more room 
in the adjusted dynamic range for the remaining intensities. But you can 
specify other range limits as an argument to stretchlim. See the stretchlim 
reference page for more information.

Gamma Correction
imadjust maps low to bottom, and high to top. By default, the values between 
low and high are mapped linearly to values between bottom and top. For 
example, the value halfway between low and high corresponds to the value 
halfway between bottom and top.

imadjust can accept an additional argument that specifies the gamma 
correction factor. Depending on the value of gamma, the mapping between 
values in the input and output images might be nonlinear. For example, the 
value halfway between low and high might map to a value either greater than 
or less than the value halfway between bottom and top.

Gamma can be any value between 0 and infinity. If gamma is 1 (the default), 
the mapping is linear. If gamma is less than 1, the mapping is weighted toward 
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higher (brighter) output values. If gamma is greater than 1, the mapping is 
weighted toward lower (darker) output values. 

The figure below illustrates this relationship. The three transformation curves 
show how values are mapped when gamma is less than, equal to, and greater 
than 1. (In each graph, the x-axis represents the intensity values in the input 
image, and the y-axis represents the intensity values in the output image.) 

Plots Showing Three Different Gamma Correction Settings

The example below illustrates gamma correction. Notice that in the call to 
imadjust, the data ranges of the input and output images are specified as 
empty matrices. When you specify an empty matrix, imadjust uses the default 
range of [0,1]. In the example, both ranges are left empty; this means that 
gamma correction is applied without any other adjustment of the data.

[X,map] = imread('forest.tif')
I = ind2gray(X,map);
J = imadjust(I,[],[],0.5);
imshow(I)
figure, imshow(J)
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Image Before and After Applying Gamma Correction

Histogram Equalization
The process of adjusting intensity values can be done automatically by the 
histeq function. histeq performs histogram equalization, which involves 
transforming the intensity values so that the histogram of the output image 
approximately matches a specified histogram. (By default, histeq tries to 
match a flat histogram with 64 bins, but you can specify a different histogram 
instead; see the reference page for histeq.)

This example illustrates using histeq to adjust an intensity image. The 
original image has low contrast, with most values in the middle of the intensity 
range. histeq produces an output image having values evenly distributed 
throughout the range.

I = imread('pout.tif');
J = histeq(I);
imshow(J)
figure, imhist(J,64)

Image Courtesy of Susan Cohen
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Image After Histogram Equalization with Its Histogram

histeq can return a 1-by-256 vector that shows, for each possible input value, 
the resulting output value. (The values in this vector are in the range [0,1], 
regardless of the class of the input image.) You can plot this data to get the 
transformation curve. For example:

I = imread('pout.tif');
[J,T] = histeq(I);
figure,plot((0:255)/255,T);
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Notice how this curve reflects the histograms in the previous figure, with the 
input values mostly between 0.3 and 0.6, while the output values are 
distributed evenly between 0 and 1.

For an interactive demonstration of intensity adjustment, try running 
imadjdemo.

Contrast-Limited Adaptive Histogram Equalization
As an alternative to using histeq, you can perform contrast-limited adaptive 
histogram equalization (CLAHE) using the adapthisteq function. While 
histeq works on the entire image, adapthisteq operates on small regions in 
the image, called tiles. Each tile's contrast is enhanced, so that the histogram 
of the output region approximately matches a specified histogram. After 
performing the equalization, adapthisteq combines neighboring tiles using 
bilinear interpolation to eliminate artificially induced boundaries. 

To avoid amplifying any noise that might be present in the image, you can use 
adapthisteq optional parameters to limit the contrast, especially in 
homogeneous areas.
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To illustrate, this example uses adapthisteq to adjust the contrast in an 
intensity image. The original image has low contrast, with most values in the 
middle of the intensity range. adapthisteq produces an output image having 
values evenly distributed throughout the range.

I = imread('pout.tif');
J = adapthisteq(I);
imshow(I)
figure, imshow(J)

Image After CLAHE Equalization with Its Histogram

Decorrelation Stretching 
Decorrelation stretching enhances the color separation of an image with 
significant band-band correlation. The exaggerated colors improve visual 
interpretation and make feature discrimination easier. You apply 
decorrelation stretching with the decorrstretch function. See “Adding a 
Linear Contrast Stretch” on page 10-32 on how to add an optional linear 
contrast stretch to the decorrelation stretch.

The number of color bands, NBANDS, in the image is usually three. But you 
can apply decorrelation stretching regardless of the number of color bands.

The original color values of the image are mapped to a new set of color values 
with a wider range. The color intensities of each pixel are transformed into the 
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color eigenspace of the NBANDS-by-NBANDS covariance or correlation 
matrix, stretched to equalize the band variances, then transformed back to the 
original color bands.

To define the bandwise statistics, you can use the entire original image or, with 
the subset option, any selected subset of it. See the decorrstretch reference 
page.

Simple Decorrelation Stretching
You can apply decorrelation and stretching operations on the library of images 
available in the imdemos directory. The library includes a LANDSAT image of 
the Little Colorado River. In this example, you perform a simple decorrelation 
stretch on this image:

1 The image has seven bands, but just read in the three visible colors:

A = multibandread('littlecoriver.lan', [512, 512, 7], ...
'uint8=>uint8', 128, 'bil', 'ieee-le', ...
{'Band','Direct',[3 2 1]});

2 Then perform the decorrelation stretch:

B = decorrstretch(A);

3 Now view the results:

imshow(A); figure; imshow(B)

Compare the two images. The original has a strong violet (red-bluish) tint, 
while the transformed image has a somewhat expanded color range.
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Little Colorado River Before (left) and After (right) Decorrelation Stretch

A color band scatterplot of the images shows how the bands are decorrelated 
and equalized:

rA = A(:,:,1); gA = A(:,:,2); bA = A(:,:,3);
figure, plot3(rA(:),gA(:),bA(:),'.'); grid('on')
xlabel('Red (Band 3)'); ylabel('Green (Band 2)'); ...

zlabel('Blue (Band 1)')
rB = B(:,:,1); gB = B(:,:,2); bB = B(:,:,3);
figure, plot3(rB(:),gB(:),bB(:),'.'); grid('on')
xlabel('Red (Band 3)'); ylabel('Green (Band 2)'); ...

zlabel('Blue (Band 1)')
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Color Scatterplot Before (left) and After (right) Decorrelation Stretch

Adding a Linear Contrast Stretch 
Now try the same transformation, but with a linear contrast stretch applied 
after the decorrelation stretch:

imshow(A); C = decorrstretch(A,'Tol',0.01); figure; imshow(C)

Compare the transformed image to the original.
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Little Colorado River After Decorrelation Stretch Followed by Linear Contrast 
Stretch

Adding the linear contrast stretch enhances the resulting image by further 
expanding the color range. In this case, the transformed color range is mapped 
within each band to a normalized interval between 0.01 and 0.99, saturating 
2%.

See the stretchlim function reference page for more about Tol. Without the 
Tol option, decorrstretch applies no linear contrast stretch.

Note  You can apply a linear contrast stretch as a separate operation after 
performing a decorrelation stretch, using stretchlim and imadjust. This 
alternative, however, often gives inferior results for uint8 and uint16 images, 
because the pixel values must be clamped to [0 255] (or [0 65535]). The Tol 
option in decorrstretch circumvents this limitation.
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Noise Removal 
Digital images are prone to a variety of types of noise. There are several ways 
that noise can be introduced into an image, depending on how the image is 
created. For example:

• If the image is scanned from a photograph made on film, the film grain is a 
source of noise. Noise can also be the result of damage to the film, or be 
introduced by the scanner itself.

• If the image is acquired directly in a digital format, the mechanism for 
gathering the data (such as a CCD detector) can introduce noise.

• Electronic transmission of image data can introduce noise.

The toolbox provides a number of different ways to remove or reduce noise in 
an image. Different methods are better for different kinds of noise. The 
methods available include

• “Using Linear Filtering”

• “Using Median Filtering”

• “Using Adaptive Filtering” on page 10-37

To simulate the effects of some of the problems listed above, the toolbox 
provides the imnoise function, which you can use to add various types of noise 
to an image. The examples in this section use this function.

Using Linear Filtering 
You can use linear filtering to remove certain types of noise. Certain filters, 
such as averaging or Gaussian filters, are appropriate for this purpose. For 
example, an averaging filter is useful for removing grain noise from a 
photograph. Because each pixel gets set to the average of the pixels in its 
neighborhood, local variations caused by grain are reduced.

See “Linear Filtering” on page 7-4 for more information.

Using Median Filtering
Median filtering is similar to using an averaging filter, in that each output 
pixel is set to an average of the pixel values in the neighborhood of the 
corresponding input pixel. However, with median filtering, the value of an 
output pixel is determined by the median of the neighborhood pixels, rather 
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than the mean. The median is much less sensitive than the mean to extreme 
values (called outliers). Median filtering is therefore better able to remove 
these outliers without reducing the sharpness of the image. The medfilt2 
function implements median filtering. 

Note  Median filtering is a specific case of order-statistic filtering, also known 
as rank filtering. For information about order-statistic filtering, see the 
reference page for the ordfilt2 function.

The following example compares using an averaging filter and medfilt2 to 
remove salt and pepper noise. This type of noise consists of random pixels’ 
being set to black or white (the extremes of the data range). In both cases the 
size of the neighborhood used for filtering is 3-by-3.

1 Read in the image and display it.

I = imread('eight.tif');
imshow(I)

2 Add noise to it.

J = imnoise(I,'salt & pepper',0.02);
figure, imshow(J)
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3 Filter the noisy image with an averaging filter and display the results. 

K = filter2(fspecial('average',3),J)/255;
figure, imshow(K)

4 Now use a median filter to filter the noisy image and display the results. 
Notice that medfilt2 does a better job of removing noise, with less blurring 
of edges.

L = medfilt2(J,[3 3]);
figure, imshow(K)
figure, imshow(L)
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Using Adaptive Filtering
The wiener2 function applies a Wiener filter (a type of linear filter) to an image 
adaptively, tailoring itself to the local image variance. Where the variance is 
large, wiener2 performs little smoothing. Where the variance is small, wiener2 
performs more smoothing.

This approach often produces better results than linear filtering. The adaptive 
filter is more selective than a comparable linear filter, preserving edges and 
other high-frequency parts of an image. In addition, there are no design tasks; 
the wiener2 function handles all preliminary computations and implements 
the filter for an input image. wiener2, however, does require more computation 
time than linear filtering. 

wiener2 works best when the noise is constant-power (“white”) additive noise, 
such as Gaussian noise. The example below applies wiener2 to an image of 
Saturn that has had Gaussian noise added. For an interactive demonstration 
of filtering to remove noise, try running nrfiltdemo.

RGB = imread('saturn.png');
I = rgb2gray(RGB);
J = imnoise(I,'gaussian',0,0.005);
K = wiener2(J,[5 5]);
imshow(J)
figure, imshow(K)
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Noisy Version (left) and Filtered Version (right)

Original Image Courtesy of NASA
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Region-Based Processing

This chapter describes operations that you can perform on a selected region of an image. 

Terminology (p. 11-2) Provides definitions of image processing terms used in 
this section

Specifying a Region of Interest (p. 11-3) Describes how to specify a region of interest using the 
roipoly function

Filtering a Region (p. 11-6) Describes how to apply a filter to a region using the 
roifilt2 function

Filling a Region (p. 11-9) Describes how to fill a region of interest using the 
roifill function
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Terminology
An understanding of the following terms will help you to use this section.

Term Definition

binary mask Binary image with the same size as the image you want to process. 
The mask contains 1’s for all pixels that are part of the region of 
interest, and 0’s everywhere else. 

filling a region Process that fills a region of interest by interpolating the pixel 
values from the borders of the region. This process can be used to 
make objects in an image seem to disappear as they are replaced 
with values that blend in with the background area.

filtering a region Process of applying a filter to a region of interest. For example, 
you can apply an intensity adjustment filter to certain regions of 
an image.

interpolation Method used to estimate an image value at a location in between 
image pixels.

masked filtering Operation that applies filtering only to the regions of interest in 
an image that are identified by a binary mask. Filtered values are 
returned for pixels where the binary mask contains 1’s; unfiltered 
values are returned for pixels where the binary mask contains 0’s.

region of interest Portion of an image that you want to filter or perform some other 
operation on. You define a region of interest by creating a binary 
mask. There can be more than one region defined in an image. The 
regions can be geographic in nature, such as polygons that 
encompass contiguous pixels, or they can be defined by a range of 
intensities. In the latter case, the pixels are not necessarily 
contiguous.
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Specifying a Region of Interest
A region of interest is a portion of an image that you want to filter or perform 
some other operation on. You define a region of interest by creating a binary 
mask, which is a binary image with the same size as the image you want to 
process. The mask contains 1’s for all pixels that are part of the region of 
interest, and 0’s everywhere else. 

The following subsections discuss methods for creating binary masks:

• “Selecting a Polygon” on page 11-3

• “Other Selection Methods” on page 11-4 (using any binary mask or the 
roicolor function)

For an interactive demonstration of region-based processing, try running 
roidemo.

Selecting a Polygon
You can use the roipoly function to specify a polygonal region of interest. If 
you call roipoly with no input arguments, the cursor changes to crosshairs 
when it is over the image displayed in the current axes. You can then specify 
the vertices of the polygon by clicking points in the image with the mouse. 
When you are done selecting vertices, press Return; roipoly returns a binary 
image of the same size as the input image, containing 1’s inside the specified 
polygon, and 0’s everywhere else. 

The example below illustrates using the interactive syntax of roipoly to create 
a binary mask. In the figure, the border of the selected region that was created 
using a mouse is shown in red.

I = imread('pout.tif');
imshow(I)
BW = roipoly;
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Polygonal Region of Interest Selected Using roipoly

imshow(BW)

Binary Mask Created for the Region Shown in the Preceding Figure

You can also use roipoly noninteractively. See the reference page for roipoly 
for more information.

Other Selection Methods
roipoly provides an easy way to create a binary mask. However, you can use 
any binary image as a mask, provided that the binary image is the same size 
as the image being filtered.
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For example, suppose you want to filter the intensity image I, filtering only 
those pixels whose values are greater than 0.5. You can create the appropriate 
mask with this command.

BW = (I > 0.5);

You can also use the poly2mask function to create a binary mask. Unlike the 
roipoly function, poly2mask does not require an input image. For more 
information, see the poly2mask reference page.

You can also use the roicolor function to define the region of interest based on 
a color or intensity range. For more information, see the reference page for 
roicolor.
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Filtering a Region
You can use the roifilt2 function to process a region of interest. When you call 
roifilt2, you specify an intensity image, a binary mask, and a filter. roifilt2 
filters the input image and returns an image that consists of filtered values for 
pixels where the binary mask contains 1’s and unfiltered values for pixels 
where the binary mask contains 0’s. This type of operation is called masked 
filtering.

Note  roifilt2 is best suited to operations that return data in the same 
range as in the original image, because the output image takes some of its 
data directly from the input image. Certain filtering operations can result in 
values outside the normal image data range (i.e., [0,1] for images of class 
double, [0,255] for images of class uint8, and [0,65535] for images of class 
uint16). For more information, see the reference page for roifilt2.

Example: Filtering a Region in an Image
This example uses masked filtering to increase the contrast of a specific region 
of an image: 

1 Read in the image. 

I = imread('pout.tif');

2 Create the mask.

This example uses the mask BW created in “Selecting a Polygon” on 
page 11-3. The region of interest specified by the mask is the logo on the 
girl’s jacket. 

3 Create the filter.

h = fspecial('unsharp');

4 Call roifilt2, specifying the image to be filtered, the mask, and the filter.

I2 = roifilt2(h,I,BW);
imshow(I)
figure, imshow(I2)
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Image Before and After Using an Unsharp Filter on the Region of Interest

Specifying the Filtering Operation
roifilt2 also enables you to specify your own function to operate on the region 
of interest. This example uses the imadjust function to lighten parts of an 
image:

1 Read in the image. 

I = imread('cameraman.tif');

2 Create the mask. In this example, the mask is a binary image containing 
text. The mask image must be cropped to be the same size as the image to 
be filtered.

BW = imread('text.png');
mask = BW(1:256,1:256); 

3 Create the filter.

f = inline('imadjust(x,[],[],0.3)');

4 Call roifilt2, specifying the image to be filtered, the mask, and the filter. 
The resulting image, I2, has the text imprinted on it.

I2 = roifilt2(I,mask,f);
imshow(I2)
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Image Brightened Using a Binary Mask Containing Text
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Filling a Region
You can use the roifill function to fill a region of interest, interpolating from 
the borders of the region. This function is useful for image editing, including 
removal of extraneous details or artifacts.

roifill performs the fill operation using an interpolation method based on 
Laplace’s equation. This method results in the smoothest possible fill, given the 
values on the boundary of the region.

As with roipoly, you select the region of interest with the mouse. When you 
complete the selection, roifill returns an image with the selected region filled 
in.

This example uses roifill to modify the trees image. The border of the 
selected region is shown in red on the original image.

load trees
I = ind2gray(X,map);
imshow(I)
I2 = roifill;

Region of Interest Selected for Filling

imshow(I2)
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Region of Interest Shown in the Preceding Figure Has Been Filled
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Image Deblurring

This chapter describes how to deblur an image using the toolbox deblurring functions. 

Terminology (p. 12-2) Provides definitions of image processing terms used in 
this section

Understanding Deblurring (p. 12-3) Defines deblurring and deconvolution

Using the Deblurring Functions 
(p. 12-6)

Provides step-by-step examples of using deconvwnr, 
deconvreg, deconvlucy, and deconvblind functions

Avoiding Ringing in Deblurred Images 
(p. 12-23)

Describes how to use the edgetaper function to avoid 
“ringing” in deblurred images
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Terminology
An understanding of the following terms will help you to use this chapter.

Term MATLAB Definition

deconvolution Process of reversing the effect of convolution. 

distortion operator Operator that describes a process causing 
the acquired image to be different from the 
original scene. Distortion caused by a point 
spread function (see below) is just one type of 
distortion. 

optical transfer function 
(OTF)

In the frequency domain, the OTF describes 
the response of a linear, position-invariant 
system to an impulse. The OTF is the 
Fourier transform of the point spread 
function (PSF). 

point spread function 
(PSF)

In the spatial domain, the PSF describes the 
degree to which an optical system blurs 
(spreads) a point of light. The PSF is the 
inverse Fourier transform of the OTF.
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Understanding Deblurring
This section provides some background on deblurring techniques. The section 
includes these topics:

• “Causes of Blurring”

• “Deblurring Model”

Causes of Blurring
The blurring, or degradation, of an image can be caused by many factors:

• Movement during the image capture process, by the camera or, when long 
exposure times are used, by the subject

• Out-of-focus optics, use of a wide-angle lens, atmospheric turbulence, or a 
short exposure time, which reduces the number of photons captured

• Scattered light distortion in confocal microscopy

Deblurring Model
A blurred or degraded image can be approximately described by this equation 
g = Hf + n, where

Note  The image f really doesn’t exist. This image represents what you would 
have if you had perfect image acquisition conditions.

g The blurred image

H The distortion operator, also called the point spread function (PSF). 
This function, when convolved with the image, creates the distortion. 

f The original true image 

n Additive noise, introduced during image acquisition, that corrupts the 
image 
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Importance of the PSF
Based on this model, the fundamental task of deblurring is to deconvolve the 
blurred image with the PSF that exactly describes the distortion. 

Note  The quality of the deblurred image is mainly determined by knowledge 
of the PSF.

To illustrate, this example takes a clear image and deliberately blurs it by 
convolving it with a PSF. The example uses the fspecial function to create a 
PSF that simulates a motion blur, specifying the length of the blur in pixels, 
(LEN=31), and the angle of the blur in degrees (THETA=11). Once the PSF is 
created, the example uses the imfilter function to convolve the PSF with the 
original image, I, to create the blurred image, Blurred. (To see how deblurring 
is the reverse of this process, using the same images, see “Deblurring with the 
Wiener Filter” on page 12-7.)

I = imread('peppers.png');
I = I(60+[1:256],222+[1:256],:); % crop the image
figure; imshow(I); title('Original Image');

LEN = 31;
THETA = 11;
PSF = fspecial('motion',LEN,THETA); % create PSF
Blurred = imfilter(I,PSF,'circular','conv');
figure; imshow(Blurred); title('Blurred Image');
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Using the Deblurring Functions
The toolbox includes four deblurring functions, listed here in order of 
complexity:

All the functions accept a PSF and the blurred image as their primary 
arguments. The deconvwnr function implements a least squares solution. The 
deconvreg function implements a constrained least squares solution, where 
you can place constraints on the output image (the smoothness requirement is 
the default). With either of these functions, you should provide some 
information about the noise to reduce possible noise amplification during 
deblurring. 

The deconvlucy function implements an accelerated, damped 
Lucy-Richardson algorithm. This function performs multiple iterations, using 
optimization techniques and Poisson statistics. With this function, you do not 
need to provide information about the additive noise in the corrupted image. 

The deconvblind function implements the blind deconvolution algorithm, 
which performs deblurring without knowledge of the PSF. When you call 
deconvblind, you pass as an argument your initial guess at the PSF. The 
deconvblind function returns a restored PSF in addition to the restored image. 
The implementation uses the same damping and iterative model as the 
deconvlucy function. 

deconvwnr Implements deblurring using the Wiener filter

deconvreg Implements deblurring using a regularized filter

deconvlucy Implements deblurring using the Lucy-Richardson algorithm

deconvblind Implements deblurring using the blind deconvolution 
algorithm
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Note  You might need to perform many iterations of the deblurring process, 
varying the parameters you specify to the deblurring functions with each 
iteration, until you achieve an image that, based on the limits of your 
information, is the best approximation of the original scene. Along the way, 
you must make numerous judgments about whether newly uncovered features 
in the image are features of the original scene or simply artifacts of the 
deblurring process.

For information about creating your own deblurring functions, see “Creating 
Your Own Deblurring Functions” on page 12-22. To avoid “ringing” in a 
deblurred image, you can use the edgetaper function to preprocess your image 
before passing it to the deblurring functions. See “Avoiding Ringing in 
Deblurred Images” on page 12-23 for more information.

Deblurring with the Wiener Filter
Use the deconvwnr function to deblur an image using the Wiener filter. Wiener 
deconvolution can be used effectively when the frequency characteristics of the 
image and additive noise are known, to at least some degree. In the absence of 
noise, the Wiener filter reduces to the ideal inverse filter.

This example deblurs the blurred image created in “Deblurring Model” on 
page 12-3, specifying the same PSF function that was used to create the blur. 
This example illustrates the importance of knowing the PSF, the function that 
caused the blur. When you know the exact PSF, the results of deblurring can 
be quite effective.

1 Read an image into the MATLAB workspace. (To speed the deblurring 
operation, the example also crops the image.)

I = imread('peppers.png'); 
I = I(10+[1:256],222+[1:256],:); 
figure;imshow(I);title('Original Image');
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2 Create a PSF.

LEN = 31;
THETA = 11;
PSF = fspecial('motion',LEN,THETA);

3 Create a simulated blur in the image.

Blurred = imfilter(I,PSF,'circular','conv');
figure; imshow(Blurred);title('Blurred Image');

4 Deblur the image.

wnr1 = deconvwnr(Blurred,PSF);
figure;imshow(wnr1);
title('Restored, True PSF');
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Refining the Result
You can affect the deconvolution results by providing values for the optional 
arguments supported by the deconvwnr function. Using these arguments you 
can specify the noise-to-signal power value and/or provide autocorrelation 
functions to help refine the result of deblurring. To see the impact of these 
optional arguments, view the Image Processing Toolbox deblurring demos.

Deblurring with a Regularized Filter
Use the deconvreg function to deblur an image using a regularized filter. A 
regularized filter can be used effectively when limited information is known 
about the additive noise. 

To illustrate, this example simulates a blurred image by convolving a Gaussian 
filter PSF with an image (using imfilter). Additive noise in the image is 
simulated by adding Gaussian noise of variance V to the blurred image (using 
imnoise):

1 Read an image into the MATLAB workspace. The example uses cropping to 
reduce the size of the image to be deblurred. This is not a required step in 
deblurring operations. 

I = imread('tissue.png');
I = I(125+[1:256],1:256,:);
figure; imshow(I); title('Original Image');
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Image Courtesy Alan W. Partin

2 Create the PSF.

PSF = fspecial('gaussian',11,5);

3 Create a simulated blur in the image and add noise.

Blurred = imfilter(I,PSF,'conv');

V = .02;
BlurredNoisy = imnoise(Blurred,'gaussian',0,V);
figure;imshow(BlurredNoisy);title('Blurred and Noisy Image');

4 Use deconvreg to deblur the image, specifying the PSF used to create the 
blur and the noise power, NP.

NP = V*prod(size(I)); 
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[reg1 LAGRA] = deconvreg(BlurredNoisy,PSF,NP);
figure,imshow(reg1),title('Restored Image');

Refining the Result
You can affect the deconvolution results by providing values for the optional 
arguments supported by the deconvreg function. Using these arguments you 
can specify the noise power value, the range over which deconvreg should 
iterate as it converges on the optimal solution, and the regularization operator 
to constrain the deconvolution. To see the impact of these optional arguments, 
view the Image Processing Toolbox deblurring demos.

Deblurring with the Lucy-Richardson Algorithm
Use the deconvlucy function to deblur an image using the accelerated, 
damped, Lucy-Richardson algorithm. The algorithm maximizes the likelihood 
that the resulting image, when convolved with the PSF, is an instance of the 
blurred image, assuming Poisson noise statistics. This function can be effective 
when you know the PSF but know little about the additive noise in the image. 

The deconvlucy function implements several adaptations to the original 
Lucy-Richardson maximum likelihood algorithm that address complex image 
restoration tasks. Using these adaptations, you can

• Reduce the effect of noise amplification on image restoration

• Account for nonuniform image quality (e.g., bad pixels, flat-field variation)

• Handle camera read-out and background noise

• Improve the restored image resolution by subsampling
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The following sections provide more information about each of these 
adaptations. 

Reducing the Effect of Noise Amplification
Noise amplification is a common problem of maximum likelihood methods that 
attempt to fit data as closely as possible. After many iterations, the restored 
image can have a speckled appearance, especially for a smooth object observed 
at low signal-to-noise ratios. These speckles do not represent any real structure 
in the image, but are artifacts of fitting the noise in the image too closely. 

To control noise amplification, the deconvlucy function uses a damping 
parameter, DAMPAR. This parameter specifies the threshold level for the 
deviation of the resulting image from the original image, below which damping 
occurs. For pixels that deviate in the vicinity of their original values, iterations 
are suppressed. 

Damping is also used to reduce ringing, the appearance of high-frequency 
structures in a restored image. Ringing is not necessarily the result of noise 
amplification. See “Avoiding Ringing in Deblurred Images” on page 12-23 for 
more information.

Accounting for Nonuniform Image Quality
Another complication of real-life image restoration is that the data might 
include bad pixels, or that the quality of the receiving pixels might vary with 
time and position. By specifying the WEIGHT array parameter with the 
deconvlucy function, you can specify that certain pixels in the image be 
ignored. To ignore a pixel, assign a weight of zero to the element in the WEIGHT 
array that corresponds to the pixel in the image. 

The algorithm converges on predicted values for the bad pixels based on the 
information from neighborhood pixels. The variation in the detector response 
from pixel to pixel (the so-called flat-field correction) can also be accommodated 
by the WEIGHT array. Instead of assigning a weight of 1.0 to the good pixels, you 
can specify fractional values and weight the pixels according to the amount of 
the flat-field correction.

Handling Camera Read-Out Noise
Noise in charge coupled device (CCD) detectors has two primary components:

• Photon counting noise with a Poisson distribution
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• Read-out noise with a Gaussian distribution

The Lucy-Richardson iterations intrinsically account for the first type of noise. 
You must account for the second type of noise; otherwise, it can cause pixels 
with low levels of incident photons to have negative values.

The deconvlucy function uses the READOUT input parameter to handle camera 
read-out noise. The value of this parameter is typically the sum of the read-out 
noise variance and the background noise (e.g., number of counts from the 
background radiation). The value of the READOUT parameter specifies an offset 
that ensures that all values are positive.

Handling Undersampled Images
The restoration of undersampled data can be improved significantly if it is done 
on a finer grid. The deconvlucy function uses the SUBSMPL parameter to specify 
the subsampling rate, if the PSF is known to have a higher resolution. 

If the undersampled data is the result of camera pixel binning during image 
acquisition, the PSF observed at each pixel rate can serve as a finer grid PSF. 
Otherwise, the PSF can be obtained via observations taken at subpixel offsets 
or via optical modeling techniques. This method is especially effective for 
images of stars (high signal-to-noise ratio), because the stars are effectively 
forced to be in the center of a pixel. If a star is centered between pixels, it is 
restored as a combination of the neighboring pixels. A finer grid redirects the 
consequent spreading of the star flux back to the center of the star's image.

Example: Using the deconvlucy Function to Deblur an Image
To illustrate a simple use of deconvlucy, this example simulates a blurred, 
noisy image by convolving a Gaussian filter PSF with an image (using 
imfilter) and then adding Gaussian noise of variance V to the blurred image 
(using imnoise): 

1 Read an image into the MATLAB workspace. (The example uses cropping to 
reduce the size of the image to be deblurred. This is not a required step in 
deblurring operations.)
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I = imread('board.tif');
I = I(50+[1:256],2+[1:256],:);
figure;imshow(I);title('Original Image');

2 Create the PSF.

PSF = fspecial('gaussian',5,5);

3 Create a simulated blur in the image and add noise.

Blurred = imfilter(I,PSF,'symmetric','conv');

V = .002;
BlurredNoisy = imnoise(Blurred,'gaussian',0,V);
figure;imshow(BlurredNoisy);title('Blurred and Noisy Image');
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4 Use deconvlucy to restore the blurred and noisy image, specifying the PSF 
used to create the blur, and limiting the number of iterations to 5 (the 
default is 10).

Note  The deconvlucy function can return values in the output image that 
are beyond the range of the input image. 

luc1 = deconvlucy(BlurredNoisy,PSF,5);
figure; imshow(luc1);
title('Restored Image');

Refining the Result
The deconvlucy function, by default, performs multiple iterations of the 
deblurring process. You can stop the processing after a certain number of 
iterations to check the result, and then restart the iterations from the point 
where processing stopped. To do this, pass in the input image as a cell array, 
for example, {BlurredNoisy}. The deconvlucy function returns the output 
image as a cell array that you can then pass as an input argument to 
deconvlucy to restart the deconvolution. 



12 Image Deblurring

12-16

The output cell array contains these four elements:

The deconvlucy function supports several other optional arguments you can 
use to achieve the best possible result, such as specifying a damping parameter 
to handle additive noise in the blurred image. To see the impact of these 
optional arguments, view the Image Processing Toolbox deblurring demos.

Deblurring with the Blind Deconvolution Algorithm
Use the deconvblind function to deblur an image using the blind deconvolution 
algorithm. The algorithm maximizes the likelihood that the resulting image, 
when convolved with the resulting PSF, is an instance of the blurred image, 
assuming Poisson noise statistics. The blind deconvolution algorithm can be 
used effectively when no information about the distortion (blurring and noise) 
is known. The deconvblind function restores the image and the PSF 
simultaneously, using an iterative process similar to the accelerated, damped 
Lucy-Richardson algorithm. 

The deconvblind function, just like the deconvlucy function, implements 
several adaptations to the original Lucy-Richardson maximum likelihood 
algorithm that address complex image restoration tasks. Using these 
adaptations, you can

• Reduce the effect of noise on the restoration

• Account for nonuniform image quality (e.g., bad pixels)

• Handle camera read-out noise

For more information about these adaptations, see “Deblurring with the 
Lucy-Richardson Algorithm” on page 12-11. In addition, the deconvblind 

Element Description

output{1} Original input image

output{2} Image produced by the last iteration

output{3} Image produced by the next to last iteration

output{4} Internal information used by deconvlucy to know 
where to restart the process
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function supports PSF constraints that can be passed in through a 
user-specified function. 

Example: Using the deconvblind Function to Deblur an Image
To illustrate blind deconvolution, this example creates a simulated blurred 
image and then uses deconvblind to deblur it. The example makes two passes 
at deblurring the image to show the effect of certain optional parameters on the 
deblurring operation: 

1 Read an image into the MATLAB workspace.

I = imread('cameraman.tif');
figure; imshow(I); title('Original Image');

2 Create the PSF.

PSF = fspecial('motion',13,45);
figure; imshow(PSF,[],'notruesize'); title('Original PSF');

Image Courtesy of MIT
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3 Create a simulated blur in the image.

Blurred = imfilter(I,PSF,'circ','conv');
figure; imshow(Blurred); title('Blurred Image');

4 Deblur the image, making an initial guess at the size of the PSF. 

To determine the size of the PSF, examine the blurred image and measure 
the width of a blur (in pixels) around an obviously sharp object. In the 
sample blurred image, you can measure the blur near the contour of the 
man’s sleeve. Because the size of the PSF is more important than the values 
it contains, you can typically specify an array of 1’s as the initial PSF. 

The following figure shows a restoration where the initial guess at the PSF 
is the same size as the PSF that caused the blur. In a real application, you 

Original PSF
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might need to rerun deconvblind, experimenting with PSFs of different 
sizes, until you achieve a satisfactory result. The restored PSF returned by 
each deconvolution can also provide valuable hints at the optimal PSF size. 
See the Image Processing Toolbox deblurring demos for an example.

INITPSF = ones(size(PSF));
[J P]= deconvblind(Blurred,INITPSF,30);
figure; imshow(J); title('Restored Image');
figure; imshow(P,[],'notruesize');
title('Restored PSF');

Although deconvblind was able to deblur the image to a great extent, the 
ringing around the sharp intensity contrast areas in the restored image is 
unsatisfactory. (The example eliminated edge-related ringing by using the 
'circular' option with imfilter when creating the simulated blurred 
image in step 3.) 

The next steps in the example repeat the deblurring process, attempting to 
achieve a better result by 

- Eliminating high-contrast areas from the processing

- Specifying a better PSF

Restored Image Restored PSF
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5 Create a WEIGHT array to exclude areas of high contrast from the deblurring 
operation. This can reduce contrast-related ringing in the result. 

To exclude a pixel from processing, you create an array of the same size as 
the original image, and assign the value 0 to the pixels in the array that 
correspond to pixels in the original image that you want to exclude from 
processing. (See “Accounting for Nonuniform Image Quality” on page 12-12 
for information about WEIGHT arrays.) 

To create a WEIGHT array, the example uses a combination of edge detection 
and morphological processing to detect high-contrast areas in the image. 
Because the blur in the image is linear, the example dilates the image twice. 
(For more information about using these functions, see Chapter 9, 
“Morphological Operations.”) To exclude the image boundary pixels (a 
high-contrast area) from processing, the example uses padarray to assign 
the value 0 to all border pixels. 

WEIGHT = edge(I,'sobel',.28);
se1 = strel('disk',1);
se2 = strel('line',13,45);
WEIGHT = ~imdilate(WEIGHT,[se1 se2]);
WEIGHT = padarray(WEIGHT(2:end-1,2:end-1),[2 2]);
figure; imshow(WEIGHT); title('Weight Array');

6 Refine the guess at the PSF. The reconstructed PSF P returned by the first 
pass at deconvolution shows a clear linearity, as shown in the figure in step 

Weight Array
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4. For the second pass, the example uses a new PSF, P1, which is the same 
as the restored PSF but with the small amplitude pixels set to 0. 

P1 = P;
P1(find(P1 < 0.01))=0;

7 Rerun the deconvolution, specifying the WEIGHT array and the modified PSF. 
Note how the restored image has much less ringing around the sharp 
intensity contrast areas than the result of the first pass (step 4).

[J2 P2] = deconvblind(Blurred,P1,50,[],WEIGHT);
figure; imshow(J2);
title('Newly Deblurred Image');
figure; imshow(P2,[],'notruesize');
title('Newly Reconstructed PSF');

Refining the Result
The deconvblind function, by default, performs multiple iterations of the 
deblurring process. You can stop the processing after a certain number of 
iterations to check the result, and then restart the iterations from the point 
where processing stopped. To use this feature, you must pass in both the 
blurred image and the PSF as cell arrays, for example, {Blurred} and 
{INITPSF}.

Newly Deblurred Image Newly Reconstructed PSF
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The deconvblind function returns the output image and the restored PSF as 
cell arrays. The output image cell array contains these four elements:

The PSF output cell array contains similar elements. 

The deconvblind function supports several other optional arguments you can 
use to achieve the best possible result, such as specifying a damping parameter 
to handle additive noise in the blurred image. To see the impact of these 
optional arguments, as well as the functional option that allows you to place 
additional constraints on the PSF reconstruction, see the Image Processing 
Toolbox deblurring demos.

Creating Your Own Deblurring Functions
All the toolbox deblurring functions perform deconvolution in the frequency 
domain, where the process becomes a simple matrix multiplication. To work in 
the frequency domain, the deblurring functions must convert the PSF you 
provide into an optical transfer function (OTF), using the psf2otf function. 
The toolbox also provides a function to convert an OTF into a PSF, otf2psf. 
The toolbox makes these functions available in case you want to create your 
own deblurring functions. (In addition, to aid this conversion between PSFs 
and OTFs, the toolbox also makes the padding function padarray available.) 

Element Description

output{1} Original input image

output{2} Image produced by the last iteration

output{3} Image produced by the next to last iteration

output{4} Internal information used by deconvlucy to know 
where to restart the process
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Avoiding Ringing in Deblurred Images
The discrete Fourier transform (DFT), used by the deblurring functions, 
assumes that the frequency pattern of an image is periodic. This assumption 
creates a high-frequency drop-off at the edges of images. In the figure, the 
shaded area represents the actual extent of the image; the unshaded area 
represents the assumed periodicity. 

This high-frequency drop-off can create an effect called boundary related 
ringing in deblurred images. In this figure, note the horizontal and vertical 
patterns in the image.

To avoid ringing, use the edgetaper function to preprocess your images before 
passing them to the deblurring functions. The edgetaper function removes the 
high-frequency drop-off at the edge of an image by blurring the entire image 
and then replacing the center pixels of the blurred image with the original 
image. In this way, the edges of the image taper off to a lower frequency.

Image

High-frequency drop-off

Assumed periodic repetition of the image
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13

Color

This chapter describes the toolbox functions that help you work with color image data. Note that 
“color” includes shades of gray; therefore much of the discussion in this chapter applies to grayscale 
images as well as color images. 

Terminology (p. 13-2) Provides definitions of image processing terms used in 
this section

Working with Different Screen Bit 
Depths (p. 13-3)

Describes how to determine the screen bit depth of your 
system and provides recommendations if you can change 
the bit depth

Reducing the Number of Colors in an 
Image (p. 13-6)

Describes how to use imapprox and rgb2ind to reduce the 
number of colors in an image, including information 
about dithering

Converting Color Data Between Color 
Spaces (p. 13-15)

Defines the concept of image color space and describes 
how to convert images between color spaces
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Terminology
An understanding of the following terms will help you to use this chapter.

Term Definition

approximation Method by which the software chooses replacement colors in the 
event that direct matches cannot be found. The methods of 
approximation discussed in this chapter are colormap mapping, 
uniform quantization, and minimum variance quantization.

indexed image Image whose pixel values are direct indices into an RGB colormap. 
In MATLAB, an indexed image is represented by an array of class 
uint8, uint16, or double. The colormap is always an m-by-3 array 
of class double. This documentation often uses the variable name X 
to represent an indexed image in memory, and map to represent the 
colormap.

intensity image Image consisting of intensity (grayscale) values. In MATLAB, 
intensity images are represented by an array of class uint8, uint16, 
or double. While intensity images are not stored with colormaps, 
MATLAB uses a system colormap to display them. This 
documentation often uses the variable name I to represent an 
intensity image in memory. This term is synonymous with the term 
grayscale.

RGB image Image in which each pixel is specified by three values — one each 
for the red, blue, and green components of the pixel’s color. In 
MATLAB, an RGB image is represented by an m-by-n-by-3 array of 
class uint8, uint16, or double. This documentation often uses the 
variable name RGB to represent an RGB image in memory.

screen bit depth Number of bits per screen pixel.

screen color resolution Number of distinct colors that can be produced by the screen.
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Working with Different Screen Bit Depths
Most computer displays use 8, 16, or 24 bits per screen pixel. The number of 
bits per screen pixel determines the display’s screen bit depth. The screen bit 
depth determines the screen color resolution, which is how many distinct colors 
the display can produce. 

Regardless of the number of colors your system can display, MATLAB can store 
and process images with very high bit depths: 224 colors for uint8 RGB images, 
248 colors for uint16 RGB images, and 2159 for double RGB images. These 
images are displayed best on systems with 24-bit color, but usually look fine on 
16-bit systems as well. (For additional information about how MATLAB 
handles color, see the MATLAB graphics documentation.)

This section

• Describes how to determine your system’s screen bit depth

• Provides guidelines for choosing a screen bit depth

Determining Screen Bit Depth
To determine the bit depth of your system’s screen, enter this command at the 
MATLAB prompt.

get(0,'ScreenDepth')
ans =

32



13 Color

13-4

The integer MATLAB returns represents the number of bits per screen pixel:

Choosing a Screen Bit Depth
Depending on your system, you might be able to choose the screen bit depth you 
want to use. (There might be tradeoffs between screen bit depth and screen 
color resolution.) In general, 24-bit display mode produces the best results. If 
you need to use a lower screen bit depth, 16-bit is generally preferable to 8-bit. 
However, keep in mind that a 16-bit display has certain limitations, such as

Value Screen Bit Depth

8 8-bit displays support 256 colors. An 8-bit display can produce 
any of the colors available on a 24-bit display, but only 256 
distinct colors can appear at one time. (There are 256 shades of 
gray available, but if all 256 shades of gray are used, they take 
up all the available color slots.)

16 16-bit displays usually use 5 bits for each color component, 
resulting in 32 (i.e., 25) levels each of red, green, and blue. This 
supports 32,768 (i.e., 215) distinct colors (of which 32 are shades 
of gray). Some systems use the extra bit to increase the number 
of levels of green that can be displayed. In this case, the number 
of different colors supported by a 16-bit display is actually 
64,536 (i.e. 216).

24 24-bit displays use 8 bits for each of the three color components, 
resulting in 256 (i.e., 28) levels each of red, green, and blue. This 
supports 16,777,216 (i.e., 224) different colors. (Of these colors, 
256 are shades of gray. Shades of gray occur where R=G=B.) The 
16 million possible colors supported by 24-bit display can render 
a lifelike image.

32 32-bit displays use 24 bits to store color information and use the 
remaining 8 bits to store transparency data (alpha channel). For 
information about how MATLAB supports the alpha channel, 
see the section “Transparency” in the MATLAB graphics 
documentation.
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• An image might have finer gradations of color than a 16-bit display can 
represent. If a color is unavailable, MATLAB uses the closest approximation.

• There are only 32 shades of gray available. If you are working primarily with 
grayscale images, you might get better display results using 8-bit display 
mode, which provides up to 256 shades of gray.

For information about reducing the number of colors used by an image, see 
“Reducing the Number of Colors in an Image” on page 13-6. 
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Reducing the Number of Colors in an Image
This section describes how to reduce the number of colors in an indexed or RGB 
image. A discussion is also included about dithering, which is used by the 
toolbox’s color-reduction functions (see below). Dithering is used to increase the 
apparent number of colors in an image.

The table below summarizes the Image Processing Toolbox functions for color 
reduction.

On systems with 24-bit color displays, RGB (true-color) images can display up 
to 16,777,216 (i.e., 224) colors. On systems with lower screen bit depths, RGB 
images are still displayed reasonably well, because MATLAB automatically 
uses color approximation and dithering if needed. 

Indexed images, however, might cause problems if they have a large number of 
colors. In general, you should limit indexed images to 256 colors for the 
following reasons:

• On systems with 8-bit display, indexed images with more than 256 colors will 
need to be dithered or mapped and, therefore, might not display well.

• On some platforms, colormaps cannot exceed 256 entries.

• If an indexed image has more than 256 colors, MATLAB cannot store the 
image data in a uint8 array, but generally uses an array of class double 
instead, making the storage size of the image much larger (each pixel uses 
64 bits).

• Most image file formats limit indexed images to 256 colors. If you write an 
indexed image with more than 256 colors (using imwrite) to a format that 
does not support more than 256 colors, you will receive an error.

Function Purpose

imapprox Reduces the number of colors used by an indexed image, 
enabling you specify the number of colors in the new 
colormap.

rgb2ind Converts an RGB image to an indexed image, enabling 
you to specify the number of colors to store in the new 
colormap.
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Using rgb2ind
rgb2ind converts an RGB image to an indexed image, reducing the number of 
colors in the process. This function provides the following methods for 
approximating the colors in the original image:

• Quantization

- Uniform quantization

- Minimum variance quantization

• Colormap mapping

The quality of the resulting image depends on the approximation method you 
use, the range of colors in the input image, and whether or not you use 
dithering. Note that different methods work better for different images. See 
“Dithering” on page 13-13 for a description of dithering and how to enable or 
disable it.

Quantization
Reducing the number of colors in an image involves quantization. The function 
rgb2ind uses quantization as part of its color reduction algorithm. rgb2ind 
supports two quantization methods: uniform quantization and minimum 
variance quantization. 

An important term in discussions of image quantization is RGB color cube, 
which is used frequently throughout this section. The RGB color cube is a 
three-dimensional array of all of the colors that are defined for a particular 
data type. Since RGB images in MATLAB can be of type uint8, uint16, or 
double, three possible color cube definitions exist. For example, if an RGB 
image is of class uint8, 256 values are defined for each color plane (red, blue, 
and green), and, in total, there will be 224 (or 16,777,216) colors defined by the 
color cube. This color cube is the same for all uint8 RGB images, regardless of 
which colors they actually use. 

The uint8, uint16, and double color cubes all have the same range of colors. 
In other words, the brightest red in a uint8 RGB image appears the same as 
the brightest red in a double RGB image. The difference is that the double 
RGB color cube has many more shades of red (and many more shades of all 
colors). The following figure shows an RGB color cube for a uint8 image.
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RGB Color Cube for uint8 Images

Quantization involves dividing the RGB color cube into a number of smaller 
boxes, and then mapping all colors that fall within each box to the color value 
at the center of that box. 

Uniform quantization and minimum variance quantization differ in the 
approach used to divide up the RGB color cube. With uniform quantization, the 
color cube is cut up into equal-sized boxes (smaller cubes). With minimum 
variance quantization, the color cube is cut up into boxes (not necessarily 
cubes) of different sizes; the sizes of the boxes depend on how the colors are 
distributed in the image.

Uniform Quantization. To perform uniform quantization, call rgb2ind and specify 
a tolerance. The tolerance determines the size of the cube-shaped boxes into 
which the RGB color cube is divided. The allowable range for a tolerance 
setting is [0,1]. For example, if you specify a tolerance of 0.1, the edges of the 
boxes are one-tenth the length of the RGB color cube and the maximum total 
number of boxes is

n = (floor(1/tol)+1)^3
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255
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The commands below perform uniform quantization with a tolerance of 0.1.

RGB = imread('peppers.png');
[x,map] = rgb2ind(RGB, 0.1);

The following figure illustrates uniform quantization of a uint8 image. For 
clarity, the figure shows a two-dimensional slice (or color plane) from the color 
cube where red=0 and green and blue range from 0 to 255. The actual pixel 
values are denoted by the centers of the x’s.

Uniform Quantization on a Slice of the RGB Color Cube

After the color cube has been divided, all empty boxes are thrown out. 
Therefore, only one of the boxes is used to produce a color for the colormap. As 
shown earlier, the maximum length of a colormap created by uniform 
quantization can be predicted, but the colormap can be smaller than the 
prediction because rgb2ind removes any colors that do not appear in the input 
image. 

Minimum Variance Quantization. To perform minimum variance quantization, call 
rgb2ind and specify the maximum number of colors in the output image’s 
colormap. The number you specify determines the number of boxes into which 
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the RGB color cube is divided. These commands use minimum variance 
quantization to create an indexed image with 185 colors.

RGB = imread('peppers.png');
[X,map] = rgb2ind(RGB,185);

Minimum variance quantization works by associating pixels into groups based 
on the variance between their pixel values. For example, a set of blue pixels 
might be grouped together because they have a small variance from the center 
pixel of the group. 

In minimum variance quantization, the boxes that divide the color cube vary 
in size, and do not necessarily fill the color cube. If some areas of the color cube 
do not have pixels, there are no boxes in these areas. 

While you set the number of boxes, n, to be used by rgb2ind, the placement is 
determined by the algorithm as it analyzes the color data in your image. Once 
the image is divided into n optimally located boxes, the pixels within each box 
are mapped to the pixel value at the center of the box, as in uniform 
quantization.

The resulting colormap usually has the number of entries you specify. This is 
because the color cube is divided so that each region contains at least one color 
that appears in the input image. If the input image uses fewer colors than the 
number you specify, the output colormap will have fewer than n colors, and the 
output image will contain all of the colors of the input image.

The following figure shows the same two-dimensional slice of the color cube as 
shown in the preceding figure (demonstrating uniform quantization). Eleven 
boxes have been created using minimum variance quantization.
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Minimum Variance Quantization on a Slice of the RGB Color Cube

For a given number of colors, minimum variance quantization produces better 
results than uniform quantization, because it takes into account the actual 
data. Minimum variance quantization allocates more of the colormap entries to 
colors that appear frequently in the input image. It allocates fewer entries to 
colors that appear infrequently. As a result, the accuracy of the colors is higher 
than with uniform quantization. For example, if the input image has many 
shades of green and few shades of red, there will be more greens than reds in 
the output colormap. Note that the computation for minimum variance 
quantization takes longer than that for uniform quantization.

Colormap Mapping
If you specify an actual colormap to use, rgb2ind uses colormap mapping 
(instead of quantization) to find the colors in the specified colormap that best 
match the colors in the RGB image. This method is useful if you need to create 
images that use a fixed colormap. For example, if you want to display multiple 
indexed images on an 8-bit display, you can avoid color problems by mapping 
them all to the same colormap. Colormap mapping produces a good 
approximation if the specified colormap has similar colors to those in the RGB 
image. If the colormap does not have similar colors to those in the RGB image, 
this method produces poor results.
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This example illustrates mapping two images to the same colormap. The 
colormap used for the two images is created on the fly using the MATLAB 
function colorcube, which creates an RGB colormap containing the number of 
colors that you specify. (colorcube always creates the same colormap for a 
given number of colors.) Because the colormap includes colors all throughout 
the RGB color cube, the output images can reasonably approximate the input 
images.

RGB1 = imread('autumn.tif');
RGB2 = imread('peppers.png');
X1 = rgb2ind(RGB1,colorcube(128));
X2 = rgb2ind(RGB2,colorcube(128));

Note  The function subimage is also helpful for displaying multiple indexed 
images. For more information, see “Displaying Multiple Images in the Same 
Figure” on page 3-20 or the reference page for subimage.

Reducing Colors in an Indexed Image
Use imapprox when you need to reduce the number of colors in an indexed 
image. imapprox is based on rgb2ind and uses the same approximation 
methods. Essentially, imapprox first calls ind2rgb to convert the image to RGB 
format, and then calls rgb2ind to return a new indexed image with fewer 
colors.

For example, these commands create a version of the trees image with 64 
colors, rather than the original 128.

load trees
[Y,newmap] = imapprox(X,map,64);
imshow(Y, newmap);

The quality of the resulting image depends on the approximation method you 
use, the range of colors in the input image, and whether or not you use 
dithering. Note that different methods work better for different images. See 
“Dithering” on page 13-13 for a description of dithering and how to enable or 
disable it.
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Dithering
When you use rgb2ind or imapprox to reduce the number of colors in an image, 
the resulting image might look inferior to the original, because some of the 
colors are lost. rgb2ind and imapprox both perform dithering to increase the 
apparent number of colors in the output image. Dithering changes the colors of 
pixels in a neighborhood so that the average color in each neighborhood 
approximates the original RGB color. 

For an example of how dithering works, consider an image that contains a 
number of dark orange pixels for which there is no exact match in the colormap. 
To create the appearance of this shade of orange, the Image Processing Toolbox 
selects a combination of colors from the colormap, that, taken together as a 
six-pixel group, approximate the desired shade of pink. From a distance, the 
pixels appear to be the correct shade, but if you look up close at the image, you 
can see a blend of other shades. This example loads a 24-bit image, and then 
use rgb2ind to create two indexed images with just eight colors each: 

1 Read image and display it.

rgb=imread('onion.png'); 
imshow(rgb);

2 Create an indexed image with eight colors and without dithering.

[X_no_dither,map]=rgb2ind(rgb,8,'nodither');
figure, imshow(X_no_dither,map);
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3 Create an indexed image using eight colors with dithering.

[X_dither,map]=rgb2ind(rgb,8,'dither');
figure, imshow(X_dither,map);

Notice that the dithered image has a larger number of apparent colors but is 
somewhat fuzzy-looking. The image produced without dithering has fewer 
apparent colors, but an improved spatial resolution when compared to the 
dithered image. One risk in doing color reduction without dithering is that the 
new image can contain false contours.
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Converting Color Data Between Color Spaces
The Image Processing Toolbox represents colors as RGB values, either directly 
(in an RGB image) or indirectly (in an indexed image, where the colormap is 
stored in RGB format). However, there are other models besides RGB for 
representing colors numerically. The various models are referred to as color 
spaces because most of them can be mapped into a 2-D, 3-D, or 4-D coordinate 
system; thus, a color specification is made up of coordinates in a 2-D, 3-D, or 
4-D space.

The various color spaces exist because they present color information in ways 
that make certain calculations more convenient or because they provide a way 
to identify colors that is more intuitive. For example, the RGB color space 
defines a color as the percentages of red, green, and blue hues mixed together. 
Other color models describe colors by their hue (green), saturation (dark 
green), and luminance, or intensity.

The toolbox supports these color spaces by providing a means for converting 
color data from one color space to another through a mathematical 
transformation. 

This section

• Describes how to convert color data between these color spaces

• Describes how to perform color space conversions using ICC profiles

• Describes some toolbox functions for converting between the RGB color space 
and three commonly used color spaces: YIQ, HSV, and YCbCr

Converting Between Device-Independent Color 
Spaces
The standard terms used to describe colors, such as hue, brightness, and 
intensity, are subjective and make comparisons difficult.

In 1931, the International Commission on Illumination, known by the acronym 
CIE, for Commission Internationale de l’Éclairage, studied human color 
perception and developed a standard, called the CIE XYZ. This standard 
defined a three-dimensional space where three values, called tristimulus 
values, define a color. This standard is still widely used today. 

In the decades since that initial specification, the CIE has developed several 
additional color space specifications that attempt to provide alternative color 
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representations that are better suited to some purposes than XYZ. For 
example, in 1976, in an effort to get a perceptually uniform color space that 
could be correlated with the visual appearance of colors, the CIE created the 
L*a*b* color space.

The toolbox supports conversions between members of the CIE family of 
device-independent color spaces. In addition, the toolbox also supports 
conversions between these CIE color spaces and the sRGB color space. This 
color space was defined by an industry group to describe the characteristics of 
a typical PC monitor. 

This section

• Lists the supported device-independent color spaces

• Provides an example of how to perform a conversion

• Provides guidelines about data type support of the various conversions

Supported Conversions
This table lists all the device-independent color spaces that the toolbox 
supports. 

Color 
Space

Description Supported 
Conversions

 The original, 1931 CIE color space 
specification. 

, , , 
and 

  CIE specification that provides 
normalized chromaticity values. The 
capital Y value represents luminance 
and is the same as in XYZ.

  CIE specification that attempts to 
make the chromaticity plane more 
visually uniform. is luminance and is 
the same as Y in XYZ. 

 CIE specification in which u and v are 
rescaled to improve uniformity. 

XYZ xyY uvl u ′v ′L
L∗ a∗ b∗

xyY XYZ

uvL

l

XYZ

u ′v ′L XYZ
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Example: Performing a Color Space Conversion
To illustrate a conversion between two device-independent color spaces, this 
example reads an RGB color image into the MATLAB workspace and converts 
the color data to the XYZ color space:

1 Import color space data. This example reads an RGB color image into the 
MATLAB workspace.

I_rgb = imread('peppers.png');

2 Create a color transformation structure. A color transformation structure 
defines the conversion between two color spaces. You use the makecform 
function to create the structure, specifying a transformation type string as 
an argument. 

This example creates a color transformation structure that defines a 
conversion from RGB color data to XYZ color data. 

C = makecform('srgb2xyz');

3 Perform the conversion. You use the applycform function to perform the 
conversion, specifying as arguments the color data you want to convert and 

 CIE specification that attempts to 
make the luminance scale more 
perceptually uniform.  is a 
nonlinear scaling of L, normalized to a 
reference white point.

 CIE specification where c is chroma 
and h is hue. These values are a polar 
coordinate conversion of a* and b* in 

.

  Standard adopted by major 
manufacturers that characterizes the 
average PC monitor. 

and 

Color 
Space

Description Supported 
Conversions

L∗ a∗ b∗

L∗

XYZ

L∗ ch

L∗ a∗ b∗

L∗ a∗ b∗

sRGB XYZ L∗ a∗ b∗
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the color transformation structure that defines the conversion. The 
applycform function returns the converted data.

I_xyz = applycform(I_rgb,C);

whos
  Name          Size                   Bytes  Class

  C             1x1                     7744  struct array
  I_xyz       384x512x3              1179648  uint16 array
I_rgb 384x512x3               589824  uint8 array

Color Space Data Encodings
When you convert between two device-independent color spaces, the data type 
used to encode the color data can sometimes change, depending on what 
encodings the color spaces support. In the preceding example, the original 
image is uint8 data. The XYZ conversion is uint16 data. The XYZ color space 
does not define a uint8 encoding. The following table lists the data types that 
can be used to represent values in all the device-independent color spaces. 

As the table indicates, certain color spaces have data type limitations. For 
example, the XYZ color space does not define a uint8 encoding. If you convert 
8-bit CIE LAB data into the XYZ color space, the data is returned in uint16 
format. If you want the returned XYZ data to be in the same format as the 
input LAB data, you can use one of the following toolbox color space format 
conversion functions.

Color Space Encodings

XYZ uint16 or double

xyY double

uvL double

u'v'L double

L*a*b* uint8, uint16, or double

L*ch double

sRGB double



Converting Color Data Between Color Spaces

13-19

• lab2double

• lab2uint8

• lab2uint16

• xyz2double

• xyz2uint16

Performing Profile-Based Conversions 
If two colors have the same CIE colorimetry, they will match if viewed under 
the same conditions. However, because color images are typically produced for 
a wide variety of viewing environments, it is necessary to go beyond simple 
application of the CIE system.

For this reason, the International Color Consortium (ICC) has defined a Color 
Management System (CMS) that provides a means for communicating color 
data among input, output, and display devices. The CMS uses device profiles 
that contain color information specific to a particular device. Vendors that 
support CMS provide profiles that characterize the color reproduction of their 
devices, and methods, called Color Management Modules (CMM), that 
interpret the contents of each profile and perform the necessary image 
processing.

Device profiles contain the information that color management systems need 
to translate color data between devices. Any conversion between color spaces is 
a mathematical transformation from some domain space to a range space. With 
profile-based conversions, the domain space is often called the source space and 
the range space is called the destination space. In the ICC color management 
model, profiles are used to represent the source and destination spaces. 

The Image Processing Toolbox can read ICC profiles and perform the 
transformations and image processing they specify. This section includes the 
following topics:

• Reading a profile into MATLAB

• Using ICC profiles with a color transformation structure

• Specifying the rendering intent

For more information about color management systems, go to the International 
Color Consortium Web site, www.color.org. There you can download the ICC 
profile specification (ICC.1:2001-04).
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Reading ICC Profiles
To read an ICC profile into the MATLAB workspace, use the iccread function. 
In this example, the function reads in the profile for the color space that 
describes color monitors. 

prof = iccread('sRGB.icm');

iccread returns the contents of the profile in a structure. All profiles contain a 
header, a tag table, and a series of tagged elements. The header contains 
general information about the profile, such as the device class, the device color 
space, and the file size. The tagged elements, or tags, are the data constructs 
that contain the information used by the CMM.

For more information about the contents of a profile, see the iccread function 
reference page and the ICC specification. 

Example: Performing a Profile-Based Conversion
To illustrate a profile-based color space conversion, this section presents an 
example that converts color data from the RGB space of a monitor to the CMYK 
space of a printer. This conversion requires two profiles: a monitor profile and 
a printer profile. The source color space in this example is monitor RGB and 
the destination color space is printer CMYK:

1 Import RGB color space data. This example imports an RGB color image into 
the MATLAB workspace.

I_rgb = imread('peppers.png');

2 Read ICC profiles. Read the source and destination profiles into the 
MATLAB workspace. This example uses the sRGB profile as the source 
profile. The sRGB profile is an industry-standard color space that describes 
a color monitor. 

inprof = iccread('sRGB.icm');

For the destination profile, the example uses a profile that describes a 
particular color printer. The printer vendor supplies this profile. (The 
following profile and several other useful profiles can be obtained as 
downloads from www.adobe.com.)

outprof = iccread('USSheetfedCoated.icc');
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3 Create a color transformation structure. You must create a color 
transformation structure to define the conversion between the color spaces 
in the profiles. You use the makecform function to create the structure, 
specifying a transformation type string as an argument.

Note  The color space conversion might involve an intermediate conversion 
into a device-independent color space, called the Profile Connection Space 
(PCS), but this is transparent to the user.

This example creates a color transformation structure that defines a 
conversion from RGB color data to CMYK color data. 

C = makecform('icc',inprof,outprof);

4 Perform the conversion. You use the applycform function to perform the 
conversion, specifying as arguments the color data you want to convert and 
the color transformation structure that defines the conversion. The function 
returns the converted data.

I_cmyk = applycform(I_rgb,C);

Specifying the Rendering Intent
For most devices, the range of reproducible colors is much smaller than the 
range of colors represented by the PCS. It is for this reason that four rendering 
intents (or gamut mapping techniques) are defined in the profile format. Each 
one has distinct aesthetic and color-accuracy tradeoffs. 

When you create a profile-based color transformation structure, you can specify 
the rendering intent for the source as well as the destination profiles. For more 
information, see the makecform reference information.

Converting Between Device-Dependent Color 
Spaces
The toolbox includes functions that you can use to convert RGB data to several 
common device-dependent color spaces, and vice versa: 

• YIQ 

• YCbCr



13 Color

13-22

• Hue, saturation, value (HSV)

YIQ Color Space
The National Television Systems Committee (NTSC) defines a color space 
known as YIQ. This color space is used in televisions in the United States. One 
of the main advantages of this format is that grayscale information is 
separated from color data, so the same signal can be used for both color and 
black and white sets. 

In the NTSC color space, image data consists of three components: luminance 
(Y), hue (I), and saturation (Q). The first component, luminance, represents 
grayscale information, while the last two components make up chrominance 
(color information).

The function rgb2ntsc converts colormaps or RGB images to the NTSC color 
space. ntsc2rgb performs the reverse operation. 

For example, these commands convert an RGB image to NTSC format.

RGB = imread('peppers.png');
YIQ = rgb2ntsc(RGB);

Because luminance is one of the components of the NTSC format, the RGB to 
NTSC conversion is also useful for isolating the gray level information in an 
image. In fact, the toolbox functions rgb2gray and ind2gray use the rgb2ntsc 
function to extract the grayscale information from a color image.

For example, these commands are equivalent to calling rgb2gray.

YIQ = rgb2ntsc(RGB);
I = YIQ(:,:,1);

Note  In the YIQ color space, I is one of the two color components, not the 
grayscale component.

YCbCr Color Space
The YCbCr color space is widely used for digital video. In this format, 
luminance information is stored as a single component (Y), and chrominance 
information is stored as two color-difference components (Cb and Cr). Cb 
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represents the difference between the blue component and a reference value. 
Cr represents the difference between the red component and a reference value.

YCbCr data can be double precision, but the color space is particularly well 
suited to uint8 data. For uint8 images, the data range for Y is [16, 235], and 
the range for Cb and Cr is [16, 240]. YCbCr leaves room at the top and bottom 
of the full uint8 range so that additional (nonimage) information can be 
included in a video stream.

The function rgb2ycbcr converts colormaps or RGB images to the YCbCr color 
space. ycbcr2rgb performs the reverse operation. 

For example, these commands convert an RGB image to YCbCr format.

RGB = imread('peppers.png');
YCBCR = rgb2ycbcr(RGB);

HSV Color Space
The HSV color space (hue, saturation, value) is often used by people who are 
selecting colors (e.g., of paints or inks) from a color wheel or palette, because it 
corresponds better to how people experience color than the RGB color space 
does. The functions rgb2hsv and hsv2rgb convert images between the RGB and 
HSV color spaces. 

As hue varies from 0 to 1.0, the corresponding colors vary from red through 
yellow, green, cyan, blue, magenta, and back to red, so that there are actually 
red values both at 0 and 1.0. As saturation varies from 0 to 1.0, the 
corresponding colors (hues) vary from unsaturated (shades of gray) to fully 
saturated (no white component). As value, or brightness, varies from 0 to 1.0, 
the corresponding colors become increasingly brighter.

The following figure illustrates the HSV color space.
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.

Illustration of the HSV Color Space

The rgb2hsv function converts colormaps or RGB images to the HSV color 
space. hsv2rgb performs the reverse operation. These commands convert an 
RGB image to the HSV color space.

RGB = imread('peppers.png');
HSV = rgb2hsv(RGB);

For closer inspection of the HSV color space, the next block of code displays the 
separate color planes (hue, saturation, and value) of an HSV image. 

RGB=reshape(ones(64,1)*reshape(jet(64),1,192),[64,64,3]);
HSV=rgb2hsv(RGB);
H=HSV(:,:,1);
S=HSV(:,:,2);
V=HSV(:,:,3);
imshow(H)
figure, imshow(S);
figure, imshow(V);
figure, imshow(RGB);
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The Separated Color Planes of an HSV Image

As the hue plane image in the preceding figure illustrates, hue values make a 
linear transition from high to low. If you compare the hue plane image against 
the original image, you can see that shades of deep blue have the highest 
values, and shades of deep red have the lowest values. (As stated previously, 
there are values of red on both ends of the hue scale. To avoid confusion, the 
sample image uses only the red values from the beginning of the hue range.)

Saturation can be thought of as the purity of a color. As the saturation plane 
image shows, the colors with the highest saturation have the highest values 
and are represented as white. In the center of the saturation image, notice the 
various shades of gray. These correspond to a mixture of colors; the cyans, 
greens, and yellow shades are mixtures of true colors. Value is roughly 
equivalent to brightness, and you will notice that the brightest areas of the 
value plane correspond to the brightest colors in the original image.

Hue plane Saturation plane

Value plane Original image
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14

Function Reference

This section describes the Image Processing Toolbox functions.

Functions – By Category (p. 14-2) Contains a group of tables that organize the toolbox 
functions into category groups

Functions – Alphabetical List 
(p. 14-15)

Contains separate reference pages for each toolbox 
function
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Functions – By Category
This section provides brief descriptions of all the functions in the Image 
Processing Toolbox. The functions are listed in tables in the following broad 
categories.

If you know the name of a function, use “Functions — Alphabetical List” to find 
the reference page.

Image Input, Output, and Display
• Image Display (p. 14-3)

• Image File I/O (p. 14-3)

• Image Types and Type Conversions (p. 14-3)

Image Input, Output, and 
Display (p. 14-2)

Functions for importing, exporting, and 
displaying images and converting between 
image formats

Spatial Transformation and 
Registration (p. 14-4)

Functions for performing spatial 
transformations and image registration

Image Analysis and Statistics 
(p. 14-5)

Functions for performing image analysis 
and getting pixel values and statistics

Image Enhancement and 
Restoration (p. 14-6)

Functions for image enhancement and 
restoration, such as deblurring

Linear Filtering and 
Transforms (p. 14-7)

Functions for creating and using linear 
filters and transforms

Morphological Operations 
(p. 14-9)

Functions for performing morphological 
image processing

Region-Based, Neighborhood, 
and Block Processing (p. 14-11)

Functions to define regions of interest and 
operate on these regions

Colormap and Color Space 
Functions (p. 14-12)

Functions for working with image color

Miscellaneous Functions 
(p. 14-13)

Functions that perform image arithmetic, 
array operations, and set and get Image 
Processing Toolbox preferences
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Image Display 

Image File I/O

Image Types and Type Conversions

colorbar Display color bar (MATLAB function)

getimage Get image data from axes

image Create and display image object (MATLAB function)

imagesc Scale data and display as image (MATLAB function)

immovie Make movie from multiframe indexed image

imshow Display image in a MATLAB figure window

imview Display image in the Image Viewer

montage Display multiple image frames as rectangular montage

subimage Display multiple images in single figure

truesize Adjust display size of image

warp Display image as texture-mapped surface

zoom Zoom in and out of image or 2-D plot (MATLAB function)

dicominfo Read metadata from a DICOM message

dicomread Read a DICOM image

dicomuid Generate DICOM unique identifier

dicomwrite Write a DICOM image

imfinfo Return information about image file (MATLAB function)

imread Read image file (MATLAB function)

imwrite Write image file (MATLAB function)

dither Convert image using dithering

double Convert data to double precision (MATLAB function)

gray2ind Convert intensity image to indexed image
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Spatial Transformation and Registration
• Spatial Transformations (p. 14-5)

• Image Registration (p. 14-5)

grayslice Create indexed image from intensity image by 
thresholding

graythresh Compute global image threshold using Otsu's method

im2bw Convert image to binary image by thresholding

im2double Convert image array to double precision

im2java Convert image to instance of Java image object 
(MATLAB function)

im2java2d Convert image to instance of Java buffered image object

im2uint16 Convert image array to 16-bit unsigned integers

im2uint8 Convert image array to 8-bit unsigned integers

ind2gray Convert indexed image to intensity image

ind2rgb Convert indexed image to RGB image

isbw Return true for binary image

isgray Return true for intensity image

isind Return true for indexed image

isrgb Return true for RGB image

label2rgb Convert a label matrix to an RGB image

mat2gray Convert matrix to intensity image

rgb2gray Convert RGB image or colormap to grayscale

rgb2ind Convert RGB image to indexed image

uint16 Convert data to unsigned 16-bit integers (MATLAB 
function)

uint8 Convert data to unsigned 8-bit integers (MATLAB 
function)
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Spatial Transformations

Image Registration

Image Analysis and Statistics
• Image Analysis (p. 14-6)

• Pixel Values and Statistics (p. 14-6)

checkerboard Create checkerboard image

findbounds Find output bounds for spatial transformation

fliptform Flip the input and output roles of a TFORM structure

imcrop Crop image

imresize Resize image

imrotate Rotate image

interp2 2-D data interpolation (MATLAB function)

imtransform Apply 2-D spatial transformation to image

makeresampler Create resampling structure

maketform Create geometric transformation structure

tformarray Geometric transformation of a multidimensional array

tformfwd Apply forward geometric transformation

tforminv Apply inverse geometric transformation

cp2tform Infer geometric transformation from control point pairs

cpcorr Tune control point locations using cross-correlation

cpselect Control point selection tool

cpstruct2pairs Convert CPSTRUCT to valid pairs of control points

normxcorr2 Normalized two-dimensional cross-correlation
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Image Analysis

Pixel Values and Statistics

Image Enhancement and Restoration
• Image Enhancement (p. 14-7)

• Image Restoration (Deblurring) (p. 14-7)

edge Find edges in intensity image

qtdecomp Perform quadtree decomposition

qtgetblk Get block values in quadtree decomposition

qtsetblk Set block values in quadtree decomposition

corr2 Compute 2-D correlation coefficient

imcontour Create contour plot of image data

imhist Display histogram of image data

impixel Determine pixel color values

improfile Compute pixel-value cross-sections along line segments

mean2 Compute mean of matrix elements

pixval Display information about image pixels

regionprops Measure properties of image regions

std2 Compute standard deviation of matrix elements
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Image Enhancement

Image Restoration (Deblurring)

Linear Filtering and Transforms
• Linear Filtering (p. 14-8)

• Linear 2-D Filter Design (p. 14-8)

• Image Transforms (p. 14-8)

adapthisteq Perform adaptive histogram equalization using CLAHE

decorrstretch Apply a decorrelation stretch to a multichannel image

histeq Enhance contrast using histogram equalization

imadjust Adjust image intensity values or colormap

imnoise Add noise to an image

medfilt2 Perform 2-D median filtering

ordfilt2 Perform 2-D order-statistic filtering

stretchlim Return a pair of intensities that can be used to increase the 
contrast of an image

uintlut Compute new array values based on lookup table

wiener2 Perform 2-D adaptive noise-removal filtering

deconvblind Restore image using blind deconvolution

deconvlucy Restore image using accelerated Richardson-Lucy 
algorithm

deconvreg Restore image using regularized filter

deconvwnr Restore image using Wiener filter

edgetaper Taper the discontinuities along the image edges

otf2psf Convert optical transfer function to point spread function

psf2otf Convert point spread function to optical transfer function
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Linear Filtering

Linear 2-D Filter Design

Image Transforms

conv2 Perform 2-D convolution (MATLAB function)

convmtx2 Compute 2-D convolution matrix

convn Perform N-D convolution (MATLAB function)

filter2 Perform 2-D filtering (MATLAB function)

fspecial Create predefined filters

imfilter Multidimensional image filtering

freqspace Determine 2-D frequency response spacing (MATLAB 
function.)

freqz2 Compute 2-D frequency response

fsamp2 Design 2-D FIR filter using frequency sampling

ftrans2 Design 2-D FIR filter using frequency transformation

fwind1 Design 2-D FIR filter using 1-D window method

fwind2 Design 2-D FIR filter using 2-D window method

dct2 Compute 2-D discrete cosine transform

dctmtx Compute discrete cosine transform matrix

fan2para Convert fan-beam projection data to parallel-beam

fanbeam Compute fan-beam transform

fft2 Compute 2-D fast Fourier transform (MATLAB function)

fftn Compute N-D fast Fourier transform (MATLAB function)

fftshift Reverse quadrants of output of FFT (MATLAB function)

idct2 Compute 2-D inverse discrete cosine transform

ifft2 Compute 2-D inverse fast Fourier transform (MATLAB 
function)
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Morphological Operations
• Intensity and Binary Images (p. 14-9)

• Binary Images (p. 14-10)

• Structuring Element (STREL) Creation and Manipulation (p. 14-11)

Intensity and Binary Images

ifftn Compute N-D inverse fast Fourier transform (MATLAB 
function)

ifanbeam Compute inverse fan-beam transform

iradon Compute inverse Radon transform

para2fan Convert parallel-beam projections to fan-beam

phantom Generate a head phantom image

radon Compute Radon transform

conndef Default connectivity array

imbothat Perform bottom-hat filtering

imclearborder Suppress light structures connected to image border

imclose Close image

imdilate Dilate image

imerode Erode image

imextendedmax Find extended-maxima transform

imextendedmin Find extended-minima transform

imfill Fill image regions 

imhmax Calculate H-maxima transform

imhmin Calculate H-minima transform

imimposemin Impose minima

imopen Open image
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Binary Images

imreconstruct Perform morphological reconstruction 

imregionalmax Find regional maxima of image

imregionalmin Find regional minima of image

imtophat Perform tophat filtering

watershed Find image watershed regions

applylut Perform neighborhood operations using lookup tables

bwarea Area of objects in binary image

bwareaopen Binary area open; remove small objects

bwdist Distance transform

bweuler Euler number of binary image

bwhitmiss Binary hit-and-miss operation 

bwlabel Label connected components in 2-D binary image

bwlabeln Label connected components in N-D binary image

bwmorph Perform morphological operations on binary image

bwpack Pack binary image

bwperim Find perimeter of objects in binary image

bwselect Select objects in binary image

bwulterode Ultimate erosion

bwunpack Unpack a packed binary image

imregionalmin Regional minima of image

imtophat Perform tophat filtering

makelut Construct lookup table for use with applylut
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Structuring Element (STREL) Creation and Manipulation

Region-Based, Neighborhood, and Block 
Processing
• Region-Based Processing (p. 14-11)

• Neighborhood and Block Processing (p. 14-12)

Region-Based Processing

getheight Get the height of a structuring element

getneighbors Get structuring element neighbor locations and heights

getnhood Get structuring element neighborhood

getsequence Extract sequence of decomposed structuring elements

isflat Return true for flat structuring element

reflect Reflect structuring element

strel Create morphological structuring element

translate Translate structuring element

bwboundaries Trace region boundaries in binary image

bwtraceboundary Trace object in binary image

poly2mask Convert region-of-interest polygon to mask

roicolor Select region of interest, based on color

roifill Smoothly interpolate within arbitrary region

roifilt2 Filter a region of interest

roipoly Select polygonal region of interest
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Neighborhood and Block Processing

Colormap and Color Space Functions
• Colormap Manipulation (p. 14-12)

• Color Space Conversions (p. 14-13)

Colormap Manipulation

bestblk Choose block size for block processing

blkproc Implement distinct block processing for image

col2im Rearrange matrix columns into blocks

colfilt Perform neighborhood operations using columnwise 
functions

im2col Rearrange image blocks into columns

nlfilter Perform general sliding-neighborhood operations

brighten Brighten or darken colormap (MATLAB function)

cmpermute Rearrange colors in colormap

cmunique Find unique colormap colors and corresponding image

colormap Set or get color lookup table (MATLAB function)

imapprox Approximate indexed image by one with fewer colors

rgbplot Plot RGB colormap components (MATLAB function)
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Color Space Conversions

Miscellaneous Functions
• Image Arithmetic (p. 14-14)

• Toolbox Preferences (p. 14-14)

• Interactive Mouse Utility Functions (p. 14-14)

• Array Operations (p. 14-14)

• Demos (p. 14-14)

applycform Apply device-independent color space transformation

hsv2rgb Convert HSV values to RGB color space (MATLAB function)

iccread Read ICC color profile

lab2double Convert  color values to double

lab2uint16 Convert  color values to uint16

lab2uint8 Convert  color values to uint8

makecform Create device-independent color space transform structure

ntsc2rgb Convert NTSC values to RGB color space

rgb2hsv Convert RGB values to HSV color space (MATLAB function)

rgb2ntsc Convert RGB values to NTSC color space

rgb2ycbcr Convert RGB values to YCbCr color space

whitepoint Returns XYZ values of standard illuminants

xyz2double Convert XYZ color values to double

xyz2uint16 Convert XYZ color values to uint16

ycbcr2rgb Convert YCbCr values to RGB color space

L∗ a∗ b∗

L∗ a∗ b∗

L∗ a∗ b∗
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Image Arithmetic

Toolbox Preferences

Interactive Mouse Utility Functions

Array Operations

Demos

imabsdiff Compute absolute difference of two images

imadd Add two images, or add constant to image

imcomplement Complement image

imdivide Divide two images, or divide image by constant

imlincomb Compute linear combination of images

immultiply Multiply two images, or multiply image by constant

imsubtract Subtract two images, or subtract constant from image

ippl Check for presence of Intel Performance Primitives 
Library (IPPL)

iptgetpref Get value of Image Processing Toolbox preference

iptsetpref Set value of Image Processing Toolbox preference

getline Select polyline with mouse

getpts Select points with mouse

getrect Select rectangle with mouse

circshift Shift array circularly (MATLAB function)

padarray Pad an array

iptdemos Display index of Image Processing Toolbox demos
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Functions – Alphabetical List
This section contains detailed descriptions of all toolbox functions. Each 
function reference page contains some or all of this information:

• The function name

• The purpose of the function

• The function syntax

All valid input argument and output argument combinations are shown. In 
some cases, an ellipsis (. . .) is used for the input arguments. This means that 
all preceding input argument combinations are valid for the specified output 
argument(s).

• A description of each argument

• A description of the function

• Additional remarks about usage

• An example of usage

• Related functions
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14adapthisteqPurpose Perform contrast-limited adaptive histogram equalization (CLAHE)

Syntax J = adapthisteq(I)
J = adapthisteq(I,param1,val1,param2,val2...)

Description J = adapthisteq(I) enhances the contrast of the intensity image I by 
transforming the values using contrast-limited adaptive histogram 
equalization (CLAHE).

CLAHE operates on small regions in the image, called tiles, rather than the 
entire image. Each tile's contrast is enhanced, so that the histogram of the 
output region approximately matches the histogram specified by the 
'Distribution' parameter. The neighboring tiles are then combined using 
bilinear interpolation to eliminate artificially induced boundaries. The 
contrast, especially in homogeneous areas, can be limited to avoid amplifying 
any noise that might be present in the image.

J = adapthisteq(I,param1,val1,param2,val2...) specifies any of the 
additional parameter/value pairs listed in the following table. Parameter 
names can be abbreviated, and case does not matter. 

Parameter Value

'NumTiles' Two-element vector of positive integers specifying 
the number of tiles by row and column, [M N]. Both 
M and N must be at least 2. The total number of tiles 
is equal to M*N.

Default: [8 8]

'ClipLimit' Real scalar in the range [0 1] that specifies a contrast 
enhancement limit. Higher numbers result in more 
contrast. 

Default: 0.01
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Class Support Intensity image I can be of class uint8, uint16, or double. The output image 
J has the same class as I.

'NBins' Positive integer scalar specifying the number of bins 
for the histogram used in building a contrast 
enhancing transformation. Higher values result in 
greater dynamic range at the cost of slower 
processing speed.

Default: 256

'Range' String specifying the range of the output image data. 

'original' — Range is limited to the range of the 
original image, [min(I(:)) max(I(:))]. 

'full' — Full range of the output image class is 
used. For example, for uint8 data, range is [0 255].

Default: 'full'

'Distribution' String specifying the desired histogram shape for 
the image tiles. 

'uniform' — Flat histogram

'rayleigh' — Bell-shaped histogram 

'exponential' — Curved histogram

Default: 'uniform'

'Alpha' Nonnegative real scalar specifying a distribution 
parameter.

Default: 0.4

Note: Only used when 'Distribution' is set to 
either 'rayleigh' or 'exponential'.

Parameter Value
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Example 1
Apply Contrast-Limited Adaptive Histogram Equalization to an image and 
display the results.

I = imread('tire.tif');
A = adapthisteq(I,'clipLimit',0.02,'Distribution','rayleigh');
imview(I);
imview(A);

Example 2
Apply Contrast-Limited Adaptive Histogram Equalization to a color 
photograph.

[I MAP] = imread('shadow.tif');
RGB = ind2rgb(I,MAP);
YIQ = rgb2ntsc(RGB); %convert to YIQ image
Y = YIQ(:,:,1);
YIQ(:,:,1) = adapthisteq(Y,'Divisions',[8 8],'ClipLimit',0.005);
J = ntsc2rgb(YIQ); %convert back to RGB
imview(RGB); %display the results

See Also histeq
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14applycformPurpose Apply color space transformation

Syntax out = applycform(I,C)

Description out = applycform(I,C) converts the color values in I to the color space 
specified in the color transformation structure C. The color transformation 
structure specifies various parameters of the transformation. See makecform 
for details.

If I is two-dimensional, each row is interpreted as a color. I typically has either 
three or four columns, depending on the input color space. out has the same 
number of rows and either three or four columns, depending on the output color 
space.

If I is three-dimensional, each row-column location is interpreted as a color, 
and size(I,3) is typically either three or four, depending on the input color 
space. out has the same number of rows and columns as I, and size(out,3) is 
either three or four, depending on the output color space.

Class Support I must be a real, nonsparse, finite array of class uint8, uint16, or double. The 
output array out has the same class and size as the input array, unless the 
output color space is XYZ. If the input is XYZ data of class uint8, the output is 
of class uint16, because there is no standard 8-bit encoding defined for XYZ 
color values.

Example Read in a color image that uses the RGB color space. 

I = imread('peppers.png');

Create a color transformation structure that defines an RGB to XYZ 
conversion.

C = makecform('srgb2xyz');

Perform the transformation with applycform.

I_xyz = applycform(I,C);

See Also makecform
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14applylutPurpose Perform neighborhood operations on binary images using lookup tables

Syntax A = applylut(BW,LUT)

Description A = applylut(BW,LUT) performs a 2-by-2 or 3-by-3 neighborhood operation on 
binary image BW by using a lookup table (LUT). LUT is either a 16-element or 
512-element vector returned by makelut. The vector consists of the output 
values for all possible 2-by-2 or 3-by-3 neighborhoods.

Class Support BW can be numeric or logical, and it must be real, two-dimensional, and 
nonsparse. LUT can be numeric or logical, and it must be a real vector with 16 
or 512 elements. If all the elements of LUT are 0 or 1, then A is logical. If all the 
elements of LUT are integers between 0 and 255, then A is uint8. For all other 
cases, A is double.

Algorithm applylut performs a neighborhood operation on a binary image by producing 
a matrix of indices into lut, and then replacing the indices with the actual 
values in lut. The specific algorithm used depends on whether you use 2-by-2 
or 3-by-3 neighborhoods. 

2-by-2 Neighborhoods
For 2-by-2 neighborhoods, length(lut) is 16. There are four pixels in each 
neighborhood, and two possible states for each pixel, so the total number of 
permutations is 24 = 16.

To produce the matrix of indices, applylut convolves the binary image BW with 
this matrix.

8     2
4     1

The resulting convolution contains integer values in the range [0,15]. applylut 
uses the central part of the convolution, of the same size as BW, and adds 1 to 
each value to shift the range to [1,16]. It then constructs A by replacing the 
values in the cells of the index matrix with the values in lut that the indices 
point to.
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3-by-3 Neighborhoods
For 3-by-3 neighborhoods, length(lut) is 512. There are nine pixels in each 
neighborhood, and two possible states for each pixel, so the total number of 
permutations is 29 = 512.

To produce the matrix of indices, applylut convolves the binary image BW with 
this matrix.

256    32     4
128    16     2
64     8     1

The resulting convolution contains integer values in the range [0,511]. 
applylut uses the central part of the convolution, of the same size as BW, and 
adds 1 to each value to shift the range to [1,512]. It then constructs A by 
replacing the values in the cells of the index matrix with the values in lut that 
the indices point to.

Example In this example, you perform erosion using a 2-by-2 neighborhood. An output 
pixel is on only if all four of the input pixel’s neighborhood pixels are on.

lut = makelut('sum(x(:)) == 4',2);
BW = imread('text.png');
BW2 = applylut(BW,lut);
imview(BW), imview(BW2)

See Also makelut
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14bestblkPurpose Determine block size for block processing

Syntax siz = bestblk([m n],k)
[mb,nb] = bestblk([m n],k)

Description siz = bestblk([m n],k) returns, for an m-by-n image, the optimal block size 
for block processing. k is a scalar specifying the maximum row and column 
dimensions for the block; if the argument is omitted, it defaults to 100. The 
return value siz is a 1-by-2 vector containing the row and column dimensions 
for the block. 

[mb,nb] = bestblk([m n],k) returns the row and column dimensions for the 
block in mb and nb, respectively.

Algorithm bestblk returns the optimal block size given m, n, and k. The algorithm for 
determining siz is

• If m is less than or equal to k, return m.

• If m is greater than k, consider all values between min(m/10,k/2) and k. 
Return the value that minimizes the padding required.

The same algorithm is then repeated for n.

Example siz = bestblk([640 800],72)

siz =

64 50

See Also blkproc
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14blkprocPurpose Implement distinct block processing for an image

Syntax B = blkproc(A,[m n],fun)
B = blkproc(A,[m n],fun,P1,P2,...)
B = blkproc(A,[m n],[mborder nborder],fun,...)
B = blkproc(A,'indexed',...)

Description B = blkproc(A,[m n],fun) processes the image A by applying the function fun 
to each distinct m-by-n block of A, padding A with 0’s if necessary. fun is a 
function that accepts an m-by-n matrix, x, and returns a matrix, vector, or 
scalar y.

y = fun(x)

blkproc does not require that y be the same size as x. However, B is the same 
size as A only if y is the same size as x.

B = blkproc(A,[m n],fun,P1,P2,...) passes the additional parameters 
P1,P2,... to fun.

B = blkproc(A,[m n],[mborder nborder],fun,...) defines an overlapping 
border around the blocks. blkproc extends the original m-by-n blocks by 
mborder on the top and bottom, and nborder on the left and right, resulting in 
blocks of size (m+2*mborder)-by-(n+2*nborder). The blkproc function pads 
the border with 0’s, if necessary, on the edges of A. The function fun should 
operate on the extended block.

The line below processes an image matrix as 4-by-6 blocks, each having a row 
border of 2 and a column border of 3. Because each 4-by-6 block has this 2-by-3 
border, fun actually operates on blocks of size 8-by-12.

B = blkproc(A,[4 6],[2 3],fun,...)

B = blkproc(A,'indexed',...) processes A as an indexed image, padding 
with 0’s if the class of A is uint8 or uint16, or 1’s if the class of A is double.

Class Support The input image A can be of any class supported by fun. The class of B depends 
on the class of the output from fun.
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Example This example uses blkproc to compute the 2-D DCT of each 8-by-8 block to the 
standard deviation of the elements in that block. In this example, fun is 
specified as a function_handle created using @. 

I = imread('cameraman.tif');
fun = @dct2;
J = blkproc(I,[8 8],fun);
imagesc(J), colormap(hot)

This example uses blkproc to set the pixels in each 16-by-16 block to the 
standard deviation of the elements in that block. In this example, fun is 
specified as an inline object. 

I = imread('liftingbody.png');
fun = inline('std2(x)*ones(size(x))');
I2 = blkproc(I,[ 16 16 ],fun);
imview(I), imview(I2,[])
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See Also colfilt, nlfilter, inline

Image Courtesy of NASA
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14brightenPurpose Brighten or darken a colormap

brighten is a MATLAB function. To get help for this function, select MATLAB 
Help from the Help menu and view the online function reference page.
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14bwareaPurpose Compute the area of the objects in a binary image

Syntax total = bwarea(BW)

Description total = bwarea(BW) estimates the area of the objects in binary image BW. 
total is a scalar whose value corresponds roughly to the total number of on 
pixels in the image, but might not be exactly the same because different 
patterns of pixels are weighted differently.

Class Support BW can be numeric or logical. For numeric input, any nonzero pixels are 
considered to be on. The return value total is of class double.

Algorithm bwarea estimates the area of all of the on pixels in an image by summing the 
areas of each pixel in the image. The area of an individual pixel is determined 
by looking at its 2-by-2 neighborhood. There are six different patterns, each 
representing a different area:

• Patterns with zero on pixels (area = 0)

• Patterns with one on pixel (area = 1/4)

• Patterns with two adjacent on pixels (area = 1/2)

• Patterns with two diagonal on pixels (area = 3/4)

• Patterns with three on pixels (area = 7/8)

• Patterns with all four on pixels (area = 1)

Keep in mind that each pixel is part of four different 2-by-2 neighborhoods. 
This means, for example, that a single on pixel surrounded by off pixels has a 
total area of 1.

Example This example computes the area in the objects of a 256-by-256 binary image.

BW = imread('circles.png');
imview(BW);
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bwarea(BW)

ans =

  1.4187e+004

See Also bweuler, bwperim

References Pratt, William K., Digital Image Processing, New York, John Wiley & Sons, 
Inc., 1991, p. 634.
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14bwareaopenPurpose Binary area open; remove small objects

Syntax BW2 = bwareaopen(BW,P)
BW2 = bwareaopen(BW,P,CONN)

Description BW2 = bwareaopen(BW,P) removes from a binary image all connected 
components (objects) that have fewer than P pixels, producing another binary 
image, BW2. The default connectivity is 8 for two dimensions, 26 for three 
dimensions, and conndef(ndims(BW),'maximal') for higher dimensions.

BW2 = bwareaopen(BW,P,CONN) specifies the desired connectivity. CONN can 
have any of the following scalar values.

Connectivity can be defined in a more general way for any dimension by using 
for CONN a 3-by-3-by-...-by-3 matrix of 0’s and 1’s. The 1-valued elements define 
neighborhood locations relative to the center element of CONN. Note that CONN 
must be symmetric about its center element.

Class Support BW can be a logical or numeric array of any dimension, and it must be 
nonsparse. The return value BW2 is of class logical.

Algorithm The basic steps are

1 Determine the connected components.
L = bwlabeln(BW, CONN);

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood



bwareaopen

14-30

2 Compute the area of each component.
S = regionprops(L, 'Area');

3 Remove small objects.
bw2 = ismember(L, find([S.Area] >= P));

Example  Read in the image and display it.

originalBW = imread('text.png');
imview(originalBW)

Remove all objects smaller than 50 pixels. Note the missing letters.

bwAreaOpenBW = bwareaopen(originalBW,50);
imview(bwAreaOpenBW)

See Also bwlabel, bwlabeln, conndef, regionprops
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14bwboundariesPurpose Trace region boundaries in a binary image

Syntax B = bwboundaries(BW)
B = bwboundaries(BW,CONN)
B = bwboundaries(BW,CONN,options)
[B L] = bwboundaries(...)
[B L N A] = bwboundaries()

Description B = bwboundaries(BW) traces the exterior boundaries of objects, as well as 
boundaries of holes inside these objects, in the binary image BW. bwboundaries 
also descends into the outermost objects (parents) and traces their children 
(objects completely enclosed by the parents). BW must be a binary image where 
nonzero pixels belong to an object and 0 pixels constitute the background. The 
following figure illustrates these components.

bwboundaries returns B, a P-by-1 cell array, where P is the number of objects 
and holes. Each cell in the cell array contains a Q-by-2 matrix. Each row in the 
matrix contains the row and column coordinates of a boundary pixel. Q is the 
number of boundary pixels for the corresponding region. 

Hole

ParentParent 
object

Child
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B = bwboundaries(BW,CONN) specifies the connectivity to use when tracing 
parent and child boundaries. CONN can have either of the following scalar 
values.

B = bwboundaries(BW,CONN,options) specifies an optional argument, where 
options can have either of the following values:

[B,L] = bwboundaries(...) returns the label matrix L as the second output 
argument. Objects and holes are labeled. L is a two-dimensional array of 
nonnegative integers that represent contiguous regions. The kth region 
includes all elements in L that have value k. The number of objects and holes 
represented by L is equal to max(L(:)). The zero-valued elements of L make up 
the background.

[B,L,N,A] = bwboundaries(...) returns N, the number of objects found, and 
A, an adjacency matrix. The first N cells in B are object boundaries. A represents 
the parent-child-hole dependencies. A is a square, sparse, logical matrix with 
side of length max(L(:)), whose rows and columns correspond to the positions 
of boundaries stored in B. 

The boundaries enclosed by a B{m} as well as the boundary enclosing B{m} can 
both be found using A as follows:

enclosing_boundary  = find(A(m,:));
enclosed_boundaries = find(A(:,m));

Value Meaning

4 4-connected neighborhood

8 8-connected neighborhood. This is the default.

Value Meaning

'holes' Search for both object and hole boundaries. This is the 
default.

'noholes' Search only for object (parent and child) boundaries. 
This can provide better performance.
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Class Support BW can be logical or numeric and it must be real, 2-D, and nonsparse. L and N 
are double. A is sparse logical.

Examples Example 1
Read in and threshold an intensity image. Display the labeled objects using the 
jet colormap, on a gray background, with region boundaries outlined in white.

I = imread('rice.png');
BW = im2bw(I, graythresh(I));
[B,L] = bwboundaries(BW,'noholes');
imshow(label2rgb(L, @jet, [.5 .5 .5]))
hold on
for k = 1:length(B)
   boundary = B{k};
   plot(boundary(:,2), boundary(:,1), 'w', 'LineWidth', 2)
end

Example 2
Read in and display a binary image. Overlay the region boundaries on the 
image. Display text showing the region number (based on the label matrix) 
next to every boundary. Additionally, display the adjacency matrix using the 
MATLAB spy function.

After the image is displayed, use the zoom tool to read individual labels.

BW = imread('blobs.png');
[B,L,N,A] = bwboundaries(BW);
imshow(BW); hold on;
colors=['b' 'g' 'r' 'c' 'm' 'y'];
for k=1:length(B),
  boundary = B{k};
  cidx = mod(k,length(colors))+1;
  plot(boundary(:,2), boundary(:,1), colors(cidx),'LineWidth',2);
  %randomize text position for better visibility
  rndRow = ceil(length(boundary)/(mod(rand*k,7)+1));
  col = boundary(rndRow,2); row = boundary(rndRow,1);
  h = text(col+1, row-1, num2str(L(row,col)));
  set(h,'Color',colors(cidx),'FontSize',14,'FontWeight','bold');
end
figure; spy(A);
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Example 3
Display object boundaries in red and hole boundaries in green.

BW = imread('blobs.png');
[B,L,N] = bwboundaries(BW);
imshow(BW); hold on;
for k=1:length(B),
   boundary = B{k};
   if(k > N)
     plot(boundary(:,2), boundary(:,1), 'g','LineWidth',2);
   else
     plot(boundary(:,2), boundary(:,1), 'r','LineWidth',2);
   end
end

Example 4
Display parent boundaries in red (any empty row of the adjacency matrix 
belongs to a parent) and their holes in green.

BW = imread('blobs.png');
[B,L,N,A] = bwboundaries(BW);
imshow(BW); hold on;
for k=1:length(B),
   if(~sum(A(k,:)))
     boundary = B{k};
     plot(boundary(:,2), boundary(:,1), 'r','LineWidth',2);
     for l=find(A(:,k))'
       boundary = B{l};
       plot(boundary(:,2), boundary(:,1), 'g','LineWidth',2);
     end
   end
end

 See Also bwtraceboundary, bwlabel, bwlabeln
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14bwdistPurpose Distance transform

Syntax D = bwdist(BW)
[D,L] = bwdist(BW)
[D,L] = bwdist(BW,METHOD)

Description D = bwdist(BW) computes the Euclidean distance transform of the binary 
image BW. For each pixel in BW, the distance transform assigns a number that 
is the distance between that pixel and the nearest nonzero pixel of BW. bwdist 
uses the Euclidean distance metric by default. BW can have any dimension. D is 
the same size as BW.

[D,L] = bwdist(BW) also computes the nearest-neighbor transform and 
returns it as label matrix L, which has the same size as BW and D. Each element 
of L contains the linear index of the nearest nonzero pixel of BW.

[D,L] = bwdist(BW,METHOD) computes the distance transform, where METHOD 
specifies an alternate distance metric. METHOD can take any of these values:

'chessboard' In 2-D, the chessboard distance between (x1,y1) 
and (x2,y2) is

'cityblock' In 2-D, the cityblock distance between (x1,y1) and 
(x2,y2) is

max x1 x2– y1 y2–,( )

x1 x2– y1 y2–+
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The METHOD string can be abbreviated.

Note  bwdist uses fast algorithms to compute the true Euclidean distance 
transform, especially in the 2-D case. The other methods are provided 
primarily for pedagogical reasons. However, the alternative distance 
transforms are sometimes significantly faster for multidimensional input 
images, particularly those that have many nonzero elements.

Class Support BW can be numeric or logical, and it must be nonsparse. D and L are double 
matrices with the same size as BW.

Example Here is a simple example of the Euclidean distance transform.

bw = zeros(5,5); bw(2,2) = 1; bw(4,4) = 1
bw =
     0     0     0     0     0
     0     1     0     0     0
     0     0     0     0     0
     0     0     0     1     0
     0     0     0     0     0

[D,L] = bwdist(bw)

'euclidean' In 2-D, the Euclidean distance between (x1,y1) 
and (x2,y2) is

This is the default method.

'quasi-euclidean' In 2-D, the quasi-Euclidean distance between 
(x1,y1) and (x2,y2) is

x1 x2–( )2 y1 y2–( )2
+

x1 x2– 2 1–( ) y1 y2– x1 x2– y1 y2–>,+

2 1–( ) x1 x2– y1 y2– otherwise,+
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D =
    1.4142    1.0000    1.4142    2.2361    3.1623
    1.0000         0    1.0000    2.0000    2.2361
    1.4142    1.0000    1.4142    1.0000    1.4142
    2.2361    2.0000    1.0000         0    1.0000
    3.1623    2.2361    1.4142    1.0000    1.4142

L =
     7     7     7     7     7
     7     7     7     7    19
     7     7     7    19    19
     7     7    19    19    19
     7    19    19    19    19

In the nearest-neighbor matrix L the values 7 and 19 represent the position of 
the nonzero elements using linear matrix indexing. If a pixel contains a 7, its 
closest nonzero neighbor is at linear position 7. 

This example compares the 2-D distance transforms for each of the supported 
distance methods. In the figure, note how the quasi-Euclidean distance 
transform best approximates the circular shape achieved by the Euclidean 
distance method.

bw = zeros(200,200); bw(50,50) = 1; bw(50,150) = 1;
bw(150,100) = 1;
D1 = bwdist(bw,'euclidean');
D2 = bwdist(bw,'cityblock');
D3 = bwdist(bw,'chessboard');
D4 = bwdist(bw,'quasi-euclidean');
figure
subplot(2,2,1), subimage(mat2gray(D1)), title('Euclidean')
hold on, imcontour(D1)
subplot(2,2,2), subimage(mat2gray(D2)), title('City block')
hold on, imcontour(D2)
subplot(2,2,3), subimage(mat2gray(D3)), title('Chessboard')
hold on, imcontour(D3)
subplot(2,2,4), subimage(mat2gray(D4)), title('Quasi-Euclidean')
hold on, imcontour(D4)
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This example compares isosurface plots for the distance transforms of a 3-D 
image containing a single nonzero pixel in the center.

bw = zeros(50,50,50); bw(25,25,25) = 1;
D1 = bwdist(bw);
D2 = bwdist(bw,'cityblock');
D3 = bwdist(bw,'chessboard');
D4 = bwdist(bw,'quasi-euclidean');
figure
subplot(2,2,1), isosurface(D1,15), axis equal, view(3)
camlight, lighting gouraud, title('Euclidean')
subplot(2,2,2), isosurface(D2,15), axis equal, view(3)
camlight, lighting gouraud, title('City block')
subplot(2,2,3), isosurface(D3,15), axis equal, view(3)
camlight, lighting gouraud, title('Chessboard')
subplot(2,2,4), isosurface(D4,15), axis equal, view(3)
camlight, lighting gouraud, title('Quasi-Euclidean')
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Algorithm For two-dimensional Euclidean distance transforms, bwdist uses the second 
algorithm described in 

Breu, Heinz, Joseph Gil, David Kirkpatrick, and Michael Werman, “Linear 
Time Euclidean Distance Transform Algorithms,” IEEE Transactions on 
Pattern Analysis and Machine Intelligence, Vol. 17, No. 5, May 1995, pp. 
529-533.

For higher dimensional Euclidean distance transforms, bwdist uses a 
nearest-neighbor search on an optimized kd-tree, as described in

Friedman, Jerome H., Jon Louis Bentley, and Raphael Ari Finkel, “An 
Algorithm for Finding Best Matches in Logarithmic Expected Time,” ACM 
Transactions on Mathematics Software, Vol. 3, No. 3, September 1997, pp. 
209-226.

For cityblock, chessboard, and quasi-Euclidean distance transforms, bwdist 
uses the two-pass, sequential scanning algorithm described in

Rosenfeld, A. and J. Pfaltz, “Sequential operations in digital picture 
processing,” Journal of the Association for Computing Machinery, Vol. 13, 
No. 4, 1966, pp. 471-494.
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The different distance measures are achieved by using different sets of weights 
in the scans, as described in

Paglieroni, David, “Distance Transforms: Properties and Machine Vision 
Applications,” Computer Vision, Graphics, and Image Processing: Graphical 
Models and Image Processing, Vol. 54, No. 1, January 1992, pp. 57-58.

See Also watershed
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14bweulerPurpose Compute the Euler number of a binary image

Syntax eul = bweuler(BW,n)

Description eul = bweuler(BW,n) returns the Euler number for the binary image BW. The 
return value eul is a scalar whose value is the total number of objects in the 
image minus the total number of holes in those objects. The argument n can 
have a value of either 4 or 8, where 4 specifies 4-connected objects and 8 
specifies 8-connected objects; if the argument is omitted, it defaults to 8.

Class Support BW can be numeric or logical and it must be real, nonsparse, and 
two-dimensional. The return value eul is of class double.

Example BW = imread('circles.png');
imview(BW);

bweuler(BW)

ans =

    3

Algorithm bweuler computes the Euler number by considering patterns of convexity and 
concavity in local 2-by-2 neighborhoods. See [2] for a discussion of the 
algorithm used.

See Also bwmorph, bwperim
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References [1] Horn, Berthold P. K., Robot Vision, New York, McGraw-Hill, 1986, pp. 
73-77.

[2] Pratt, William K., Digital Image Processing, New York, John Wiley & Sons, 
Inc., 1991, p. 633.
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14bwhitmissPurpose Binary hit-and-miss operation

Syntax BW2 = bwhitmiss(BW1,SE1,SE2)
BW2 = bwhitmiss(BW1,INTERVAL)

Description BW2 = bwhitmiss(BW1,SE1,SE2) performs the hit-and-miss operation defined 
by the structuring elements SE1 and SE2. The hit-and-miss operation preserves 
pixels whose neighborhoods match the shape of SE1 and don't match the shape 
of SE2. SE1 and SE2 can be flat structuring element objects, created by strel, 
or neighborhood arrays. The neighborhoods of SE1 and SE2 should not have any 
overlapping elements. The syntax bwhitmiss(BW1,SE1,SE2) is equivalent to 
imerode(BW1,SE1) & imerode(~BW1,SE2).

BW2 = bwhitmiss(BW1,INTERVAL) performs the hit-and-miss operation 
defined in terms of a single array, called an interval. An interval is an array 
whose elements can contain 1, 0, or -1. The 1-valued elements make up the 
domain of SE1, the -1-valued elements make up the domain of SE2, and the 
0-valued elements are ignored. The syntax bwhitmiss(INTERVAL) is equivalent 
to bwhitmiss(BW1,INTERVAL == 1, INTERVAL == -1).

Class Support BW1 can be a logical or numeric array of any dimension, and it must be 
nonsparse. BW2 is always a logical array with the same size as BW1. SE1 and SE2 
must be flat STREL objects or they must be logical or numeric arrays containing 
1’s and 0’s. INTERVAL must be an array containing 1 s, 0 s, and -1 s. 

Example This example performs the hit-and-miss operation on a binary image using an 
interval.

bw = [0 0 0 0 0 0
0 0 1 1 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 1 1 0 0
0 0 1 0 0 0]

interval = [0 -1 -1
1  1 -1
0  1  0];
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bw2 = bwhitmiss(bw,interval)

bw2 =

     0     0     0     0     0     0
     0     0     0     1     0     0
     0     0     0     0     1     0
     0     0     0     0     0     0
     0     0     0     0     0     0
     0     0     0     0     0     0

See Also imdilate, imerode, strel
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14bwlabelPurpose Label connected components in a binary image

Syntax L = bwlabel(BW,n)
[L,num] = bwlabel(BW,n)

Description L = bwlabel(BW,n) returns a matrix L, of the same size as BW, containing labels 
for the connected objects in BW. n can have a value of either 4 or 8, where 4 
specifies 4-connected objects and 8 specifies 8-connected objects; if the 
argument is omitted, it defaults to 8.

The elements of L are integer values greater than or equal to 0. The pixels 
labeled 0 are the background. The pixels labeled 1 make up one object, the 
pixels labeled 2 make up a second object, and so on.

[L,num] = bwlabel(BW,n) returns in num the number of connected objects 
found in BW.

Remarks bwlabel supports 2-D inputs only; bwlabeln supports inputs of any dimension. 
In some cases, you might prefer to use bwlabeln even for 2-D problems because 
it can be faster. If you have a 2-D input whose objects are relatively thick in the 
vertical direction, bwlabel is probably faster; otherwise bwlabeln is probably 
faster.

Class Support BW can be logical or numeric, and it must be real, 2-D, and nonsparse. L is of 
class double.

Remarks You can use the MATLAB find function in conjunction with bwlabel to return 
vectors of indices for the pixels that make up a specific object. For example, to 
return the coordinates for the pixels in object 2,

[r,c] = find(bwlabel(BW)==2)

You can display the output matrix as a pseudocolor indexed image. Each object 
appears in a different color, so the objects are easier to distinguish than in the 
original image. See label2rgb for more information.

Example This example illustrates using 4-connected objects. Notice objects 2 and 3; with 
8-connected labeling, bwlabel would consider these a single object rather than 
two separate objects.
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BW = [1     1     1     0     0     0     0     0
1     1     1     0     1     1     0     0
1     1     1     0     1     1     0     0
1     1     1     0     0     0     1     0
1     1     1     0     0     0     1     0
1     1     1     0     0     0     1     0
1     1     1     0     0     1     1     0
1     1     1     0     0     0     0     0];

L = bwlabel(BW,4)

L =

     1     1     1     0     0     0     0     0
     1     1     1     0     2     2     0     0
     1     1     1     0     2     2     0     0
     1     1     1     0     0     0     3     0
     1     1     1     0     0     0     3     0
     1     1     1     0     0     0     3     0
     1     1     1     0     0     3     3     0
     1     1     1     0     0     0     0     0

[r,c] = find(L==2);
rc = [r c]

rc =
 
     2     5
     3     5
     2     6
     3     6

Algorithm bwlabel uses the general procedure outlined in reference [1], pp. 40-48:

1 Run-length encode the input image.

2 Scan the runs, assigning preliminary labels and recording label 
equivalences in a local equivalence table.

3 Resolve the equivalence classes.

4 Relabel the runs based on the resolved equivalence classes.
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See Also bweuler, bwlabeln, bwselect, label2rgb

Reference [1] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision, 
Volume I, Addison-Wesley, 1992, pp. 28-48.
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14bwlabelnPurpose Label connected components in N-D binary image

Syntax L = bwlabeln(BW)
[L,NUM] = bwlabeln(BW)
[L,NUM] = bwlabeln(BW,CONN)

Description L = bwlabeln(BW) returns a label matrix L containing labels for the connected 
components in BW. BW can have any dimension; L is the same size as BW. The 
elements of L are integer values greater than or equal to 0. The pixels labeled 
0 are the background. The pixels labeled 1 make up one object, the pixels 
labeled 2 make up a second object, and so on. The default connectivity is 8 for 
two dimensions, 26 for three dimensions, and conndef(ndims(BW), 
'maximal') for higher dimensions.

[L,NUM] = bwlabeln(BW) returns in NUM the number of connected objects found 
in BW.

[L,NUM] = bwlabeln(BW,CONN) specifies the desired connectivity. CONN can 
have any of the following scalar values.

Connectivity can also be defined in a more general way for any dimension by 
using for CONN a 3-by-3-by- ...-by-3 matrix of 0’s and 1’s. The 1-valued elements 
define neighborhood locations relative to the center element of CONN. Note that 
CONN must be symmetric about its center element. 

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood
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Remarks bwlabel supports 2-D inputs only; bwlabeln supports inputs of any dimension. 
In some cases, you might prefer to use bwlabeln even for 2-D problems because 
it can be faster. If you have a 2-D input whose objects are relatively thick in the 
vertical direction, bwlabel is probably faster; otherwise bwlabeln is probably 
faster.

Class Support BW can be numeric or logical, and it must be real and nonsparse. L is of class 
double. 

Example BW = cat(3,[1 1 0; 0 0 0; 1 0 0],...
[0 1 0; 0 0 0; 0 1 0],...
[0 1 1; 0 0 0; 0 0 1])

bwlabeln(BW)

ans(:,:,1) =

     1     1     0
     0     0     0
     2     0     0

ans(:,:,2) =

     0     1     0
     0     0     0
     0     2     0

ans(:,:,3) =

     0     1     1
     0     0     0
     0     0     2

Algorithm bwlabeln uses the following general procedure:

1 Scan all image pixels, assigning preliminary labels to nonzero pixels and 
recording label equivalences in a union-find table.
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2 Resolve the equivalence classes using the union-find algorithm [1].

3 Relabel the pixels based on the resolved equivalence classes.

See Also bwlabel, label2rgb

Reference [1] Sedgewick, Robert, Algorithms in C, 3rd Ed., Addison-Wesley, 1998, pp. 
11-20.
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14bwmorphPurpose Perform morphological operations on binary images

Syntax BW2 = bwmorph(BW,operation)
BW2 = bwmorph(BW,operation,n)

Description BW2 = bwmorph(BW,operation) applies a specific morphological operation to 
the binary image BW.

BW2 = bwmorph(BW,operation,n) applies the operation n times. n can be Inf, 
in which case the operation is repeated until the image no longer changes.

operation is a string that can have one of the values listed below. 

'bothat' (“bottom hat”) performs morphological closing (dilation followed by 
erosion) and subtracts the original image.

'bridge' bridges unconnected pixels, that is, sets 0-valued pixels to 1 if they 
have two nonzero neighbors that are not connected. For example:

1  0  0 1  1  0
1  0  1 becomes 1  1  1
0  0  1 0  1  1

'clean' removes isolated pixels (individual 1’s that are surrounded by 0’s), 
such as the center pixel in this pattern.

0  0  0
0  1  0
0  0  0

'close' performs morphological closing (dilation followed by erosion).

'bothat' 'erode' 'shrink'

'bridge' 'fill' 'skel'

'clean' 'hbreak' 'spur'

'close' 'majority' 'thicken'

'diag' 'open' 'thin'

'dilate' 'remove' 'tophat'
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'diag' uses diagonal fill to eliminate 8-connectivity of the background. For 
example:

0  1  0 0  1  0
1  0  0 becomes 1  1  0
0  0  0 0  0  0

'dilate' performs dilation using the structuring element ones(3).

'erode' performs erosion using the structuring element ones(3).

'fill' fills isolated interior pixels (individual 0’s that are surrounded by 1’s), 
such as the center pixel in this pattern.

1  1  1
1  0  1
1  1  1

'hbreak' removes H-connected pixels. For example:

1  1  1 1  1  1
0  1  0 becomes 0  0  0
1  1  1 1  1  1

'majority' sets a pixel to 1 if five or more pixels in its 3-by-3 neighborhood are 
1’s; otherwise, it sets the pixel to 0.

'open' implements morphological opening (erosion followed by dilation).

'remove' removes interior pixels. This option sets a pixel to 0 if all its 
4-connected neighbors are 1, thus leaving only the boundary pixels on.

'shrink', with n = Inf, shrinks objects to points. It removes pixels so that 
objects without holes shrink to a point, and objects with holes shrink to a 
connected ring halfway between each hole and the outer boundary. This option 
preserves the Euler number.

'skel', with n = Inf, removes pixels on the boundaries of objects but does not 
allow objects to break apart. The pixels remaining make up the image skeleton. 
This option preserves the Euler number.

'spur' removes spur pixels. For example:

0  0  0  0 0  0  0  0
0  0  0  0 0  0  0  0
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0  0  1  0  becomes 0  0  0  0
0  1  0  0 0  1  0  0
1  1  0  0 1  1  0  0

'thicken', with n = Inf, thickens objects by adding pixels to the exterior of 
objects until doing so would result in previously unconnected objects being 
8-connected. This option preserves the Euler number.

'thin', with n = Inf, thins objects to lines. It removes pixels so that an object 
without holes shrinks to a minimally connected stroke, and an object with holes 
shrinks to a connected ring halfway between each hole and the outer boundary. 
This option preserves the Euler number.

'tophat' (“top hat”) returns the image minus the morphological opening of the 
image.

Class Support The input image BW can be numeric or logical. It must be 2-D, real and 
nonsparse. The output image BW2 is of class logical.

Example BW = imread('circles.png');
imview(BW);

BW2 = bwmorph(BW,'remove');
imview(BW2)
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BW3 = bwmorph(BW,'skel',Inf);
imview(BW3)

See Also bweuler, bwperim, imdilate, imerode

References [1] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision, 
Volume I, Addison-Wesley, 1992.

[2] Pratt, William K., Digital Image Processing, John Wiley & Sons, Inc., 1991.
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14bwpackPurpose Pack binary image

Syntax BWP = bwpack(BW)

Description BWP = bwpack(BW) packs the uint8 binary image BW into the uint32 array BWP, 
which is known as a packed binary image. Because each 8-bit pixel value in the 
binary image has only two possible values, 1 and 0, bwpack can map each pixel 
to a single bit in the packed output image. 

bwpack processes the image pixels by column, mapping groups of 32 pixels into 
the bits of a uint32 value. The first pixel in the first row corresponds to the 
least significant bit of the first uint32 element of the output array. The first 
pixel in the 32nd input row corresponds to the most significant bit of this same 
element. The first pixel of the 33rd row corresponds to the least significant bit 
of the second output element, and so on. If BW is M-by-N, then BWP is 
ceil(M/32)-by-N. This figure illustrates how bwpack maps the pixels in a 
binary image to the bits in a packed binary image.
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Binary image packing is used to accelerate some binary morphological 
operations, such as dilation and erosion. If the input to imdilate or imerode is 
a packed binary image, the functions use a specialized routine to perform the 
operation faster.

bwunpack is used to unpack packed binary images.

Class Support BW can be logical or numeric, and it must be 2-D, real, and nonsparse. BWP is of 
class uint32.

Example Pack, dilate, and unpack a binary image:

BW = imread('text.png');
BWp = bwpack(BW);
BWp_dilated = imdilate(BWp,ones(3,3),'ispacked');
BW_dilated = bwunpack(BWp_dilated, size(BW,1));

See Also bwunpack, imdilate, imerode
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14bwperimPurpose Find perimeter pixels in binary image

Syntax BW2 = bwperim(BW1)
BW2 = bwperim(BW1,CONN)

Description BW2 = bwperim(BW1) returns a binary image containing only the perimeter 
pixels of objects in the input image BW1. A pixel is part of the perimeter if it is 
nonzero and it is connected to at least one zero-valued pixel. The default 
connectivity is 4 for two dimensions, 6 for three dimensions, and 
conndef(ndims(BW), 'minimal') for higher dimensions.

BW2 = bwperim(BW1,CONN) specifies the desired connectivity. CONN can have 
any of the following scalar values. 

Connectivity can also be defined in a more general way for any dimension by 
using for CONN a 3-by-3-by-...-by-3 matrix of 0’s and 1’s. The 1-valued elements 
define neighborhood locations relative to the center element of CONN. Note that 
CONN must be symmetric about its center element. 

Class Support BW1 must be logical or numeric, and it must be nonsparse. BW2 is of class 
logical.

Example BW1 = imread('circbw.tif');
BW2 = bwperim(BW1,8); 
imview(BW1)

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood
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imview(BW2)

See Also bwarea, bweuler, conndef, imfill
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14bwselectPurpose Select objects in a binary image

Syntax BW2 = bwselect(BW,c,r,n)
BW2 = bwselect(BW,n)
[BW2,idx] = bwselect(...)

BW2 = bwselect(x,y,BW,xi,yi,n)
[x,y,BW2,idx,xi,yi] = bwselect(...)

Description BW2 = bwselect(BW,c,r,n) returns a binary image containing the objects that 
overlap the pixel (r,c). r and c can be scalars or equal-length vectors. If r and 
c are vectors, BW2 contains the sets of objects overlapping with any of the pixels 
(r(k),c(k)). n can have a value of either 4 or 8 (the default), where 4 specifies 
4-connected objects and 8 specifies 8-connected objects. Objects are connected 
sets of on pixels (i.e., pixels having a value of 1).

BW2 = bwselect(BW,n) displays the image BW on the screen and lets you select 
the (r,c) coordinates using the mouse. If you omit BW, bwselect operates on the 
image in the current axes. Use normal button clicks to add points. Pressing 
Backspace or Delete removes the previously selected point. A shift-click, 
right-click, or double-click selects the final point; pressing Return finishes the 
selection without adding a point.

[BW2,idx] = bwselect(...) returns the linear indices of the pixels belonging 
to the selected objects.

BW2 = bwselect(x,y,BW,xi,yi,n) uses the vectors x and y to establish a 
nondefault spatial coordinate system for BW1. xi and yi are scalars or 
equal-length vectors that specify locations in this coordinate system.

[x,y,BW2,idx,xi,yi] = bwselect(...) returns the XData and YData in x and 
y, the output image in BW2, linear indices of all the pixels belonging to the 
selected objects in idx, and the specified spatial coordinates in xi and yi.

If bwselect is called with no output arguments, the resulting image is 
displayed in a new figure.

Class Support The input image BW can be logical or numeric and must be 2-D and nonsparse. 
The output image BW2 is of class logical.
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Example BW1 = imread('text.png');
c = [43 185 212];
r = [38 68 181];
BW2 = bwselect(BW1,c,r,4);
imview(BW1), imview(BW2)

See Also bwlabel, imfill, impixel, roipoly, roifill 
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14bwtraceboundaryPurpose Trace object in a binary image

Syntax B = bwtraceboundary(BW,P,fstep)
B = bwtraceboundary(BW,P,fstep,CONN)
B = bwtraceboundary(...,N,dir)

Description B = bwtraceboundary(BW,P,fstep) traces the outline of an object in binary 
image bw. Nonzero pixels belong to an object and 0 pixels constitute the 
background. P is a two-element vector specifying the row and column 
coordinates of the point on the object boundary where you want the tracing to 
begin. fstep is a string specifying the initial search direction for the next object 
pixel connected to P. You use strings such as 'N' for north, 'NE' for northeast, 
to specify the direction. The following figure illustrates all the possible values 
for fstep. 

bwtraceboundary returns B, a Q-by-2 matrix, where Q is the number of 
boundary pixels for the region. B holds the row and column coordinates of the 
boundary pixels.

'N' 'NE'

'E'

'SE''S''SW'

'W'

'NW'

= P, starting point of trace
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B = bwtraceboundary(bw,P,fstep,CONN) specifies the connectivity to use 
when tracing the boundary. CONN can have either of the following scalar values.

B = bwtraceboundary(...,N,dir) specifies n, the maximum number of 
boundary pixels to extract, and dir, the direction in which to trace the 
boundary. When N is set to Inf, the default value, the algorithm identifies all 
the pixels on the boundary. dir can have either of the following values:

 Class Support BW can be logical or numeric and it must be real, 2-D, and nonsparse. B, P, CONN, 
and N are of class double. dir and fstep are strings.

Example Read in and display a binary image. Starting from the top left, project a beam 
across the image searching for the first nonzero pixel. Use the location of that 
pixel as the starting point for the boundary tracing. Including the starting 
point, extract 50 pixels of the boundary and overlay them on the image. Mark 
the starting points with a green x. Mark beams that missed their targets with 
a red x. 

BW = imread('blobs.png');
imshow(BW,[]);
s=size(BW);
for row = 2:55:s(1)

for col=1:s(2)

Value Meaning

4 4-connected neighborhood

Note: With this connectivity, fstep is limited to the 
following values: 'N', 'E', 'S', and 'W'.

8 8-connected neighborhood. This is the default.

Value Meaning

'clockwise' Search in a clockwise direction. This is the 
default.

'counterclockwise' Search in counterclockwise direction.
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if BW(row,col), 
break;

end
end

contour = bwtraceboundary(BW, [row, col], 'W', 8, 50,...
                                   'counterclockwise');

if(~isempty(contour))
hold on; 
plot(contour(:,2),contour(:,1),'g','LineWidth',2);
hold on; 
plot(col, row,'gx','LineWidth',2);

else
hold on; plot(col, row,'rx','LineWidth',2);

end
end

 See Also bwboundaries
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14bwulterodePurpose Ultimate erosion

Syntax BW2 = bwulterode(BW)
BW2 = bwulterode(BW,METHOD,CONN)

Description BW2 = bwulterode(BW) computes the ultimate erosion of the binary image BW. 
The ultimate erosion of BW consists of the regional maxima of the Euclidean 
distance transform of the complement of BW. The default connectivity for 
computing the regional maxima is 8 for two dimensions, 26 for three 
dimensions, and conndef(ndims(BW), 'maximal') for higher dimensions.

BW2 = bwulterode(BW,METHOD,CONN) specifies the distance transform method 
and the regional maxima connectivity. METHOD can be one of the strings 
'euclidean', 'cityblock', 'chessboard', and 'quasi-euclidean'.

CONN can have any of the following scalar values. 

Connectivity can be defined in a more general way for any dimension by using 
for CONN a 3-by-3-by... - by-3 matrix of 0’s and 1’s. The 1-valued elements define 
neighborhood locations relative to the center element of CONN. Note that CONN 
must be symmetric about its center element.

Class Support BW can be numeric or logical and it must be nonsparse. It can have any 
dimension. The return value BW2 is always a logical array.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood
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Example originalBW = imread('circles.png');
imview(originalBW)
ultimateErosion = bwulterode(originalBW);
imview(ultimateErosion)

See Also bwdist, conndef, imregionalmax
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14bwunpackPurpose Unpack binary image

Syntax BW = bwunpack(BWP,M)

Description BW = bwunpack(BWP,M) unpacks the packed binary image BWP. BWP is a uint32 
array. When it unpacks BWP, bwunpack maps the least significant bit of the first 
row of BWP to the first pixel in the first row of BW. The most significant bit of the 
first element of BWP maps to the first pixel in the 32nd row of BW, and so on. BW 
is M-by-N, where N is the number of columns of BWP. If M is omitted, its default 
value is 32*size(BWP,1). 

Binary image packing is used to accelerate some binary morphological 
operations, such as dilation and erosion. If the input to imdilate or imerode is 
a packed binary image, the functions use a specialized routine to perform the 
operation faster.

bwpack is used to create packed binary images.

Class Support BWP is of class uint32 and must be real, 2-D, and nonsparse. The return value 
BW is of class uint8.

Example Pack, dilate, and unpack a binary image.

bw = imread('text.png');
bwp = bwpack(bw);
bwp_dilated = imdilate(bwp,ones(3,3),'ispacked');
bw_dilated = bwunpack(bwp_dilated, size(bw,1));

See Also bwpack, imdilate, imerode
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14checkerboardPurpose Create checkerboard image

Syntax I = checkerboard
I = checkerboard(N)
I = checkerboard(N,P,Q)

Description I = checkerboard creates an 8-by-8 square checkerboard image that has four 
identifiable corners. Each square has 10 pixels per side. The light squares on 
the left half of the checkerboard are white. The light squares on the right half 
of the checkerboard are gray.

I = checkerboard(N) creates a checkerboard image where each square has N 
pixels per side.

I = checkerboard(N,P,Q) creates a rectangular checkerboard where P 
specifies the number of rows and Q specifies the number of columns. If you omit 
Q, it defaults to P and the checkerboard is square.

Each row and column is made up of tiles. Each tile contains four squares, N 
pixels per side, defined as 

TILE = [DARK LIGHT; LIGHT DARK]

The light squares on the left half of the checkerboard are white. The light 
squares on the right half of the checkerboard are gray. 

Example Create a checkerboard where the side of every square is 20 pixels in length.

I = checkerboard(20);
imview(I)

Create a rectangular checkerboard that is 2 tiles in height and 3 tiles wide. 

J = checkerboard(10,2,3);
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imview(J)

Create a black and white checkerboard.

K = (checkerboard > 0.5); 
figure, imshow(K)

See Also cp2tform, imtransform, maketform



cmpermute

14-69

14cmpermutePurpose Rearrange the colors in a colormap

Syntax [Y,newmap] = cmpermute(X,map)
[Y,newmap] = cmpermute(X,map,index)

Description [Y,newmap] = cmpermute(X,map) randomly reorders the colors in map to 
produce a new colormap newmap. The cmpermute function also modifies the 
values in X to maintain correspondence between the indices and the colormap, 
and returns the result in Y. The image Y and associated colormap newmap 
produce the same image as X and map.

[Y,newmap] = cmpermute(X,map,index) uses an ordering matrix (such as the 
second output of sort) to define the order of colors in the new colormap. 

Class Support The input image X can be of class uint8 or double. Y is returned as an array of 
the same class as X.

Example To arrange a colormap in order by luminance, use

ntsc = rgb2ntsc(map);
[dum,index] = sort(ntsc(:,1));
[Y,newmap] = cmpermute(X,map,index);

See Also randperm, sort in the MATLAB Function Reference
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14cmuniquePurpose Find unique colormap colors and the corresponding image

Syntax [Y,newmap] = cmunique(X,map)
[Y,newmap] = cmunique(RGB)
[Y,newmap] = cmunique(I)

Description [Y,newmap] = cmunique(X,map) returns the indexed image Y and associated 
colormap newmap that produce the same image as (X,map) but with the 
smallest possible colormap. The cmunique function removes duplicate rows 
from the colormap and adjusts the indices in the image matrix accordingly.

[Y,newmap] = cmunique(RGB) converts the true-color image RGB to the indexed 
image Y and its associated colormap newmap. The return value newmap is the 
smallest possible colormap for the image, containing one entry for each unique 
color in RGB. (Note that newmap might be very large, because the number of 
entries can be as many as the number of pixels in RGB.)

[Y,newmap] = cmunique(I) converts the intensity image I to an indexed image 
Y and its associated colormap newmap. The return value newmap is the smallest 
possible colormap for the image, containing one entry for each unique intensity 
level in I. 

Class Support The input image can be of class uint8, uint16, or double. The class of the 
output image Y is uint8 if the length of newmap is less than or equal to 256. If 
the length of newmap is greater than 256, Y is of class double.

See Also gray2ind, rgb2ind
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14col2imPurpose Rearrange matrix columns into blocks

Syntax A = col2im(B,[m n],[mm nn], block_type)
A = col2im(B,[m n],[mm nn])

Description col2im rearranges matrix columns into blocks. block_type is a string with one 
of these values:

• 'distinct' for m-by-n distinct blocks

• 'sliding' for m-by-n sliding blocks (default)

A = col2im(B,[m n],[mm nn],'distinct') rearranges each column of B 
into a distinct m-by-n block to create the matrix A of size mm-by-nn. If 
B = [A11(:) A12(:) A21(:) A22(:)], where each column has length m*n, 
then A = [A11 A12;A21 A22] where each Aij is m-by-n.

A = col2im(B,[m n],[mm nn],'sliding') rearranges the row vector B 
into a matrix of size (mm-m+1)-by-(nn-n+1). B must be a vector of size 
1-by-(mm-m+1)*(nn-n+1). B is usually the result of processing the output of 
im2col(...,'sliding') using a column compression function (such as sum).

A = col2im(B,[m n],[mm nn]) uses the default block_type of 'sliding'.

Class Support B can be logical or numeric. The return value A is of the same class as B.

See Also blkproc, colfilt, im2col, nlfilter
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14colfiltPurpose Perform neighborhood operations using columnwise functions

Syntax B = colfilt(A,[m n],block_type,fun)
B = colfilt(A,[m n],block_type,fun,P1,P2,...)
B = colfilt(A,[m n],[mblock nblock],block_type,fun,...)
B = colfilt(A,'indexed',...)

Description colfilt processes distinct or sliding blocks as columns. colfilt can perform 
operations similar to blkproc and nlfilter, but often executes much faster.

B = colfilt(A,[m n],block_type,fun) processes the image A by rearranging 
each m-by-n block of A into a column of a temporary matrix, and then applying 
the function fun to this matrix. fun can be a function_handle, created using 
@, or an inline object. colfilt zero-pads A, if necessary.

Before calling fun, colfilt calls im2col to create the temporary matrix. After 
calling fun, colfilt rearranges the columns of the matrix back into m-by-n 
blocks using col2im.

block_type is a string that can have one of the values listed in this table. 

Value Description

'distinct' Rearranges each m-by-n distinct block of A into a column 
in a temporary matrix, and then applies the function fun 
to this matrix. fun must return a matrix the same size as 
the temporary matrix. colfilt then rearranges the 
columns of the matrix returned by fun into m-by-n distinct 
blocks.

'sliding' Rearranges each m-by-n sliding neighborhood of A into a 
column in a temporary matrix, and then applies the 
function fun to this matrix. fun must return a row vector 
containing a single value for each column in the 
temporary matrix. (Column compression functions such 
as sum return the appropriate type of output.) colfilt 
then rearranges the vector returned by fun into a matrix 
the same size as A.
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B = colfilt(A,[m n],block_type,fun,P1,P2,...) passes the additional 
parameters P1,P2,... to fun. The colfilt function calls fun using

y = fun(x,P1,P2,...)

where x is the temporary matrix before processing, and y is the temporary 
matrix after processing.

B = colfilt(A,[m n],[mblock nblock],block_type,fun,...) processes the 
matrix A as above, but in blocks of size mblock-by-nblock to save memory. Note 
that using the [mblock nblock] argument does not change the result of the 
operation.

B = colfilt(A,'indexed',...) processes A as an indexed image, padding 
with 0’s if the class of A is uint8 or uint16, or 1’s if the class of A is double.

Note  To save memory, the colfilt function might divide A into subimages 
and process one subimage at a time. This might require colfilt to call the 
function fun multiple times. In addition, the first argument to fun can have a 
different number of columns each time.

Class Support The input image A can be of any class supported by fun. The class of B depends 
on the class of the output from fun.

Example This example sets each output pixel to the mean value of the input pixel’s 
5-by-5 neighborhood. 

I = imread('tire.tif');
imview(I)
I2 = uint8(colfilt(I,[5 5],'sliding',@mean));
imview(I2)

See Also blkproc, col2im, im2col, nlfilter
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14colorbarPurpose Display a color bar

colorbar is a MATLAB function. To get help for this function, select MATLAB 
Help from the Help menu and view the online function reference page.



conndef

14-75

14conndefPurpose Create connectivity array

Syntax CONN = conndef(NUM_DIMS,TYPE)

Description CONN = conndef(NUM_DIMS,TYPE) returns the connectivity array defined by 
TYPE for NUM_DIMS dimensions. TYPE can have either of the values listed in this 
table.

Several Image Processing Toolbox functions use conndef to create the default 
connectivity input argument.

Examples The minimal connectivity array for two dimensions includes the neighbors 
touching the central element along a line. 

conn1 = conndef(2,'minimal')

conn1 =
     0     1     0
     1     1     1
     0     1     0

The minimal connectivity array for three dimensions includes all the neighbors 
touching the central element along a face.

conndef(3,'minimal')

ans(:,:,1) =
     0     0     0
     0     1     0
     0     0     0

Value Description

'minimal' Defines a neighborhood whose neighbors are touching the 
central element on an (N-1)-dimensional surface, for the 
N-dimensional case. 

'maximal' Defines a neighborhood including neighbors that touch the 
central element in any way; it is 
ones(repmat(3,1,NUM_DIMS)). 
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ans(:,:,2) =
     0     1     0
     1     1     1
     0     1     0

ans(:,:,3) =
     0     0     0
     0     1     0
     0     0     0

The maximal connectivity array for two dimensions includes all the neighbors 
touching the central element in any way.

conn2 = conndef(2,'maximal')

conn2 =
     1     1     1
     1     1     1
     1     1     1
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14conv2Purpose Perform two-dimensional convolution

conv2 is a function in MATLAB. To get help for this function, select MATLAB 
Help from the Help menu and view the online function reference page.
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14convmtx2Purpose Compute two-dimensional convolution matrix

Syntax T = convmtx2(H,m,n)
T = convmtx2(H,[m n])

Description T = convmtx2(H,m,n) or T = convmtx2(H,[m n]) returns the 
convolution matrix T for the matrix H. If X is an m-by-n matrix, then 
reshape(T*X(:),size(H)+[m n]-1) is the same as conv2(X,H). 

Class Support The inputs are all of class double. The output matrix T is of class sparse. The 
number of nonzero elements in T is no larger than prod(size(H))*m*n.

See Also conv2

convmtx in the Signal Processing Toolbox User’s Guide documentation
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14convnPurpose Perform N-dimensional convolution

convn is a MATLAB function. To get help for this function, select MATLAB 
Help from the Help menu and view the online function reference page.
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14corr2Purpose Compute the two-dimensional correlation coefficient between two matrices

Syntax r = corr2(A,B)

Description r = corr2(A,B) computes the correlation coefficient between A and B, where A 
and B are matrices or vectors of the same size.

Class Support A and B can be numeric or logical. The return value r is a scalar double.

Algorithm corr2 computes the correlation coefficient using

where  = mean2(A), and  = mean2(B).

See Also std2

corrcoef in the MATLAB Function Reference
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14cp2tformPurpose Infer geometric transformation from control point pairs

Syntax TFORM = cp2tform(input_points,base_points,transformtype)
TFORM = cp2tform(CPSTRUCT,transformtype)
TFORM = cp2tform(input_points,base_points,transformtype,parameter)
TFORM = cp2tform(CPSTRUCT,transformtype,parameter)
[TFORM,input_points,base_points] = cp2tform(CPSTRUCT,...)
[TFORM,input_points,base_points,input_points_bad,base_points_bad] 

= cp2tform(...,'piecewise linear')

Description TFORM = cp2tform(input_points,base_points,transformtype) takes pairs 
of control points and uses them to infer a spatial transformation. The function 
returns a TFORM structure containing the spatial transformation. input_points 
is an m-by-2 double matrix containing the x- and y-coordinates of control points 
in the image you want to transform. base_points is an m-by-2 double matrix 
containing the x- and y-coordinates of control points specified in the base 
image. 

TFORM = cp2tform(CPSTRUCT,transformtype) takes pairs of control points 
and uses them to infer a spatial transformation. The function returns a TFORM 
structure containing the spatial transformation. CPSTRUCT is a structure that 
contains the control point matrices for the input and base images. You use the 
Control Point Selection Tool to create the CPSTRUCT.

transformtype specifies the type of spatial transformation to infer. This table 
lists all the transformation types supported by cp2tform in order of complexity. 
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The 'lwm' and 'polynomial' transform types can each take an optional, 
additional parameter. See the syntax descriptions that follow for details.

Transformation Type Description Minimum 
Control Points

Example

'linear conformal' Use this transformation when 
shapes in the input image are 
unchanged, but the image is 
distorted by some combination 
of translation, rotation, and 
scaling. Straight lines remain 
straight, and parallel lines are 
still parallel. 

2 pairs

'affine' Use this transformation when 
shapes in the input image 
exhibit shearing. Straight 
lines remain straight, and 
parallel lines remain parallel, 
but rectangles become 
parallelograms.

3 pairs

'projective' Use this transformation when 
the scene appears tilted. 
Straight lines remain 
straight, but parallel lines 
converge toward vanishing 
points that might or might not 
fall within the image.

4 pairs

'polynomial' Use this transformation when 
objects in the image are 
curved. The higher the order 
of the polynomial, the better 
the fit, but the result can 
contain more curves than the 
base image.

6 pairs 
(order 2)

10 pairs 
(order 3)

16 pairs 
(order 4)
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Note  When transformtype is 'linear conformal', 'affine', 
'projective', or 'polynomial', and input_points and base_points (or 
CPSTRUCT) have the minimum number of control points needed for a particular 
transformation, cp2tform finds the coefficients exactly. If input_points and 
base_points include more than the minimum number of points, cp2tform 
uses a least squares solution. For more information, see mldivide.

TFORM = cp2tform(input_points,base_points,'polynomial',order)
returns a TFORM structure specifying a 'polynomial' transformation, where 
order specifies the order of the polynomial to use. order can be the scalar value 
2, 3, or 4. If you omit order, it defaults to 3.

TFORM = cp2tform(CPSTRUCT,'polynomial',order) same as the previous 
syntax except that the control points are specified in a CPSTRUCT. 

TFORM = cp2tform(input_points,base_points,'lwm',N) returns a TFORM 
structure specifying a 'lwm' transformation, where N specifies the number of 
points used to infer each polynomial. The radius of influence extends out to the 
furthest control point used to infer that polynomial. The N closest points are 
used to infer a polynomial of order 2 for each control point pair. If you omit N, 
it defaults to 12. N can be as small as 6, but making N small risks generating 
ill-conditioned polynomials.

'piecewise linear' Use this transformation when 
parts of the image appear 
distorted differently.

4 pairs

'lwm' Use this transformation (local 
weighted mean), when the 
distortion varies locally and 
piecewise linear is not 
sufficient. 

6 pairs 
(12 pairs 
recommended)

Transformation Type Description Minimum 
Control Points

Example
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TFORM = cp2tform(CPSTRUCT,'lwm',N) same as the previous syntax except 
that the control points are specified in a CPSTRUCT.

[TFORM,input_points,base_points] = cp2tform(CPSTRUCT,...) returns 
the control points that were actually used in the return values input_points 
and base_points. Unmatched and predicted points are not used. For more 
information, see cpstruct2pairs.

[TFORM,input_points,base_points,input_points_bad,base_points_bad]=
 cp2tform(input_points,base_points,'piecewise linear') returns a 
TFORM structure specifying a 'piecewise linear' transformation. Returns the 
control points that were actually used in input_points and base_points, and 
returns the control points that were eliminated because they were middle 
vertices of degenerate fold-over triangles, in input_points_bad and 
base_points_bad. 

[TFORM,input_points,base_points,input_points_bad,base_points_bad]=
 cp2tform(CPSTRUCT,'piecewise linear') same as the previous syntax 
except that the control points are specified in a CPSTRUCT. 

Algorithms cp2tform uses the following general procedure:

1 Use valid pairs of control points to infer a spatial transformation or an 
inverse mapping from output space (x,y) to input space (u,v) according to 
transformtype.

2 Return TFORM structure containing spatial transformation.

The procedure varies depending on the transformtype.

Linear Conformal
Linear conformal transformations can include a rotation, a scaling, and a 
translation. Shapes and angles are preserved. Parallel lines remain parallel. 
Straight lines remain straight.

Let

sc = scale*cos(angle)
ss = scale*sin(angle)

[u v] = [x y 1] * [ sc -ss
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                    ss  sc
                    tx  ty]

Solve for sc, ss, tx, ty.

t_lc = cp2tform(input_points,base_points,'linear conformal');

The coefficients of the inverse mapping are stored in t_lc.tdata.Tinv. 

Since linear conformal transformations are a subset of affine transformations, 
t_lc.forward_fcn is @affine_fwd and t_lc.inverse_fcn is @affine_inv.

At least two control-point pairs are needed to solve for the four unknown 
coefficients.

Affine
In an affine transformation, the x and y dimensions can be scaled or sheared 
independently and there can be a translation. Parallel lines remain parallel. 
Straight lines remain straight. Linear conformal transformations are a subset 
of affine transformations.

For an affine transformation,

[u v] = [x y 1] * Tinv 

Tinv is a 3-by-2 matrix. Solve for the six elements of Tinv.

t_affine = cp2tform(input_points,base_points,'affine');

The coefficients of the inverse mapping are stored in t_affine.tdata.Tinv. 

At least three control-point pairs are needed to solve for the six unknown 
coefficients.

Projective
In a projective transformation, quadrilaterals map to quadrilaterals. Straight 
lines remain straight. Affine transformations are a subset of projective 
transformations.

For a projective transformation

[up vp wp] = [x y w] * Tinv

where
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u = up/wp 
v = vp/wp

Tinv is a 3-by-3 matrix.

Assuming

Tinv = [ A D G;
         B E H;
         C F I ];

u = (Ax + By + C)/(Gx + Hy + I)
v = (Dx + Ey + F)/(Gx + Hy + I)

Solve for the nine elements of Tinv.

t_proj = cp2tform(input_points,base_points,'projective');

The coefficients of the inverse mapping are stored in t_proj.tdata.Tinv.

At least four control-point pairs are needed to solve for the nine unknown 
coefficients.

Polynomial
In a polynomial transformation, polynomial functions of x and y determine the 
mapping. 

Second-Order Polynomials

For a second-order polynomial transformation,

[u v] = [1  x  y  x*y  x^2  y^2] * Tinv

Both u and v are second-order polynomials of x and y. Each second-order 
polynomial has six terms. To specify all coefficients, Tinv has size 6-by-2.

t_poly_ord2 = 
cp2tform(input_points,base_points,'polynomial');

The coefficients of the inverse mapping are stored in t_poly_ord2.tdata.

At least six control-point pairs are needed to solve for the 12 unknown 
coefficients.
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Piecewise Linear
In a piecewise linear transformation, linear (affine) transformations are 
applied separately to each triangular region of the image [1].

1 Find a Delaunay triangulation of the base control points. 

Third-Order Polynomials

For a third-order polynomial transformation:

[u v] = [1  x  y  x*y  x^2  y^2  y*x^2  x*y^2  x^3  y^3] * Tinv

Both u and v are third-order polynomials of x and y. Each third-order 
polynomial has ten terms. To specify all coefficients, Tinv has size 10-by-2.

t_poly_ord3 = cp2tform(input_points, base_points,
                           'polynomial',3);

The coefficients of the inverse mapping are stored in t_poly_ord3.tdata.

At least ten control-point pairs are needed to solve for the 20 unknown 
coefficients.

Fourth-Order Polynomials

For a fourth-order polynomial transformation:

[u v] = [1  x  y  x*y  x^2  y^2  y*x^2  x*y^2  x^3  y^3] * Tinv

Both u and v are fourth-order polynomials of x and y. Each fourth-order 
polynomial has 15 terms. To specify all coefficients, Tinv has size 15-by-2.

t_poly_ord4 = cp2tform(input_points, base_points,
                            'polynomial',4);

The coefficients of the inverse mapping are stored in t_poly_ord4.tdata.

At least 15 control-point pairs are needed to solve for the 30 unknown 
coefficients.
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2 Using the three vertices of each triangle, infer an affine mapping from base 
to input coordinates.

Note  At least four control-point pairs are needed. Four pairs result in two 
triangles with distinct mappings. 

Local Weighted Mean
For each control point in base_points:

1 Find the N closest control points.

2 Use these N points and their corresponding points in input_points to infer 
a second-order polynomial.

3 Calculate the radius of influence of this polynomial as the distance from the 
center control point to the farthest point used to infer the polynomial (using 
base_points). [2]

Note  At least six control-point pairs are needed to solve for the second-order 
polynomial. Ill-conditioned polynomials might result if too few pairs are used.

Example I = checkerboard;
J = imrotate(I,30);
base_points = [11 11; 41 71];
input_points = [14 44; 70 81];
cpselect(J,I,input_points,base_points);

t = cp2tform(input_points,base_points,'linear conformal');

To recover angle and scale,

ss = t.tdata.Tinv(2,1); % ss = scale * sin(angle)
sc = t.tdata.Tinv(1,1); % sc = scale * cos(angle)
angle = atan2(ss,sc)*180/pi
scale = sqrt(ss*ss + sc*sc)
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See Also cpcorr, cpselect, cpstruct2pairs, imtransform

References [1] Goshtasby, Ardeshir, “Piecewise linear mapping functions for image 
registration,” Pattern Recognition, Vol. 19, 1986, pp. 459-466.

[2] Goshtasby, Ardeshir, “Image registration by local approximation methods,” 
Image and Vision Computing, Vol. 6, 1988, pp. 255-261.
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14cpcorrPurpose Tune control-point locations using cross correlation

Syntax input_points = cpcorr(input_points_in,base_points_in,input,base)

Description input_points = cpcorr(input_points_in,base_points_in,input,base) 
uses normalized cross-correlation to adjust each pair of control points specified 
in input_points_in and base_points_in.

input_points_in must be an M-by-2 double matrix containing the coordinates 
of control points in the input image. base_points_in is an M-by-2 double 
matrix containing the coordinates of control points in the base image. 

cpcorr returns the adjusted control points in input_points, a double matrix 
the same size as input_points_in. If cpcorr cannot correlate a pair of control 
points, input_points contains the same coordinates as input_points_in for 
that pair.

cpcorr only moves the position of a control point by up to four pixels. Adjusted 
coordinates are accurate to one-tenth of a pixel. cpcorr is designed to get 
subpixel accuracy from the image content and coarse control-point selection.

Note  input and base images must have the same scale for cpcorr to be 
effective. 

cpcorr cannot adjust a point if any of the following occur:

• Points are too near the edge of either image.

• Regions of images around points contain Inf or NaN.

• Region around a point in input image has zero standard deviation.

• Regions of images around points are poorly correlated.

Class Support The images input and base can be of class logical, uint8, uint16, or double 
and must contain finite values. The control-point pairs are of class double.

Algorithm cpcorr uses the following general procedure.

For each control-point pair,
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1 Extract an 11-by-11 template around the input control point and a 21-by-21 
region around the base control point.

2 Calculate the normalized cross-correlation of the template with the region.

3 Find the absolute peak of the cross-correlation matrix.

4 Use the position of the peak to adjust the coordinates of the input control 
point.

Example This example uses cpcorr to fine-tune control points selected in an image. Note 
the difference in the values of the input_points matrix and the 
input_points_adj matrix. 

input = imread('onion.png');
base = imread('peppers.png');
input_points = [127 93; 74 59];
base_points = [323 195; 269 161];
input_points_adj = cpcorr(input_points,base_points,...
                          input(:,:,1),base(:,:,1))
input_points_adj =

127.0000   93.0000
71.0000   59.6000

See Also cp2tform, cpselect, imtransform, normxcorr2
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14cpselectPurpose Control Point Selection Tool

Syntax cpselect(input,base)
cpselect(input,base,CPSTRUCT_IN )
cpselect(input,base,xyinput_in,xybase_in)
H = cpselect(input,base,...)

Description cpselect(input,base) starts the Control Point Selection Tool, a graphical 
user interface that enables you to select control points in two related images. 
input is the image that needs to be warped to bring it into the coordinate 
system of the base image. input and base can be either variables that contain 
images or strings that identify files containing grayscale images. The Control 
Point Selection Tool returns the control points in a CPSTRUCT structure. (For 
more information, see “Using the Control Point Selection Tool” in Chapter 5.)

cpselect(input,base,CPSTRUCT_IN) starts cpselect with an initial set of 
control points that are stored in CPSTRUCT_IN. This syntax allows you to restart 
cpselect with the state of control points previously saved in CPSTRUCT_IN.

cpselect(input,base,xyinput_in,xybase_in) starts cpselect with a set of 
initial pairs of control points. xyinput_in and xybase_in are m-by-2 matrices 
that store the input and base coordinates, respectively.

H = cpselect(input,base,...) returns a handle H to the tool. You can use the 
close(H) or H.close syntax to close the tool from the command line.

Class Support The input images can be of class uint8, uint16, double, or logical.

Algorithm cpselect uses the following general procedure for control-point prediction.

1 Find all valid pairs of control points. 

2 Infer a spatial transformation between input and base control points using 
method that depends on the number of valid pairs, as follows: 

2 pairs Linear conformal

3 pairs Affine

4 or more pairs Projective
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3 Apply spatial transformation to the new point to generate the predicted 
point.

4 Display predicted point.

Notes To increase the amount of memory available to cpselect, you must put a file 
called 'java.opts' in your start-up directory. See imview for details.

Example Start tool with saved images.

aerial = imread('westconcordaerial.png');
cpselect(aerial(:,:,1),'westconcordorthophoto.png')

Start tool with workspace images and points.

I = checkerboard;
J = imrotate(I,30);
base_points = [11 11; 41 71];
input_points = [14 44; 70 81];
cpselect(J,I,input_points,base_points);

See Also cpcorr, cp2tform, cpstruct2pairs, imtransform



cpstruct2pairs

14-94

14cpstruct2pairsPurpose Convert CPSTRUCT to valid pairs of control points

Syntax [input_points, base_points] = cpstruct2pairs(CPSTRUCT)

Description [input_points, base_points] = cpstruct2pairs(CPSTRUCT) takes a 
CPSTRUCT (produced by cpselect) and returns the arrays of coordinates of valid 
control point pairs in input_points and base_points. cpstruct2pairs 
eliminates unmatched points and predicted points.

Example Start the Control Point Selection Tool, cpselect, with saved images.

aerial = imread('westconcordaerial.png');
cpselect(aerial(:,:,1),'westconcordorthophoto.png')

Using cpselect, pick control points in the images. Select Save to Workspace 
from the File menu to save the points to the workspace. On the Save dialog 
box, check the Structure with all points check box and clear Input points of 
valid pairs and Base points of valid pairs. Click OK. Use cpstruct2pairs to 
extract the input and base points from the CPSTRUCT.

[input_points,base_points] = cpstruct2pairs(cpstruct);  

See Also cp2tform, cpselect, imtransform
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14dct2Purpose Compute two-dimensional discrete cosine transform

Syntax B = dct2(A)
B = dct2(A,m,n)
B = dct2(A,[m n])

Description B = dct2(A) returns the two-dimensional discrete cosine transform of A. The 
matrix B is the same size as A and contains the discrete cosine transform 
coefficients B(k1,k2).

B = dct2(A,m,n) or B = dct2(A,[m n]) pads the matrix A with 0’s to size 
m-by-n before transforming. If m or n is smaller than the corresponding 
dimension of A, dct2 truncates A.

Class Support A can be numeric or logical. The returned matrix B is of class double.

Algorithm The discrete cosine transform (DCT) is closely related to the discrete Fourier 
transform. It is a separable linear transformation; that is, the two-dimensional 
transform is equivalent to a one-dimensional DCT performed along a single 
dimension followed by a one-dimensional DCT in the other dimension. The 
definition of the two-dimensional DCT for an input image A and output image 
B is

where M and N are the row and column size of A, respectively. If you apply the 
DCT to real data, the result is also real. The DCT tends to concentrate 
information, making it useful for image compression applications.

This transform can be inverted using idct2.

Example The commands below compute the discrete cosine transform for the autumn 
image. Notice that most of the energy is in the upper left corner.
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RGB = imread('autumn.tif');
I = rgb2gray(RGB);
J = dct2(I);
imshow(log(abs(J)),[]), colormap(jet(64)), colorbar

Now set values less than magnitude 10 in the DCT matrix to zero, and then 
reconstruct the image using the inverse DCT function idct2. 

J(abs(J) < 10) = 0;
K = idct2(J);
imview(I)
imview(K,[0 255])
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See Also fft2, idct2, ifft2

References [1] Jain, Anil K., Fundamentals of Digital Image Processing, Englewood Cliffs, 
NJ, Prentice Hall, 1989, pp. 150-153.

[2] Pennebaker, William B., and Joan L. Mitchell, JPEG: Still Image Data 
Compression Standard, Van Nostrand Reinhold, 1993.
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14dctmtxPurpose Compute discrete cosine transform matrix

Syntax D = dctmtx(n)

Description D = dctmtx(n) returns the n-by-n DCT (discrete cosine transform) matrix. D*A 
is the DCT of the columns of A and D'*A is the inverse DCT of the columns of A 
(when A is n-by-n).

Class Support n is an integer scalar of class double. D is returned as a matrix of class double.

Remarks If A is square, the two-dimensional DCT of A can be computed as D*A*D'. This 
computation is sometimes faster than using dct2, especially if you are 
computing a large number of small DCTs, because D needs to be determined 
only once.

For example, in JPEG compression, the DCT of each 8-by-8 block is computed. 
To perform this computation, use dctmtx to determine D, and then calculate 
each DCT using D*A*D' (where A is each 8-by-8 block). This is faster than 
calling dct2 for each individual block.

See Also dct2
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14deconvblindPurpose Restore image using the blind deconvolution algorithm

Syntax [J,PSF] = deconvblind(I,INITPSF)
[J,PSF] = deconvblind(I,INITPSF,NUMIT)
[J,PSF] = deconvblind(I,INITPSF,NUMIT,DAMPAR)
[J,PSF] = deconvblind(I,INITPSF,NUMIT,DAMPAR,WEIGHT)
[J,PSF] = deconvblind(I,INITPSF,NUMIT,DAMPAR,WEIGHT,READOUT)
[J,PSF] = deconvblind(...,FUN,P1,P2,...,PN)

Description [J,PSF] = deconvblind(I,INITPSF) deconvolves image I using the maximum 
likelihood algorithm, returning both the deblurred image J and a restored 
point-spread function PSF. The input array I and your initial guess at the PSF 
INITPSF can be numeric arrays or cell arrays. (Use cell arrays when you want 
to be able to perform additional deconvolutions that start where your initial 
deconvolution finished. The restored PSF is a positive array that is the same 
size as INITPSF, normalized so its sum adds up to 1. 

Note  The PSF restoration is affected strongly by the size of the initial guess 
INITPSF and less by the values it contains. For this reason, specify an array of 
1’s as your INITPSF. 

To improve the restoration, deconvblind supports several optional 
parameters, described below. Use [] as a placeholder if you do not specify an 
intermediate parameter.

[J,PSF] = deconvblind(I,INITPSF,NUMIT) specifies the number of iterations 
(default is 10). 

[J,PSF] = deconvblind(I,INITPSF,NUMIT,DAMPAR) specifies the threshold 
deviation of the resulting image from the input image I (in terms of the 
standard deviation of Poisson noise) below which damping occurs. The 
iterations are suppressed for the pixels that deviate within the DAMPAR value 
from their original value. This suppresses the noise generation in such pixels, 
preserving necessary image details elsewhere. The default value is 0 (no 
damping). 
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[J,PSF] = deconvblind(I,INITPSF,NUMIT,DAMPAR,WEIGHT) specifies which 
pixels in the input image I are considered in the restoration. By default, WEIGHT 
is a unit array, the same size as the input image. You can assign a value 
between 0.0 and 1.0 to elements in the WEIGHT array. The value of an element 
in the WEIGHT array determines how much the pixel at the corresponding 
position in the input image is considered. For example, to exclude a pixel from 
consideration, assign it a value of 0 in the WEIGHT array. You can adjust the 
weight value assigned to each pixel according to the amount of flat-field 
correction.

[J,PSF] = deconvblind(I,INITPSF,NUMIT,DAMPAR,WEIGHT,READOUT), where 
READOUT is an array (or a value) corresponding to the additive noise (e.g., 
background, foreground noise) and the variance of the read-out camera noise. 
READOUT has to be in the units of the image. The default value is 0. 

[J,PSF] = deconvblind(...,FUN,P1,P2,...,PN), where FUN is a function 
describing additional constraints on the PSF. There are four ways to specify 
FUN:

• Function handle (@)

• Inline object

• String containing function name 

• String containing a MATLAB expression

FUN is called at the end of each iteration. FUN must accept the PSF as its first 
argument and can accept additional parameters P1, P2,..., PN. The FUN 
function should return one argument, PSF, that is the same size as the original 
PSF and that satisfies the positivity and normalization constraints. 

Note  The output image J could exhibit ringing introduced by the discrete 
Fourier transform used in the algorithm. To reduce the ringing, use I = 
edgetaper(I,PSF) before calling deconvblind. 

Resuming 
Deconvolution

You can use deconvblind to perform a deconvolution that starts where a 
previous deconvolution stopped. To use this feature, pass the input image I and 
the initial guess at the PSF, INITPSF, as cell arrays: {I} and {INITPSF}. When 
you do, the deconvblind function returns the output image J and the restored 



deconvblind

14-101

point-spread function, PSF, as cell arrays, which can then be passed as the 
input arrays into the next deconvblind call. The output cell array J contains 
four elements:

J{1} contains I, the original image.

J{2} contains the result of the last iteration.

J{3} contains the result of the next-to-last iteration.

J{4} is an array generated by the iterative algorithm. 

 Class Support I can be of class uint8, uint16, or double. The DAMPAR and READOUT arguments 
have to be of the same class as the input image. Other inputs have to be of class 
double. The output image J, or the first array of the output cell array, is of the 
same class as the input image. 

Example I = checkerboard(8); 
PSF = fspecial('gaussian',7,10); 
V = .0001; 
BlurredNoisy = imnoise(imfilter(I,PSF),'gaussian',0,V); 
WT = zeros(size(I));
WT(5:end-4,5:end-4) = 1; 
INITPSF = ones(size(PSF)); 
FUN = inline('PSF + P1','PSF','P1'); 
[J P]= deconvblind(BlurredNoisy,INITPSF,20,10*sqrt(V),WT,FUN,0);

subplot(221);imshow(BlurredNoisy); 
title('A = Blurred and Noisy'); 
subplot(222);imshow(PSF,[]); 
title('True PSF'); 
subplot(223);imshow(J); 
title('Deblured Image'); 
subplot(224);imshow(P,[]); 
title('Recovered PSF'); 

See Also deconvlucy, deconvreg, deconvwnr, otf2psf, padarray, psf2otf 
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14deconvlucyPurpose Restore image using the Lucy-Richardson algorithm

Syntax J = deconvlucy(I,PSF)
J = deconvlucy(I,PSF,NUMIT)
J = deconvlucy(I,PSF,NUMIT,DAMPAR)
J = deconvlucy(I,PSF,NUMIT,DAMPAR,WEIGHT)
J = deconvlucy(I,PSF,NUMIT,DAMPAR,WEIGHT,READOUT)
J = deconvlucy(I,PSF,NUMIT,DAMPAR,WEIGHT,READOUT,SUBSMPL)

Description J = deconvlucy(I,PSF) restores image I that was degraded by convolution 
with a point-spread function PSF and possibly by additive noise. The algorithm 
is based on maximizing the likelihood of the resulting image J’s being an 
instance of the original image I under Poisson statistics. The input array I can 
be a numeric array (the blurred image) or a cell array. 

If I is a cell array, it can contain a single  numerical array (the blurred image) 
or it can be the output from a previous run of deconvlucy. 

When you pass a cell array to deconvlucy as input, it returns a 1-by-4 cell array 
J, where

J{1} contains I, the original image.

J{2} contains the result of the last iteration.

J{3} contains the result of the next-to-last iteration.

J{4} is an array generated by the iterative algorithm. 

To improve the restoration, deconvlucy supports several optional parameters. 
Use [] as a placeholder if you do not specify an intermediate parameter.

J = deconvlucy(I,PSF,NUMIT) specifies the number of iterations the 
deconvlucy function performs. If this value is not specified, the default is 10.

J = deconvlucy(I,PSF,NUMIT,DAMPAR) specifies the threshold deviation of the 
resulting image from the image I (in terms of the standard deviation of Poisson 
noise) below which damping occurs. Iterations are suppressed for pixels that 
deviate beyond the DAMPAR value from their original value. This suppresses the 
noise generation in such pixels, preserving necessary image details elsewhere. 
The default value is 0 (no damping).
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J = deconvlucy(I,PSF,NUMIT,DAMPAR,WEIGHT) specifies the weight to be 
assigned to each pixel to reflect its recording quality in the camera. A bad pixel 
is excluded from the solution by assigning it zero weight value. Instead of 
giving a weight of unity for good pixels, you can adjust their weight according 
to the amount of flat-field correction. The default is a unit array of the same 
size as input image I.

J = deconvlucy(I,PSF,NUMIT,DAMPAR,WEIGHT,READOUT) specifies a value 
corresponding to the additive noise (e.g., background, foreground noise) and 
the variance of the readout camera noise. READOUT has to be in the units of the 
image. The default value is 0.

J = deconvlucy(I,PSF,NUMIT,DAMPAR,WEIGHT,READOUT,SUBSMPL), where 
SUBSMPL denotes subsampling and is used when the PSF is given on a grid that 
is SUBSMPL times finer than the image. The default value is 1.

Note  The output image J could exhibit ringing introduced by the discrete 
Fourier transform used in the algorithm. To reduce the ringing, use I = 
edgetaper(I,PSF) before calling deconvlucy.

 Class Support I can be of class uint8, uint16, or double. The DAMPAR and READOUT arguments 
have to be of the same class as the input image. Other inputs have to be of class 
double. Output image (or the first array of the output cell) is of the same class 
as the input image. 

Example I = checkerboard(8);
PSF = fspecial('gaussian',7,10);
V = .0001;
BlurredNoisy = imnoise(imfilter(I,PSF),'gaussian',0,V);
WT = zeros(size(I));
WT(5:end-4,5:end-4) = 1;
J1 = deconvlucy(BlurredNoisy,PSF);
J2 = deconvlucy(BlurredNoisy,PSF,20,sqrt(V));
J3 = deconvlucy(BlurredNoisy,PSF,20,sqrt(V),WT);

subplot(221);imshow(BlurredNoisy);
title('A = Blurred and Noisy');
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subplot(222);imshow(J1);
title('deconvlucy(A,PSF)');
subplot(223);imshow(J2);
title('deconvlucy(A,PSF,NI,DP)');
subplot(224);imshow(J3);
title('deconvlucy(A,PSF,NI,DP,WT)');

See Also deconvblind, deconvreg, deconvwnr, otf2psf, padarray, psf2otf
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14deconvregPurpose Restore image using a regularized filter

Syntax J = deconvreg(I,PSF)
J = deconvreg(I,PSF,NOISEPOWER)
J = deconvreg(I,PSF,NOISEPOWER,LRANGE)
J = deconvreg(I,PSF,NOISEPOWER,LRANGE,REGOP)
[J, LAGRA] = deconvreg(I,PSF,...)

Description J = deconvreg(I,PSF) restores image I that was degraded by convolution with 
a point-spread function PSF and possibly by additive noise. The algorithm is a 
constrained optimum in a sense of least square error between the estimated 
and the true images under the requirement of preserving image smoothness. 

J = deconvreg(I,PSF,NOISEPOWER), where NOISEPOWER is the additive noise 
power. The default value is 0.

J = deconvreg(I,PSF,NOISEPOWER,LRANGE), where LRANGE is a vector 
specifying range where the search for the optimal solution is performed. The 
algorithm finds an optimal Lagrange multiplier LAGRA within the LRANGE 
range. If LRANGE is a scalar, the algorithm assumes that LAGRA is given and 
equal to LRANGE; the NP value is then ignored. The default range is between 
[1e-9 and 1e9].

J = deconvreg(I,PSF,NOISEPOWER,LRANGE,REGOP), where REGOP is the 
regularization operator to constrain the deconvolution. The default 
regularization operator is the Laplacian operator, to retain the image 
smoothness. The REGOP array dimensions must not exceed the image 
dimensions; any nonsingleton dimensions must correspond to the nonsingleton 
dimensions of PSF.

[J, LAGRA] = deconvreg(I,PSF,...) outputs the value of the Lagrange 
multiplier LAGRA in addition to the restored image J.

Note  The output image J could exhibit ringing introduced by the discrete 
Fourier transform used in the algorithm. To reduce the ringing, process the 
image with the edgetaper function prior to calling the deconvreg function. 
For example, I = edgetaper(I,PSF).
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Class Support I can be of class uint8, uint16, or double. Other inputs have to be of class 
double. J is of the same class as I.

Example I = checkerboard(8);
PSF = fspecial('gaussian',7,10);
V = .01;
BlurredNoisy = imnoise(imfilter(I,PSF),'gaussian',0,V);
NOISEPOWER = V*prod(size(I));
[J LAGRA] = deconvreg(BlurredNoisy,PSF,NOISEPOWER);

subplot(221); imshow(BlurredNoisy);
title('A = Blurred and Noisy');
subplot(222); imshow(J);
title('[J LAGRA] = deconvreg(A,PSF,NP)');
subplot(223); imshow(deconvreg(BlurredNoisy,PSF,[],LAGRA/10));
title('deconvreg(A,PSF,[],0.1*LAGRA)');
subplot(224); imshow(deconvreg(BlurredNoisy,PSF,[],LAGRA*10));
title('deconvreg(A,PSF,[],10*LAGRA)');

See Also deconvblind, deconvlucy, deconvwnr, otf2psf, padarray, psf2otf
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14deconvwnrPurpose Restore image using the Wiener filter

Syntax J = deconvwnr(I,PSF)
J = deconvwnr(I,PSF,NSR)
J = deconvwnr(I,PSF,NCORR,ICORR)

Description J = deconvwnr(I,PSF) restores image I that was degraded by convolution with 
a point-spread function PSF and possibly by additive noise. The algorithm is 
optimal in a sense of least mean square error between the estimated and the 
true image, and uses the correlation matrixes of image and noise. In the 
absence of noise, the Wiener filter reduces to the ideal inverse filter. 

J = deconvwnr(I,PSF,NSR), where NSR is the noise-to-signal power ratio. NSR 
could be a scalar or an array of the same size as I. The default value is 0.

J = deconvwnr(I,PSF,NCORR,ICORR), where NCORR and ICORR are the 
autocorrelation functions of the noise and the original image, respectively. 
NCORR and ICORR can be of any size or dimension not exceeding the original 
image. An N-dimensional NCORR or ICORR array corresponds to the 
autocorrelation within each dimension. A vector NCORR or ICORR represents an 
autocorrelation function in the first dimension if PSF is a vector. If PSF is an 
array, the 1-D autocorrelation function is extrapolated by symmetry to all 
nonsingleton dimensions of PSF. A scalar NCORR or ICORR represents the power 
of the noise or the image. 

Note  The output image J could exhibit ringing introduced by the discrete 
Fourier transform used in the algorithm. To reduce the ringing, process the 
image with the edgetaper function prior to calling the deconvwnr function. 
For example, I = edgetaper(I,PSF)

Class Support I can be of class uint8, uint16, or double. Other inputs must be of class 
double. J is of the same class as I.

Example I = checkerboard(8);
noise = 0.1*randn(size(I));
PSF = fspecial('motion',21,11);
Blurred = imfilter(I,PSF,'circular');
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BlurredNoisy = im2uint8(Blurred + noise);
       

NSR = sum(noise(:).^2)/sum(I(:).^2);% noise-to-power ratio
       
NP = abs(fftn(noise)).^2;% noise power
NPOW = sum(NP(:))/prod(size(noise));
NCORR = fftshift(real(ifftn(NP)));% noise autocorrelation 
function, centered

IP = abs(fftn(I)).^2;% original image power
IPOW = sum(IP(:))/prod(size(I));
ICORR = fftshift(real(ifftn(IP)));% image autocorrelation 
function, centered
ICORR1 = ICORR(:,ceil(size(I,1)/2));

NSR = NPOW/IPOW;
subplot(221);imshow(BlurredNoisy,[]);
title('A = Blurred and Noisy');
subplot(222);imshow(deconvwnr(BlurredNoisy,PSF,NSR),[]);
title('deconvwnr(A,PSF,NSR)');
subplot(223);imshow(deconvwnr(BlurredNoisy,PSF,NCORR,ICORR),[]);
title('deconvwnr(A,PSF,NCORR,ICORR)');
subplot(224);imshow(deconvwnr(BlurredNoisy,PSF,NPOW,ICORR1),[]);
title('deconvwnr(A,PSF,NPOW,ICORR_1_D)');

See Also deconvblind, deconvlucy, deconvreg, otf2psf, padarray, psf2otf 
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14decorrstretchPurpose Apply a decorrelation stretch to a multichannel image

Syntax S = decorrstretch(I)
S = decorrstretch(I,TOL)

Description S = decorrstretch(I) applies a decorrelation stretch to a multichannel 
image I and returns the result in S. S has the same size and class as I. The 
mean and variance in each band are the same as in I.

S = decorrstretch(I,TOL) applies a contrast following the decorrelation 
stretch. The contrast stretch is controlled by TOL:

• TOL = [LOW_FRACT HIGH_FRACT] specifies the fraction of the image to 
saturate at low and high intensities. 

• If TOL is a scalar, LOW_FRACT = TOL, and HIGH_FRACT = 1 - TOL, which 
saturates equal fractions at low and high intensities.

Notes The decorrelation stretch is normally applied to three band images (ordinary 
RGB images or RGB multispectral composite images), but decorrstretch 
works on an arbitrary number of bands.

The primary purpose of decorrelation stretch is visual enhancement. Small 
adjustments to TOL can strongly affect the visual appearance of the output.

Class Support The input image must be of class uint8, uint16, or double.

Example [I col] = imread('forest.tif');
S = decorrstretch(ind2rgb(I,col));
subplot(2,1,1), imshow(I,col)
subplot(2,1,2), imshow(S)

See Also imadjust, stretchlim
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14dicominfoPurpose Read metadata from a DICOM message

Syntax info = dicominfo(filename)
info = dicominfo(filename,'dictionary', D)

Description info = dicominfo(filename) reads the metadata from the compliant Digital 
Imaging and Communications in Medicine (DICOM) file specified in the string 
filename.

info = dicominfo(filename,'dictionary', D) uses the data dictionary file 
given in the string D to read the DICOM message. The file in D must be on the 
MATLAB search path. The default dictionary file is dicom-dict.txt.

Examples info = dicominfo('CT-MONO2-16-ankle.dcm')

info = 
                       Filename: [1x47 char]
                    FileModDate: '24-Dec-2000 19:54:47'
                       FileSize: 525436
                         Format: 'DICOM'
                  FormatVersion: 3
                          Width: 512
                         Height: 512
                       BitDepth: 16
                      ColorType: 'grayscale'
                          .
                          .
                          .

See Also dicomread, dicomwrite
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14dicomreadPurpose Read a DICOM image

Syntax X = dicomread(filename)
X = dicomread(info)
[X,map] = dicomread(...)
[X,map,alpha] = dicomread(...)
[X,map,alpha,overlays] = dicomread(...)
[...] = dicomread(filename, param1, val1, param2, val2, ...)
[...] = dicomread(info, param1, val1, param2, val2, ...)

Description X = dicomread(filename) reads the image data from the compliant Digital 
Imaging and Communications in Medicine (DICOM) file filename. For 
single-frame grayscale images, X is an M-by-N array. For single-frame 
true-color images, X is an M-by-N-by-3 array. Multiframe images are always 
4-D arrays.

X = dicomread(info) reads the image data from the message referenced in 
the DICOM metadata structure info. The info structure is produced by the 
dicominfo function.

[X,map] = dicomread(...)  returns the image X and the colormap map. If X is 
a grayscale or true-color image, map is empty.

[X,map,alpha] = dicomread(...) returns the image X, the colormap map, and 
an alpha channel matrix for X. The values of alpha are 0 if the pixel is opaque; 
otherwise they are row indices into map. The RGB value in map should be 
substituted for the value in X to use alpha. alpha has the same height and 
width as X and is 4-D for a multiframe image.

[X,map,alpha,overlays] = dicomread(...) returns the image X, the 
colormap map, an alpha channel matrix for X, and any overlays from the 
DICOM file. Each overlay is a 1-bit black and white image with the same 
height and width as X. If multiple overlays are present in the file, overlays is 
a 4-D multiframe image. If no overlays are in the file, overlays is empty.

The first input argument, either filename or info, can be followed by a set of 
parameter name/value pairs.

[...] = dicomread(filename,param1, value1, param2, value2, ...)
[...] = dicomread(info, param1, value1, param2, value2, ...)
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Supported parameter names and values include the following:

Examples Example 1
Use dicomread to retrieve the data matrix X and colormap matrix map needed 
to create a montage.

[X, map] = dicomread('US-PAL-8-10x-echo.dcm');
montage(X, map);

Parameter Description

'Frames' Integer scalar, vector of integers, or the string 'all' 
specifying frame, or frames, to read from the image. The 
default value is 'all'.

'Dictionary' String specifying the data dictionary file. The default 
value is 'dicom-dict.txt'.

'Raw' Integer scalar specifying whether dicomread performs 
any pixel-level transformations on the image data.

1 (the default) — Do not perform any pixel-level 
transformations. 

0 — Rescale the image to use the full dynamic range and 
automatically convert color images to the RGB color 
space.

Note 1: Because the HSV color space is inadequately 
defined in the DICOM standard, dicomread does not 
automatically convert data in this color space to RGB.

Note 2: dicomread never rescales or changes the color 
spaces of images containing signed data.

Note 3: Rescaling values and applying color space 
conversions does not change the metadata in any way. 
Consequently, metadata values that refer to pixel values 
(such as window center/width or LUTs) might not be 
correct when pixels are scaled or converted.
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Example 2
Call dicomread with the information retrieved from the DICOM file using 
dicominfo. Display the image with imview using its autoscaling syntax.

info = dicominfo('CT-MONO2-16-ankle.dcm');
Y = dicomread(info);
imview(Y, []);

See Also dicominfo, dicomwrite
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14dicomuidPurpose Generate a DICOM unique identifier

Syntax UID = dicomuid

Description UID = dicomuid creates a string UID containing a new DICOM unique 
identifier.

Multiple calls to dicomuid produce globally unique values. Two calls to 
dicomuid always return different values.

See Also dicominfo, dicomwrite



dicomwrite

14-115

14dicomwritePurpose Write images as DICOM files

Syntax dicomwrite(X, filename)
dicomwrite(X, map, filename)
dicomwrite(...,param1,value1,param2,value2,...)
dicomwrite(...,'ObjectType',IOD,...)
dicomwrite(...,'SOPClassUID',UID,...)
dicomwrite(...,meta_struct,...)
dicomwrite(...,info,...)
status = dicomwrite(...)

Description dicomwrite(X, filename) writes the binary, grayscale, or true color image X 
to the file filename, where filename is a string specifying the name of the 
Digital Imaging and Communications in Medicine (DICOM) file to create.

dicomwrite(X,map,filename) writes the indexed image X with colormap map.

dicomwrite(...,param1,value1,param2,value2,...) specifies additional 
metadata to write to the DICOM file. The parameters (param1, param2, etc.) are 
either names of DICOM file attributes or options that affect how the file is 
written. Each attribute or option has a corresponding value (value1, value2, 
etc.). This table lists the options supported by the dicomwrite function. Default 
values are enclosed in braces ({}). To find a list of the DICOM attributes, see 
the data dictionary file, dicom-dict.txt, included with the Image Processing 
Toolbox. 

Option Name Description

'CompressionMode' String specifying the type of compression to use 
when storing the image.

{'None'}
'JPEG lossless'
'JPEG lossy'
'RLE'

'Endian' String specifying the byte ordering of the file. 

'Big'
'Little' [Default]
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dicomwrite(...,'ObjectType',IOD,...) writes a file containing the 
necessary metadata for a particular type of DICOM Information Object (IOD). 
Supported IODs are

• 'Secondary Capture Image Storage' (default)

• 'CT Image Storage'

• 'MR Image Storage'

dicomwrite(...,'SOPClassUID',UID,...) provides an alternate method for 
specifying the IOD to create. UID is the DICOM unique identifier 
corresponding to one of the IODs listed above.

dicomwrite(...,meta_struct,...) specifies optional metadata or file options 
in structure meta_struct. The structure's field names must be the names of 
DICOM file attributes or options. The field's value is the value of that attribute 
or option.

'TransferSyntax' A DICOM UID specifying the DICOM transfer 
syntax. 

Note: If you specify the 'TransferSyntax' 
option, dicomwrite ignores the other three 
options, if they are specified. The 
'TransferSyntax' option encodes the settings 
for the 'Endian', 'VR', and 'CompressionMode' 
options in a single value. 

'VR' String specifying whether the two-letter value 
representation (VR) code should be written to 
the file.

'explicit' — Write VR to file.
{'implicit'} — Infer from data dictionary.

Note: If you specify the 'Endian' value 'Big', 
you must specify 'Explicit'.

Option Name Description
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dicomwrite(...,info,...) specifies metadata in the metadata structure 
info, which is produced by the dicominfo function. For more information 
about this structure, see dicominfo.

status = dicomwrite(...) returns information about the metadata and the 
descriptions used to generate the DICOM file. This syntax can be useful when 
you specify an info structure that was created by dicominfo to the dicomwrite 
function. An info structure can contain many fields. If no metadata was 
specified, dicomwrite returns an empty matrix ([]). 

The structure returned by dicomwrite contains these fields:

Example This example uses dicominfo to retrieve information about the contents of the 
sample DICOM file included with the Image Processing Toolbox. The example 
uses dicomread to read the data from the file and then writes the data into a 
new DICOM file, including the metadata from the original file.

info = dicominfo('CT-MONO2-16-ankle.dcm');
Y = dicomread(info);
status = dicomwrite(Y,'my_dicomfile.dcm',info);
status = 

    dicominfo_fields: {12x1 cell}
           wrong_IOD: {21x1 cell}
      not_modifiable: {23x1 cell}

Field Description

'BadAttribute' The attribute's internal description is bad. It 
might be missing from the data dictionary or have 
incorrect data in its description. 

'MissingCondition' The attribute is conditional but no condition has 
been provided for when to use it.

'MissingData' No data was provided for an attribute that must 
appear in the file.

'SuspectAttribute' Data in the attribute does not match a list of 
enumerated values in the DICOM specification.
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status.dicominfo_fields
ans = 

    'BitDepth'
    'ColorType'
    'FileModDate'
    'FileSize'
    'FileStruct'
    'Filename'
    'Format'
    'FormatVersion'
    'Height'
    'SelectedFrames'
    'StartOfPixelData'
    'Width'

See Also dicomread, dicominfo
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14ditherPurpose Convert an image, increasing apparent color resolution by dithering

Syntax X = dither(RGB,map)
BW = dither(I)

Description X = dither(RGB,map) creates an indexed image approximation of the RGB 
image in the array RGB by dithering the colors in colormap map. map cannot have 
more than 65,536 colors.

X = dither(RGB,map,Qm,Qe) creates an indexed image from RGB, specifying the 
parameters Qm and Qe. Qm specifies the number of quantization bits to use along 
each color axis for the inverse color map, and Qe specifies the number of 
quantization bits to use for the color space error calculations. If Qe < Qm, 
dithering cannot be performed, and an undithered indexed image is returned 
in X. If you omit these parameters, dither uses the default values Qm = 5, Qe = 8.

BW = dither(I) converts the intensity image in the matrix I to the binary 
(black and white) image BW by dithering.

Class Support The input image, RGB or I, can be of class uint8, uint16, or double. All other 
input arguments must be of class double. The output indexed image X is of 
class uint8 if it is an indexed image with 256 or fewer colors; otherwise its class 
is uint16. The output binary image BW is of class logical. 

Algorithm dither increases the apparent color resolution of an image by applying 
Floyd-Steinberg’s error diffusion dither algorithm.

References [1] Floyd, R. W., and L. Steinberg, “An Adaptive Algorithm for Spatial Gray 
Scale,” International Symposium Digest of Technical Papers, Society for 
Information Displays, 1975, p. 36.

[2] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood 
Cliffs, NJ, Prentice Hall, 1990, pp. 469-476.

See Also rgb2ind
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14doublePurpose Convert data to double precision

double is a MATLAB built-in function. To get help for this function, select 
MATLAB Help from the Help menu and view the online function reference 
page. 
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14edgePurpose Find edges in an intensity image

Syntax BW = edge(I,'sobel')
BW = edge(I,'sobel',thresh)
BW = edge(I,'sobel',thresh,direction)
[BW,thresh] = edge(I,'sobel',...)

BW = edge(I,'prewitt')
BW = edge(I,'prewitt',thresh)
BW = edge(I,'prewitt',thresh,direction)
[BW,thresh] = edge(I,'prewitt',...)

BW = edge(I,'roberts')
BW = edge(I,'roberts',thresh)
[BW,thresh] = edge(I,'roberts',...)

BW = edge(I,'log')
BW = edge(I,'log',thresh)
BW = edge(I,'log',thresh,sigma)
[BW,threshold] = edge(I,'log',...)

BW = edge(I,'zerocross',thresh,h)
[BW,thresh] = edge(I,'zerocross',...)

BW = edge(I,'canny')
BW = edge(I,'canny',thresh)
BW = edge(I,'canny',thresh,sigma)
[BW,threshold] = edge(I,'canny',...)

Description edge takes an intensity image I as its input, and returns a binary image BW of 
the same size as I, with 1’s where the function finds edges in I and 0’s 
elsewhere.

edge supports six different edge-finding methods:

• The Sobel method finds edges using the Sobel approximation to the 
derivative. It returns edges at those points where the gradient of I is 
maximum.
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• The Prewitt method finds edges using the Prewitt approximation to the 
derivative. It returns edges at those points where the gradient of I is 
maximum.

• The Roberts method finds edges using the Roberts approximation to the 
derivative. It returns edges at those points where the gradient of I is 
maximum.

• The Laplacian of Gaussian method finds edges by looking for zero crossings 
after filtering I with a Laplacian of Gaussian filter.

• The zero-cross method finds edges by looking for zero crossings after filtering 
I with a filter you specify.

• The Canny method finds edges by looking for local maxima of the gradient of 
I. The gradient is calculated using the derivative of a Gaussian filter. The 
method uses two thresholds, to detect strong and weak edges, and includes 
the weak edges in the output only if they are connected to strong edges. This 
method is therefore less likely than the others to be fooled by noise, and more 
likely to detect true weak edges.

The parameters you can supply differ depending on the method you specify. If 
you do not specify a method, edge uses the Sobel method.

Sobel Method
BW = edge(I,'sobel') specifies the Sobel method.

BW = edge(I,'sobel',thresh) specifies the sensitivity threshold for the Sobel 
method. edge ignores all edges that are not stronger than thresh. If you do not 
specify thresh, or if thresh is empty ([]), edge chooses the value 
automatically.

BW = edge(I,'sobel',thresh,direction) specifies the direction of detection 
for the Sobel method. direction is a string specifying whether to look for 
'horizontal' or 'vertical' edges or 'both' (the default). 

[BW,thresh] = edge(I,'sobel',...) returns the threshold value.

Prewitt Method
BW = edge(I,'prewitt') specifies the Prewitt method.

BW = edge(I,'prewitt',thresh) specifies the sensitivity threshold for the 
Prewitt method. edge ignores all edges that are not stronger than thresh. If 
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you do not specify thresh, or if thresh is empty ([]), edge chooses the value 
automatically.

BW = edge(I,'prewitt',thresh,direction) specifies the direction of 
detection for the Prewitt method. direction is a string specifying whether to 
look for 
'horizontal' or 'vertical' edges or 'both' (the default).

[BW,thresh] = edge(I,'prewitt',...) returns the threshold value.

Roberts Method
BW = edge(I,'roberts') specifies the Roberts method.

BW = edge(I,'roberts',thresh) specifies the sensitivity threshold for the 
Roberts method. edge ignores all edges that are not stronger than thresh. If 
you do not specify thresh, or if thresh is empty ([]), edge chooses the value 
automatically.

[BW,thresh] = edge(I,'roberts',...) returns the threshold value.

Laplacian of Gaussian Method
BW = edge(I,'log') specifies the Laplacian of Gaussian method.

BW = edge(I,'log',thresh) specifies the sensitivity threshold for the 
Laplacian of Gaussian method. edge ignores all edges that are not stronger 
than thresh. If you do not specify thresh, or if thresh is empty ([]), edge 
chooses the value automatically.

BW = edge(I,'log',thresh,sigma) specifies the Laplacian of Gaussian 
method, using sigma as the standard deviation of the LoG filter. The default 
sigma is 2; the size of the filter is n-by-n, where n = ceil(sigma*3)*2+1.

[BW,thresh] = edge(I,'log',...) returns the threshold value.

Zero-Cross Method
BW = edge(I,'zerocross',thresh,h) specifies the zero-cross method, using 
the filter h. thresh is the sensitivity threshold; if the argument is empty ([]), 
edge chooses the sensitivity threshold automatically.

[BW,thresh] = edge(I,'zerocross',...) returns the threshold value.
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Canny Method
BW = edge(I,'canny') specifies the Canny method.

BW = edge(I,'canny',thresh) specifies sensitivity thresholds for the Canny 
method. thresh is a two-element vector in which the first element is the low 
threshold, and the second element is the high threshold. If you specify a scalar 
for thresh, this value is used for the high threshold and 0.4*thresh is used for 
the low threshold. If you do not specify thresh, or if thresh is empty ([]), edge 
chooses low and high values automatically.

BW = edge(I,'canny',thresh,sigma) specifies the Canny method, using 
sigma as the standard deviation of the Gaussian filter. The default sigma is 1; 
the size of the filter is chosen automatically, based on sigma.

[BW,thresh] = edge(I,'canny',...) returns the threshold values as a 
two-element vector.

Class Support I can be of class uint8, uint16, or double. BW is of class logical.

Remarks For the 'log' and 'zerocross' methods, if you specify a threshold of 0, the 
output image has closed contours, because it includes all the zero crossings in 
the input image.

Example Find the edges of an image using the Prewitt and Canny methods.

I = imread('circuit.tif');
BW1 = edge(I,'prewitt');
BW2 = edge(I,'canny');
imshow(BW1);
figure, imshow(BW2)
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See Also fspecial

References [1] Canny, John, “A Computational Approach to Edge Detection,” IEEE 
Transactions on Pattern Analysis and Machine Intelligence,Vol. PAMI-8, No. 6, 
1986, pp. 679-698.

[2] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood 
Cliffs, NJ, Prentice Hall, 1990, pp. 478-488.

[3] Parker, James R., Algorithms for Image Processing and Computer Vision, 
New York, John Wiley & Sons, Inc., 1997, pp. 23-29.

Prewitt Filter Canny Filter
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14edgetaperPurpose Taper the discontinuities along the image edges

Syntax J = edgetaper(I,PSF)

Description J = edgetaper(I,PSF) blurs the edges of the input image I using the point 
spread function PSF. The output image J is the weighted sum of the original 
image I and its blurred version. The weighting array, determined by the 
autocorrelation function of PSF, makes J equal to I in its central region, and 
equal to the blurred version of I near the edges.

The edgetaper function reduces the ringing effect in image deblurring methods 
that use the discrete Fourier transform, such as deconvwnr, deconvreg, and 
deconvlucy.

Note  The size of the PSF cannot exceed half of the image size in any 
dimension. 

Class Support I and PSF can be of class uint8, uint16, or double. J is of the same class as I.

Example I = imread('cameraman.tif'); 
PSF = fspecial('gaussian',60,10);
J = edgetaper(I,PSF);
subplot(1,2,1);imshow(I,[]);title('original image');
subplot(1,2,2);imshow(J,[]);title('edges tapered');

See Also deconvlucy, deconvreg, deconvwnr, otf2psf, padarray, psf2otf
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14fan2paraPurpose Compute parallel-beam projections from fan-beam tomography data

Syntax P = fan2para(F,D)
P = fan2para(...,param1,val1,param2,val2,...)
[P,parallel_locations,parallel_rotation_angles] = fan2para(...)

Description P = fan2para(F,D) computes the parallel-beam data (sinogram) from the 
fan-beam data (sinogram) F. Each column of F contains the fan-beam spread 
angles at a single rotation angle. D is the distance from the fan-beam vertex to 
the center of rotation. 

fan2para assumes the fan-beam spread angles are the same increments as the 
input rotation angles, split equally on either side of zero. The input rotation 
angles are assumed to be stepped in equal increments to cover [0,360) 
degrees. Output angles are calculated to cover [0,180) degrees in the same 
increments as the input.

P = fan2para(...,param1,val1,param2,val2,...) specifies parameters 
that control various aspects of the fan2para conversion, listed in the following 
table. Parameter names can be abbreviated, and case does not matter. Default 
values are in braces ({}).

Parameter Description

'FanCoverage' String specifying the range through which the beams are 
rotated.

Possible values: {'cycle'} or 'minimal' 

See ifanbeam for details.

'FanRotationIncrement' Positive real scalar specifying the increment of the 
rotation angle of the fan-beam projections, measured in 
degrees. 
Default value is 1.
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'FanSensorGeometry' String specifying how sensors are positioned. 

Possible values: {'arc'} or 'line' 

See fanbeam for details.

'FanSensorSpacing' Positive real scalar specifying the spacing of the fan beams. 
Interpretation of the value depends on the setting of 
'FanSensorGeometry':

If 'FanSensorGeometry' is 'arc', the value defines the 
angular spacing in degrees. Default value is 1.

If 'FanSensorGeometry' is 'line', the value defines the 
linear spacing in pixels.

'Interpolation' Text string specifying the type of interpolation used 
between the parallel-beam and fan-beam data.

'nearest' — Nearest-neighbor

{'linear'} — Linear

'spline' — Piecewise cubic spline

'pchip' — Piecewise cubic Hermite (PCHIP)

'cubic' — Same as 'pchip'

'ParallelCoverage' Text string specifying the range of rotation.

Possible values: 'cycle' or {'halfcycle'} .

See para2fan for details.

Parameter Description
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[P,parallel_locations,parallel_rotation_angles] = fan2para(...)
returns the parallel-beam sensor locations in parallel_locations and 
rotation angles in parallel_rotation_angles.

Example Create synthetic parallel-beam data, derive fan-beam data, and then use the 
fan-beam data to recover the parallel-beam data.

ph = phantom(128);
theta = 0:179;
[Psynthetic,xp] = radon(ph,theta);
imshow(theta,xp,Psynthetic,[],'n'), axis normal
title('Synthetic Parallel-Beam Data')
xlabel('\theta (degrees)')
ylabel('x''')
colormap(hot), colorbar
Fsynthetic = para2fan(Psynthetic,100,'FanSensorSpacing',1);

'ParallelRotationIncrement' Positive real scalar specifying the parallel-beam rotation 
angle increment, measured in degrees. Parallel beam 
angles are calculated to cover [0,180) degrees with 
increment PAR_ROT_INC, where PAR_ROT_INC is the value of 
'ParallelRotationIncrement'. 180/PAR_ROT_INC must 
be an integer. 
If 'ParallelRotationIncrement' is not specified, the 
increment is assumed to be the same as the increment of 
the fan-beam rotation angles.

 'ParallelSensorSpacing' Positive real scalar specifying the spacing of the 
parallel-beam sensors in pixels. The range of sensor 
locations is implied by the range of fan angles and is given 
by

[D*sin(min(FAN_ANGLES)),D*sin(max(FAN_ANGLES))]

If 'ParallelSensorSpacing' is not specified, the spacing 
is assumed to be uniform and is set to the minimum 
spacing implied by the fan angles and sampled over the 
range implied by the fan angles.

Parameter Description
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Recover original parallel-beam data.

[Precovered,Ploc,Pangles] = fan2para(Fsynthetic,100,...
'FanSensorSpacing',1,...
'ParallelSensorSpacing',1);

figure, imshow(Pangles,Ploc,Precovered,[],'n'), axis normal
title('Recovered Parallel-Beam Data')
xlabel('Rotation Angles (degrees)')
ylabel('Parallel Sensor Locations (pixels)')
colormap(hot), colorbar

Class Support I can be of class double, uint8, uint16, or logical. All other numeric inputs 
and outputs are of class double.

See Also fanbeam, ifanbeam, iradon, para2fan, phantom, radon
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14fanbeamPurpose Compute fan-beam transform

Syntax F = fanbeam(I,D)
F = fanbeam(...,param1,val1,param1,val2,...)
[F,sensor_positions,fan_rotation_angles] = fanbeam(...)

Description F = fanbeam(I,D) computes the fan-beam data (sinogram) F from the image I. 
D is the distance in pixels from the from the fan-beam vertex to the center of 
rotation. Each column of F contains the fan-beam sensor samples at one 
rotation angle. The sensors are assumed to have a one-degree angular spacing. 
The rotation angles are spaced equally to cover [0:359] degrees.

F = fanbeam(...,param1,val1,param1,val2,...) specifies parameters that 
control various aspects of the fan-beam projection, listed in the following table. 
Parameter names can be abbreviated, and case does not matter. Default values 
are enclosed in braces ({}). 

Parameter Description

'FanRotationIncrement' Positive real scalar specifying the increment of the rotation angle of 
the fan-beam projections, measured in degrees. Default value is 1.

'FanSensorGeometry' Text string specifying how sensors are positioned. 

{'arc'} — Sensors are spaced along a circular arc at distance D 
from the center of rotation.

'line' — Sensors are spaced equally along a line, the closest point 
of which is distance D from the center of rotation.

'FanSensorSpacing' Positive real scalar specifying the spacing of the fan beams. 
Interpretation of the value depends on the setting of 
'FanSensorGeometry':

If 'FanSensorGeometry' is 'arc', the value defines the angular 
spacing in degrees. Default value is 1.

If 'FanSensorGeometry' is 'line', the value defines the linear 
spacing in pixels. 
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[F,sensor_positions,fan_rotation_angles] = fanbeam(...) returns 
information about the position of sensors and rotation angles. If 
'FanSensorGeometry' is 'arc', sensor_positions contains the fan-beam 
sensor measurement angles, measured in degrees. If 'FanSensorGeometry' is 
'line', sensor_positions contains the fan-beam sensor positions along the 
line of sensors, measured in pixels. fan_rotation_angles contains rotation 
angles.

Class Support I can be of class double, logical, or any integer class. All other numeric inputs 
and outputs are of class double. None of the inputs can be sparse.

Example ph = phantom(128);
imview(ph)
[F,Floc,Fangles] = fanbeam(ph,250);
imshow(Fangles,Floc,F,[],'n'), axis normal
xlabel('Rotation Angles (degrees)')
ylabel('Sensor Positions (degrees)')
colormap(hot), colorbar

See Also fan2para, ifanbeam, iradon, para2fan, phantom, radon

Reference [1] Kak, A.C., & Slaney, M., Principles of Computerized Tomographic Imaging, 
IEEE Press, NY, 1988, pp. 92-93.
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14fft2Purpose Compute two-dimensional fast Fourier transform

fft2 is a function in MATLAB. To get help for this function, select MATLAB 
Help from the Help menu and view the online function reference page.
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14fftnPurpose Compute N-dimensional fast Fourier transform

fftn is a function in MATLAB. To get help for this function, select MATLAB 
Help from the Help menu and view the online function reference page.
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14fftshiftPurpose Shift zero-frequency component of fast Fourier transform to center of spectrum

fftshift is a function in MATLAB. To get help for this function, select 
MATLAB Help from the Help menu and view the online function reference 
page.
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14filter2Purpose Perform two-dimensional linear filtering

filter2 is a function in MATLAB. To get help for this function, select 
MATLAB Help from the Help menu and view the online function reference 
page.
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14findboundsPurpose Find output bounds for spatial transformation 

Syntax outbounds = findbounds(TFORM,inbounds)

Description outbounds = findbounds(TFORM,inbounds) estimates the output bounds 
corresponding to a given spatial transformation and a set of input bounds. 
TFORM is a spatial transformation structure as returned by maketform. 
inbounds is 2-by-NUM_DIMS matrix. The first row of inbounds specifies the lower 
bounds for each dimension, and the second row specifies the upper bounds. 
NUM_DIMS has to be consistent with the ndims_in field of TFORM.

outbounds has the same form as inbounds. It is an estimate of the smallest 
rectangular region completely containing the transformed rectangle 
represented by the input bounds. Since outbounds is only an estimate, it might 
not completely contain the transformed input rectangle.

Notes imtransform uses findbounds to compute the 'OutputBounds' parameter if 
the user does not provide it.

If TFORM contains a forward transformation (a nonempty forward_fcn field), 
then findbounds works by transforming the vertices of the input bounds 
rectangle and then taking minimum and maximum values of the result.

If TFORM does not contain a forward transformation, then findbounds estimates 
the output bounds using the Nelder-Mead optimization function fminsearch. 
If the optimization procedure fails, findbounds issues a warning and returns 
outbounds = inbounds.

Example inbounds = [0 0; 1 1]
tform = maketform('affine',[2 0 0; .5 3 0; 0 0 1])
outbounds = findbounds(tform, inbounds)

See Also cp2tform, imtransform, maketform, tformarray, tformfwd, tforminv
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14fliptformPurpose Flip the input and output roles of a TFORM structure

Syntax TFLIP = fliptform(T)

Description TFLIP = fliptform(T) creates a new spatial transformation structure, a TFORM 
struct, by flipping the roles of the inputs and outputs in an existing TFORM 
struct.

Example T = maketform('affine', [.5 0 0; .5 2 0; 0 0 1]);
T2 = fliptform(T)

The following are equivalent:

x = tformfwd([-3 7],T)
x = tforminv([-3 7],T2)

See Also maketform, tformfwd, tforminv



freqspace

14-139

14freqspacePurpose Determine frequency spacing for two-dimensional frequency response

freqspace is a function in MATLAB. To get help for this function, select 
MATLAB Help from the Help menu and view the online function reference 
page.
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14freqz2Purpose Compute two-dimensional frequency response

Syntax [H,f1,f2] = freqz2(h,n1,n2)
[H,f1,f2] = freqz2(h,[n2 n1])
[H,f1,f2] = freqz2(h)
[H,f1,f2] = freqz2(h,f1,f2)
[...] = freqz2(h,...,[dx dy])
[...] = freqz2(h,...,dx)
freqz2(...)

Description [H,f1,f2] = freqz2(h,n1,n2) returns H, the n2-by-n1 frequency response of 
h, and the frequency vectors f1 (of length n1) and f2 (of length n2). h is a 
two-dimensional FIR filter, in the form of a computational molecule. f1 and f2 
are returned as normalized frequencies in the range -1.0 to 1.0, where 1.0 
corresponds to half the sampling frequency, or π radians.

[H,f1,f2] = freqz2(h,[n2 n1]) returns the same result returned by 
[H,f1,f2] = freqz2(h,n1,n2).

[H,f1,f2] = freqz2(h) uses [n2 n1] = [64 64].

[H,f1,f2] = freqz2(h,f1,f2) returns the frequency response for the FIR 
filter h at frequency values in f1 and f2. These frequency values must be in the 
range -1.0 to 1.0, where 1.0 corresponds to half the sampling frequency, or π 
radians.

[...] = freqz2(h,...,[dx dy]) uses [dx dy] to override the intersample 
spacing in h. dx determines the spacing for the x dimension and dy determines 
the spacing for the y dimension. The default spacing is 0.5, which corresponds 
to a sampling frequency of 2.0.

[...] = freqz2(h,...,dx) uses dx to determine the intersample spacing in 
both dimensions.

With no output arguments, freqz2(...) produces a mesh plot of the 
two-dimensional magnitude frequency response.

Class Support The input matrix h can be of class double or of any integer class. All other 
inputs to freqz2 must be of class double. All outputs are of class double.
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Example Use the window method to create a 16-by-16 filter, then view its frequency 
response using freqz2.

Hd = zeros(16,16);
Hd(5:12,5:12) = 1;
Hd(7:10,7:10) = 0;
h = fwind1(Hd,bartlett(16));
colormap(jet(64))
freqz2(h,[32 32]); axis ([-1 1 -1 1 0 1])

See Also freqz in the Signal Processing Toolbox User’s Guide documentation
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14fsamp2Purpose Design two-dimensional FIR filter using frequency sampling

Syntax h = fsamp2(Hd)
h = fsamp2(f1,f2,Hd,[m n])

Description fsamp2 designs two-dimensional FIR filters based on a desired 
two-dimensional frequency response sampled at points on the Cartesian plane. 

h = fsamp2(Hd) designs a two-dimensional FIR filter with frequency response 
Hd, and returns the filter coefficients in matrix h. (fsamp2 returns h as a 
computational molecule, which is the appropriate form to use with filter2.) 
The filter h has a frequency response that passes through points in Hd. If Hd is 
m-by-n, then h is also m-by-n.

Hd is a matrix containing the desired frequency response sampled at equally 
spaced points between -1.0 and 1.0 along the x and y frequency axes, where 1.0 
corresponds to half the sampling frequency, or π radians. 

For accurate results, use frequency points returned by freqspace to create Hd. 
(See the entry for freqspace for more information.)

h = fsamp2(f1,f2,Hd,[m n]) produces an m-by-n FIR filter by matching the 
filter response at the points in the vectors f1 and f2. The frequency vectors f1 
and f2 are in normalized frequency, where 1.0 corresponds to half the sampling 
frequency, or π radians. The resulting filter fits the desired response as closely 
as possible in the least squares sense. For best results, there must be at least 
m*n desired frequency points. fsamp2 issues a warning if you specify fewer than 
m*n points.

Class Support The input matrix Hd can be of class double or of any integer class. All other 
inputs to fsamp2 must be of class double. All outputs are of class double.

Example Use fsamp2 to design an approximately symmetric two-dimensional bandpass 
filter with passband between 0.1 and 0.5 (normalized frequency, where 1.0 
corresponds to half the sampling frequency, or π radians): 

1 Create a matrix Hd that contains the desired bandpass response. Use 
freqspace to create the frequency range vectors f1 and f2.

Hd f1 f2,( ) Hd ω1 ω2,( )=
ω1 πf1= ω2, πf2=
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[f1,f2] = freqspace(21,'meshgrid');
Hd = ones(21); 
r = sqrt(f1.^2 + f2.^2);
Hd((r<0.1)|(r>0.5)) = 0;
colormap(jet(64))
mesh(f1,f2,Hd)

2 Design the filter that passes through this response.

h = fsamp2(Hd);
freqz2(h)
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Algorithm fsamp2 computes the filter h by taking the inverse discrete Fourier transform 
of the desired frequency response. If the desired frequency response is real and 
symmetric (zero phase), the resulting filter is also zero phase.

See Also conv2, filter2, freqspace, ftrans2, fwind1, fwind2

Reference [1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood 
Cliffs, NJ, Prentice Hall, 1990, pp. 213-217.
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14fspecialPurpose Create 2-D special filters

Syntax h = fspecial(type)
h = fspecial(type,parameters)

Description h = fspecial(type) creates a two-dimensional filter h of the specified type. 
fspecial returns h as a correlation kernel, which is the appropriate form to use 
with imfilter. type is a string having one of these values.

h = fspecial(type,parameters) accepts a filter type plus additional 
modifying parameters particular to the type of filter chosen. If you omit these 
arguments, fspecial uses default values for the parameters. 

The following list shows the syntax for each filter type. Where applicable, 
additional parameters are also shown.

• h = fspecial('average',hsize) returns an averaging filter h of size hsize. 
The argument hsize can be a vector specifying the number of rows and 
columns in h, or it can be a scalar, in which case h is a square matrix. The 
default value for hsize is [3 3]. 

• h = fspecial('disk',radius) returns a circular averaging filter (pillbox) 
within the square matrix of side 2*radius+1. The default radius is 5.

Value Description

'gaussian' Gaussian lowpass filter

'sobel' Sobel horizontal edge-emphasizing filter

'prewitt' Prewitt horizontal edge-emphasizing filter

'laplacian' Filter approximating the two-dimensional 
Laplacian operator

'log' Laplacian of Gaussian filter

'average' Averaging filter

'unsharp' Unsharp contrast enhancement filter
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• h = fspecial('gaussian',hsize,sigma) returns a rotationally symmetric 
Gaussian lowpass filter of size hsize with standard deviation sigma 
(positive). hsize can be a vector specifying the number of rows and columns 
in h, or it can be a scalar, in which case h is a square matrix. The default 
value for hsize is [3 3]; the default value for sigma is 0.5.

• h = fspecial('laplacian',alpha) returns a 3-by-3 filter approximating 
the shape of the two-dimensional Laplacian operator. The parameter alpha 
controls the shape of the Laplacian and must be in the range 0.0 to 1.0. The 
default value for alpha is 0.2.

• h = fspecial('log',hsize,sigma) returns a rotationally symmetric 
Laplacian of Gaussian filter of size hsize with standard deviation sigma 
(positive). hsize can be a vector specifying the number of rows and columns 
in h, or it can be a scalar, in which case h is a square matrix. The default value 
for hsize is [5 5] and 0.5 for sigma.

• h = fspecial('motion',len,theta) returns a filter to approximate, once 
convolved with an image, the linear motion of a camera by len pixels, with 
an angle of theta degrees in a counterclockwise direction. The filter becomes 
a vector for horizontal and vertical motions. The default len is 9 and the 
default theta is 0, which corresponds to a horizontal motion of nine pixels.

• h = fspecial('prewitt') returns a 3-by-3 filter h (shown below) that 
emphasizes horizontal edges by approximating a vertical gradient. If you 
need to emphasize vertical edges, transpose the filter h'.

[ 1  1  1
  0  0  0
 -1 -1 -1 ]

To find vertical edges, or for x-derivatives, use h'.

• h = fspecial('sobel') returns a 3-by-3 filter h (shown below) that 
emphasizes horizontal edges using the smoothing effect by approximating a 
vertical gradient. If you need to emphasize vertical edges, transpose the 
filter h'. 

[ 1  2  1
  0  0  0
 -1 -2 -1 ]

• h = fspecial('unsharp',alpha) returns a 3-by-3 unsharp contrast 
enhancement filter. fspecial creates the unsharp filter from the negative of 
the Laplacian filter with parameter alpha. alpha controls the shape of the 
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Laplacian and must be in the range 0.0 to 1.0. The default value for alpha is 
0.2.

Class Support h is of class double.

Example I = imread('cameraman.tif');
subplot(2,2,1); 
imshow(I); title('Original Image');

H = fspecial('motion',20,45);
MotionBlur = imfilter(I,H,'replicate');
subplot(2,2,2); 
imshow(MotionBlur);title('Motion Blurred Image');

H = fspecial('disk',10);
blurred = imfilter(I,H,'replicate');
subplot(2,2,3); 
imshow(blurred); title('Blurred Image');

H = fspecial('unsharp');
sharpened = imfilter(I,H,'replicate');
subplot(2,2,4); 
imshow(sharpened); title('Sharpened Image');
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Algorithms fspecial creates Gaussian filters using

fspecial creates Laplacian filters using

Original Image Motion Blurred Image

Blurred Image Sharpened Image

Image Courtesy of MIT
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fspecial creates Laplacian of Gaussian (LoG) filters using

fspecial creates averaging filters using

ones(n(1),n(2))/(n(1)*n(2))

fspecial creates unsharp filters using

See Also conv2, edge, filter2, fsamp2, fwind1, fwind2, imfilter
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14ftrans2Purpose Design two-dimensional FIR filter using frequency transformation

Syntax h = ftrans2(b,t)
h = ftrans2(b)

Description h = ftrans2(b,t) produces the two-dimensional FIR filter h that corresponds 
to the one-dimensional FIR filter b using the transform t. (ftrans2 returns h 
as a computational molecule, which is the appropriate form to use with 
filter2.) b must be a one-dimensional, odd-length (Type I) FIR filter such 
as can be returned by fir1, fir2, or remez in the Signal Processing Toolbox. 
The transform matrix t contains coefficients that define the frequency 
transformation to use. If t is m-by-n and b has length Q, then h is size 
((m-1)*(Q-1)/2+1)-by-((n-1)*(Q-1)/2+1).

h = ftrans2(b) uses the McClellan transform matrix t.

t = [1 2 1; 2 -4 2; 1 2 1]/8;

Remarks The transformation below defines the frequency response of the 
two-dimensional filter returned by ftrans2,

where B(ω) is the Fourier transform of the one-dimensional filter b,

and T(ω1,ω2) is the Fourier transform of the transformation matrix t.

The returned filter h is the inverse Fourier transform of H(ω1,ω2).
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Example Use ftrans2 to design an approximately circularly symmetric two-dimensional 
bandpass filter with passband between 0.1 and 0.6 (normalized frequency, 
where 1.0 corresponds to half the sampling frequency, or π radians):

1 Since ftrans2 transforms a one-dimensional FIR filter to create a 
two-dimensional filter, first design a one-dimensional FIR bandpass filter 
using the Signal Processing Toolbox function remez.

colormap(jet(64))
b = remez(10,[0 0.05 0.15 0.55 0.65 1],[0 0 1 1 0 0]);
[H,w] = freqz(b,1,128,'whole');
plot(w/pi-1,fftshift(abs(H)))

2 Use ftrans2 with the default McClellan transformation to create the 
desired approximately circularly symmetric filter.

h = ftrans2(b);
freqz2(h)
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See Also conv2, filter2, fsamp2, fwind1, fwind2

Reference [1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood 
Cliffs, NJ, Prentice Hall, 1990, pp. 218-237.
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14fwind1Purpose Design two-dimensional FIR filter using one-dimensional window method

Syntax h = fwind1(Hd,win)
h = fwind1(Hd,win1,win2)
h = fwind1(f1,f2,Hd,...)

Description fwind1 designs two-dimensional FIR filters using the window method. fwind1 
uses a one-dimensional window specification to design a two-dimensional FIR 
filter based on the desired frequency response Hd. fwind1 works with 
one-dimensional windows only; use fwind2 to work with two-dimensional 
windows. 

h = fwind1(Hd,win) designs a two-dimensional FIR filter h with frequency 
response Hd. (fwind1 returns h as a computational molecule, which is the 
appropriate form to use with filter2.) fwind1 uses the one-dimensional 
window win to form an approximately circularly symmetric two-dimensional 
window using Huang’s method. You can specify win using windows from the 
Signal Processing Toolbox, such as boxcar, hamming, hanning, bartlett, 
blackman, kaiser, or chebwin. If length(win) is n, then h is n-by-n.

Hd is a matrix containing the desired frequency response sampled at equally 
spaced points between -1.0 and 1.0 (in normalized frequency, where 1.0 
corresponds to half the sampling frequency, or π radians) along the x and y 
frequency axes. For accurate results, use frequency points returned by 
freqspace to create Hd. (See the entry for freqspace for more information.)

h = fwind1(Hd,win1,win2) uses the two one-dimensional windows win1 and 
win2 to create a separable two-dimensional window. If length(win1) is n and 
length(win2) is m, then h is m-by-n.

h = fwind1(f1,f2,Hd,...) lets you specify the desired frequency response Hd 
at arbitrary frequencies (f1 and f2) along the x- and y-axes. The frequency 
vectors f1 and f2 should be in the range -1.0 to 1.0, where 1.0 corresponds to 
half the sampling frequency, or π radians. The length of the windows controls 
the size of the resulting filter, as above.

Class Support The input matrix Hd can be of class double or of any integer class. All other 
inputs to fwind1 must be of class double. All outputs are of class double.
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Example Use fwind1 to design an approximately circularly symmetric two-dimensional 
bandpass filter with passband between 0.1 and 0.5 (normalized frequency, 
where 1.0 corresponds to half the sampling frequency, or π radians): 

1 Create a matrix Hd that contains the desired bandpass response. Use 
freqspace to create the frequency range vectors f1 and f2.

[f1,f2] = freqspace(21,'meshgrid');
Hd = ones(21); 
r = sqrt(f1.^2 + f2.^2);
Hd((r<0.1)|(r>0.5)) = 0;
colormap(jet(64))
mesh(f1,f2,Hd)

2 Design the filter using a one-dimensional Hamming window.

h = fwind1(Hd,hamming(21));
freqz2(h)
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Algorithm fwind1 takes a one-dimensional window specification and forms an 
approximately circularly symmetric two-dimensional window using Huang’s 
method,

where w(t) is the one-dimensional window and w(n1,n2) is the resulting 
two-dimensional window. 

Given two windows, fwind1 forms a separable two-dimensional window.

fwind1 calls fwind2 with Hd and the two-dimensional window. fwind2 
computes h using an inverse Fourier transform and multiplication by the 
two-dimensional window.
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See Also conv2, filter2, fsamp2, freqspace, ftrans2, fwind2

Reference [1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood 
Cliffs, NJ, Prentice Hall, 1990.
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14fwind2Purpose Design two-dimensional FIR filter using two-dimensional window method

Syntax h = fwind2(Hd,win)
h = fwind2(f1,f2,Hd,win)

Description Use fwind2 to design two-dimensional FIR filters using the window method. 
fwind2 uses a two-dimensional window specification to design a 
two-dimensional FIR filter based on the desired frequency response Hd. fwind2 
works with two-dimensional windows; use fwind1 to work with 
one-dimensional windows. 

h = fwind2(Hd,win) produces the two-dimensional FIR filter h using an 
inverse Fourier transform of the desired frequency response Hd and 
multiplication by the window win. Hd is a matrix containing the desired 
frequency response at equally spaced points in the Cartesian plane. fwind2 
returns h as a computational molecule, which is the appropriate form to use 
with filter2. h is the same size as win.

For accurate results, use frequency points returned by freqspace to create Hd. 
(See the entry for freqspace for more information.)

h = fwind2(f1,f2,Hd,win) lets you specify the desired frequency response Hd 
at arbitrary frequencies (f1 and f2) along the x- and y-axes. The frequency 
vectors f1 and f2 should be in the range -1.0 to 1.0, where 1.0 corresponds to 
half the sampling frequency, or π radians. h is the same size as win.

Class Support The input matrix Hd can be of class double or of any integer class. All other 
inputs to fwind2 must be of class double. All outputs are of class double.

Example Use fwind2 to design an approximately circularly symmetric two-dimensional 
bandpass filter with passband between 0.1 and 0.5 (normalized frequency, 
where 1.0 corresponds to half the sampling frequency, or π radians): 

1 Create a matrix Hd that contains the desired bandpass response. Use 
freqspace to create the frequency range vectors f1 and f2.

[f1,f2] = freqspace(21,'meshgrid');
Hd = ones(21); 
r = sqrt(f1.^2 + f2.^2);
Hd((r<0.1)|(r>0.5)) = 0;
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colormap(jet(64))
mesh(f1,f2,Hd)

2 Create a two-dimensional Gaussian window using fspecial.

win = fspecial('gaussian',21,2);
win = win ./ max(win(:));  % Make the maximum window value be 1.
mesh(win)



fwind2

14-159

3 Design the filter using the window from step 2.

h = fwind2(Hd,win);
freqz2(h)
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Algorithm fwind2 computes h using an inverse Fourier transform and multiplication by 
the two-dimensional window win.

See Also conv2, filter2, fsamp2, freqspace, ftrans2, fwind1

Reference [1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood 
Cliffs, NJ, Prentice Hall, 1990, pp. 202-213.
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14getheightPurpose Get height of structuring element

Syntax H = getheight(SE)

Description H = getheight(SE) returns an array the same size as getnhood(SE) 
containing the height associated with each of the structuring element 
neighbors. H is all zeros for a flat structuring element.

Class Support SE is a STREL object. H is of class double.

Example se = strel(ones(3,3),magic(3));
getheight(se)

See Also strel, getnhood
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14getimagePurpose Get image data from axes

Syntax A = getimage(h)
[x,y,A] = getimage(h)
[...,A,flag] = getimage(h)
[...] = getimage

Description A = getimage(h) returns the first image data contained in the Handle 
Graphics object h. h can be a figure, axes, image, or texture-mapped surface. A 
is identical to the image CData; it contains the same values and is of the same 
class (uint8 or double) as the image CData. If h is not an image or does not 
contain an image or texture-mapped surface, A is empty.

[x,y,A] = getimage(h) returns the image XData in x and the YData in y. XData 
and YData are two-element vectors that indicate the range of the x-axis and 
y-axis.

[...,A,flag] = getimage(h) returns an integer flag that indicates the type 
of image h contains. This table summarizes the possible values for flag.

[...] = getimage returns information for the current axes. It is equivalent to 
[...] = getimage(gca).

Class Support The output array A is of the same class as the image CData. All other inputs and 
outputs are of class double.

Flag Type of Image

0 Not an image; A is returned as an empty matrix

1 Indexed image

2 Intensity image with values in standard range ([0,1] for 
double arrays, [0,255] for uint8 arrays, [0,65535] for uint16 
arrays)

3 Intensity data, but not in standard range

4 RGB image
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Example This example illustrates obtaining the image data from an image displayed 
directly from a file.

imshow rice.png
I = getimage;
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14getlinePurpose Select polyline with mouse

Syntax [x,y] = getline(fig)
[x,y] = getline(ax)
[x,y] = getline
[x,y] = getline(...,'closed')

Description [x,y] = getline(fig) lets you select a polyline in the current axes of figure 
fig using the mouse. Coordinates of the polyline are returned in X and Y. Use 
normal button clicks to add points to the polyline. A shift-, right-, or 
double-click adds a final point and ends the polyline selection. Pressing Return 
or Enter ends the polyline selection without adding a final point. Pressing 
Backspace or Delete removes the previously selected point from the polyline.

[x,y] = getline(ax) lets you select a polyline in the axes specified by the 
handle ax.

[x,y] = getline is the same as [x,y] = getline(gcf).

[x,y] = getline(...,'closed') animates and returns a closed polygon.

See Also getpts, getrect
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14getneighborsPurpose Get structuring element neighbor locations and heights

Syntax [offsets,heights] = getneighbors(SE)

Description [offsets,heights] = getneighbors(SE) returns the relative locations and 
corresponding heights for each of the neighbors in the structuring element 
object SE. 

offsets is a P-by-N array where P is the number of neighbors in the 
structuring element and N is the dimensionality of the structuring element. 
Each row of offsets contains the location of the corresponding neighbor, 
relative to the center of the structuring element. 

heights is a P-element column vector containing the height of each structuring 
element neighbor.

Class Support SE is a STREL object. The return values offsets and heights are arrays of 
double-precision values.

Example se = strel([1 0 1],[5 0 -5])
[offsets,heights] = getneighbors(se)
se =
Nonflat STREL object containing 2 neighbors.

Neighborhood:
     1     0     1

Height:
     5     0    -5

offsets =
     0    -1
     0     1
heights =
     5    -5

See Also strel, getnhood, getheight
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14getnhoodPurpose Get structuring element neighborhood

Syntax nhood = getnhood(SE)

Description nhood = getnhood(SE) returns the neighborhood associated with the 
structuring element SE.

Class Support SE is a STREL object. nhood is a logical array.

Example se = strel(eye(5));
nhood = getnhood(se)

See Also strel, getneighbors
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14getptsPurpose Select points with mouse

Syntax [x,y] = getpts(fig)
[x,y] = getpts(ax)
[x,y] = getpts

Description [x,y] = getpts(fig) lets you choose a set of points in the current axes of 
figure fig using the mouse. Coordinates of the selected points are returned in 
X and Y. 

Use normal button clicks to add points. A shift-, right-, or double-click adds a 
final point and ends the selection. Pressing Return or Enter ends the selection 
without adding a final point. Pressing Backspace or Delete removes the 
previously selected point.

[x,y] = getpts(ax) lets you choose points in the axes specified by the handle 
ax.

[x,y] = getpts is the same as [x,y] = getpts(gcf).

See Also getline, getrect
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14getrectPurpose Select rectangle with mouse

Syntax rect = getrect(fig)
rect = getrect(ax)
rect = getrect(fig)

Description rect = getrect(fig) lets you select a rectangle in the current axes of figure 
fig using the mouse. Coordinates of the rectangle are returned in X and Y. 

Use the mouse to click and drag the desired rectangle. rect is a four-element 
vector with the form [xmin ymin width height]. To constrain the rectangle to 
be a square, use a shift- or right-click to begin the drag. 

rect  = getrect(ax) lets you select a rectangle in the axes specified by the 
handle ax.

See Also getline, getpts
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14getsequencePurpose Extract sequence of decomposed structuring elements

Syntax SEQ = getsequence(SE)

Description SEQ = getsequence(SE), where SE is a structuring element array, returns 
another structuring element array SEQ containing the individual structuring 
elements that form the decomposition of SE. SEQ is equivalent to SE, but the 
elements of SEQ have no decomposition.

Class Support SE and SEQ are arrays of STREL objects.

Example The strel function uses decomposition for square structuring elements larger 
than 3-by-3. Use getsequence to extract the decomposed structuring elements. 

se = strel('square',5)
seq = getsequence(se)
se =
Flat STREL object containing 25 neighbors.
Decomposition: 2 STREL objects containing a total of 10 neighbors

Neighborhood:
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
seq =
2x1 array of STREL objects

Use imdilate with the 'full' option to see that dilating sequentially with the 
decomposed structuring elements really does form a 5-by-5 square:

imdilate(1,seq,'full')

See Also imdilate, imerode, strel
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14gray2indPurpose Convert an intensity image to an indexed image

Syntax [X,map] = gray2ind(I,n)
[X,map] = gray2ind(BW,n)

Description gray2ind scales, then rounds, an intensity image to produce an equivalent 
indexed image.

[X,map] = gray2ind(I,n) converts the intensity image I to an indexed image 
X with colormap gray(n). If n is omitted, it defaults to 64.

[X,map] = gray2ind(BW,n) converts the binary image BW to an indexed image 
X with colormap gray(n). If n is omitted, it defaults to 2.

n must be an integer between 1 and 65536.

Class Support The input image I must be a real, nonsparse array of class logical, uint8, 
uint16, or double. It can have any dimension. The class of the output image X 
is uint8 if the colormap length is less than or equal to 256; otherwise it is 
uint16.

See Also ind2gray
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14grayslicePurpose Create indexed image from intensity image using multilevel thresholding

Syntax X = grayslice(I,n)
X = grayslice(I,v)

Description X = grayslice(I,n) thresholds the intensity image I using cutoff values 

, returning an indexed image in X.

X = grayslice(I,v) thresholds the intensity image I using the values of v, 
where v is a vector of values between 0 and 1, returning an indexed image in X.

You can view the thresholded image using imshow(X,map) with a colormap of 
appropriate length.

Class Support The input image I can be of class uint8, uint16, or double. Note that the 
threshold values are always between 0 and 1, even if I is of class uint8 or 
uint16. In this case, each threshold value is multiplied by 255 or 65535 to 
determine the actual threshold to use.

The class of the output image X depends on the number of threshold values, as 
specified by n or length(v). If the number of threshold values is less than 256, 
then X is of class uint8, and the values in X range from 0 to n or length(v). If 
the number of threshold values is 256 or greater, X is of class double, and the 
values in X range from 1 to n+1 or length(v)+1.

Example I = imread('snowflakes.png');
X = grayslice(I,16);
imview(I)
imview(X,jet(16))

See Also gray2ind
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14graythreshPurpose Compute global image threshold using Otsu's method

Syntax level = graythresh(I)

Description level = graythresh(I) computes a global threshold (level) that can be used 
to convert an intensity image to a binary image with im2bw. 

level is a normalized intensity value that lies in the range [0, 1]. 

The graythresh function uses Otsu's method, which chooses the threshold to 
minimize the intraclass variance of the black and white pixels.

Multidimensional arrays are converted automatically to 2-D arrays using 
reshape. The graythresh function ignores any nonzero imaginary part of I.

Class Support The input image I can be of class uint8, uint16, or double and it must be 
nonsparse. The return value level is a double scalar.

Example I = imread('coins.png');
level = graythresh(I);
BW = im2bw(I,level);
imshow(BW)

See Also im2bw

Reference Otsu, N., “A Threshold Selection Method from Gray-Level Histograms,” IEEE 
Transactions on Systems, Man, and Cybernetics, Vol. 9, No. 1, 1979, pp. 62-66.
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14histeqPurpose Enhance contrast using histogram equalization

Syntax J = histeq(I,hgram)
J = histeq(I,n)
[J,T] = histeq(I,...)

newmap = histeq(X,map,hgram)
newmap = histeq(X,map)
[newmap,T] = histeq(X,...)

Description histeq enhances the contrast of images by transforming the values in an 
intensity image, or the values in the colormap of an indexed image, so that the 
histogram of the output image approximately matches a specified histogram. 

J = histeq(I,hgram) transforms the intensity image I so that the histogram 
of the output intensity image J with length(hgram) bins approximately 
matches hgram. The vector hgram should contain integer counts for equally 
spaced bins with intensity values in the appropriate range: [0, 1] for images of 
class double, [0, 255] for images of class uint8, and [0, 65535] for images of 
class uint16. histeq automatically scales hgram so that sum(hgram) = 
prod(size(I)). The histogram of J will better match hgram when 
length(hgram) is much smaller than the number of discrete levels in I.

J = histeq(I,n) transforms the intensity image I, returning in J an intensity 
image with n discrete gray levels. A roughly equal number of pixels is mapped 
to each of the n levels in J, so that the histogram of J is approximately flat. (The 
histogram of J is flatter when n is much smaller than the number of discrete 
levels in I.) The default value for n is 64.

[J,T] = histeq(I,...) returns the grayscale transformation that maps gray 
levels in the intensity image I to gray levels in J.

newmap = histeq(X,map,hgram) transforms the colormap associated with the 
indexed image X so that the histogram of the gray component of the indexed 
image (X,newmap) approximately matches hgram. The histeq function returns 
the transformed colormap in newmap. length(hgram) must be the same as 
size(map,1).
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newmap = histeq(X,map) transforms the values in the colormap so that the 
histogram of the gray component of the indexed image X is approximately flat. 
It returns the transformed colormap in newmap.

[newmap,T] = histeq(X,...) returns the grayscale transformation T that 
maps the gray component of map to the gray component of newmap.

Class Support For syntaxes that include an intensity image I as input, I can be of class uint8, 
uint16, or double, and the output image J has the same class as I. For 
syntaxes that include an indexed image X as input, X can be of class uint8 or 
double; the output colormap is always of class double. Also, the optional output 
T (the gray-level transform) is always of class double.

Example Enhance the contrast of an intensity image using histogram equalization.

I = imread('tire.tif');
J = histeq(I);
imshow(I)
figure, imshow(J)

Display the resulting histograms.

imhist(I,64)
figure; imhist(J,64)
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Algorithm When you supply a desired histogram hgram, histeq chooses the grayscale 
transformation T to minimize 

where c0 is the cumulative histogram of A, c1 is the cumulative sum of hgram for 
all intensities k. This minimization is subject to the constraints that T must be 
monotonic and c1(T(a)) cannot overshoot c0(a) by more than half the distance 
between the histogram counts at a. histeq uses this transformation to map the 
gray levels in X (or the colormap) to their new values.

If you do not specify hgram, histeq creates a flat hgram, 

hgram = ones(1,n)*prod(size(A))/n;

and then applies the previous algorithm.

See Also brighten, imadjust, imhist

c1 T k( )( ) c0 k( )–

b T a( )=
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14hsv2rgbPurpose Convert hue-saturation-value (HSV) values to RGB color space

hsv2rgb is a function in MATLAB. To get help for this function, select 
MATLAB Help from the Help menu and view the online function reference 
page.
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14iccreadPurpose Read ICC profile

Syntax P = iccread(filename)

Description P = iccread(filename) reads the International Color Consortium (ICC) color 
profile data from the file specified in the text string filename. iccread can 
also read an ICC profile that is embedded in a TIFF file. To determine if a TIFF 
file contains an embedded ICC profile, use the imfinfo function to get 
information about the file and look for the ICCProfileOffset field.

iccread returns the profile data in the structure P. You can use this profile as 
the source or destination profile with the makecform function. 

ICC profiles provide color management systems with the information 
necessary to convert color data between native device color spaces and device 
independent color spaces, called the Profile Connection Space (PCS). 

The profile returned, P, is a 1-by-1 structure array whose fields contain the 
data structures (called tags) defined in the specfication ICC.1:2001-04. The 
number of fields in P depends on the profile class and the choices made by the 
profile creator. iccread returns all the tags for a given profile, both public and 
private. However, private tags and certain public tags are left as encoded uint8 
data. 

The following table lists fields that are found in any profile structure generated 
by iccread. For more information about ICC profiles, visit the ICC web site, 
www.color.org.

Field Data Type Description

Filename Text string Profile name

Header 1-by-1 struct 
array

Profile header

TagTable n-by-3 cell 
array

Profile tag table

Copywright Text string Profile copyright notice

Description Text string Profile description
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Additionally, P might contain one or more of the following transforms:

• Three component matrix-based transform: A simple transform that is often 
used to transform between the RGB and XYZ color spaces. If this transform 
is present, P contains a field called MatTRC.

• N-component LUT-based transform: A transform that is used for 
transforming between color spaces that have a more complex relationship. 
This type of transform is found in any of the following fields in P:

Example The example reads the ICC profile that describes a typical PC computer 
monitor.

prof = iccread('sRGB.icm');

prof = 

Filename: 'sRGB.icm'
               Header: [1x1 struct]
             TagTable: {17x3 cell}
            Copyright: 'Copyright (c) 1999 Hewlett-Packard Company'
          Description: 'sRGB IEC61966-2.1 991203'
      MediaWhitePoint: [0.9505 1 1.0891]
      MediaBlackPoint: [0 0 0]
        DeviceMfgDesc: 'IEC '

MediaWhitepoint double array XYZ tristimulus values of the 
device’s media white point

PrivateTags m-by-2 cell 
array

Contents of all the private tags or 
tags not defined in ICC.1:2001-04. 
The tag signatures are in the first 
column, and the contents of the tags 
are in the second column. Note that 
the contents of these tags are left in 
the unsigned 8-bit encoding

AToB0 BToA0 Preview0 Gamut

AToB1 BToA1 Preview1

AToB2 BToA2 Preview2

Field Data Type Description



iccread

14-179

      DeviceModelDesc: 'sRGB IEC 61966-2.1 sRGB 991203'
      ViewingCondDesc: 'Reference Viewing Condition in IEC61966-2.1'
    ViewingConditions: [1x1 struct]
            Luminance: [76.0365 80 87.1246]
          Measurement: [28x1 uint8]
           Technology: [4x1 uint8]
               MatTRC: [1x1 struct]
          PrivateTags: {}

To determine the source color space, view the ColorSpace field in the Header 
structure.

prof.Header.ColorSpace

ans =

  RGB

To determine the PCS of the profile, view the ConnectionSpace field in the 
Header structure.

prof.Header.ConnectionSpace

ans =

   XYZ

See Also makecform
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14idct2Purpose Compute two-dimensional inverse discrete cosine transform

Syntax B = idct2(A)
B = idct2(A,m,n)
B = idct2(A,[m n])

Description B = idct2(A) returns the two-dimensional inverse discrete cosine transform 
(DCT) of A.

B = idct2(A,m,n) or B = idct2(A,[m n]) pads A with 0’s to size m-by-n before 
transforming. If [m n] < size(A), idct2 crops A before transforming.

For any A, idct2(dct2(A)) equals A to within roundoff error.

Class Support The input matrix A can be of class double or of any numeric class. The output 
matrix B is of class double.

Algorithm idct2 computes the two-dimensional inverse DCT using

See Also dct2, dctmtx, fft2, ifft2

References [1] Jain, A. K., Fundamentals of Digital Image Processing, Englewood Cliffs, 
NJ, Prentice Hall, 1989, pp. 150-153.

[2] Pennebaker, W. B., and J. L. Mitchell, JPEG: Still Image Data Compression 
Standard, New York, Van Nostrand Reinhold, 1993.
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14ifanbeamPurpose Compute inverse fan-beam transform

Syntax I = ifanbeam(F,D)
I = ifambeam(...,param1,val1,param2,val2,...)
[I,H] = ifanbeam(...)

Description I = ifanbeam(F,D) reconstructs the image I from projection data in the 
two-dimensional array F. Each column of F contains fan-beam projection data 
at one rotation angle. ifanbeam assumes that the center of rotation is the 
center point of the projections, which is defined as ceil(size(F,1)/2).

The fan-beam spread angles are assumed to be the same increments as the 
input rotation angles split equally on either side of zero. The input rotation 
angles are assumed to be stepped in equal increments to cover [0:359] 
degrees.

D is the distance from the fan-beam vertex to the center of rotation.

I = ifanbeam(...,param1,val1,param2,val2,...) specifies parameters 
that control various aspects of the ifanbeam reconstruction, described in the 
following table. Parameter names can be abbreviated, and case does not 
matter. Default values are in braces ({}).

Parameter Description

'FanCoverage' String specifying the range through which the beams are rotated.

{'cycle'} — Rotate through the full range [0,360).

'minimal' — Rotate the minimum range necessary to represent 
the object. 

'FanRotationIncrement' Positive real scalar specifying the increment of the rotation angle 
of the fan-beam projections, measured in degrees. See fanbeam 
for details. 

'FanSensorGeometry' String specifying how sensors are positioned. See fanbeam for 
details.
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[I,H] = ifanbeam(...) returns the frequency response of the filter in the 
vector H.

Notes ifanbeam converts the fan-beam data to parallel beam projections and then 
uses the filtered back projection algorithm to perform the inverse Radon 
transform. The filter is designed directly in the frequency domain and then 
multiplied by the FFT of the projections. The projections are zero-padded to a 
power of 2 before filtering to prevent spatial domain aliasing and to speed up 
the FFT.

Class Support All numeric input arguments must be of class double. The output arguments 
are of class double.

Example ph = phantom(128);

'FanSensorSpacing' Positive real scalar specifying the spacing of the fan-beam 
sensors. Interpretation of the value depends on the setting of 
'FanSensorGeometry'. See fanbeam for details.

'Filter' String specifying the name of a filter. See iradon for details.

'FrequencyScaling' Scalar in the range (0,1] that modifies the filter by rescaling its 
frequency axis. See iradon for details.

'Interpolation' String specifying an interpolation method. See iradon for details.

'OutputSize' Positive scalar specifying the number of rows and columns in the 
reconstructed image.

If 'OutputSize' is not specified, ifanbeam determines the size 
automatically.

If you specify 'OutputSize', ifanbeam reconstructs a smaller or 
larger portion of the image, but does not change the scaling of the 
data.

Note: If the projections were calculated with the fanbeam 
function, the reconstructed image might not be the same size as 
the original image.

Parameter Description
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d = 100;
F = fanbeam(ph,d);
I = ifanbeam(F,d,'FanSensorSpacing',0.5);
imview(ph); imview(I);

See Also fan2para, fanbeam, iradon, para2fan, phantom, radon

References [1] Kak, A. C., and M. Slaney, Principles of Computerized Tomographic 
Imaging, New York, NY, IEEE Press, 1988. 
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14ifft2Purpose Compute two-dimensional inverse fast Fourier transform

ifft2 is a function in MATLAB. To get help for this function, select MATLAB 
Help from the Help menu and view the online function reference pages.
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14ifftnPurpose Compute N-dimensional inverse fast Fourier transform

ifftn is a function in MATLAB. To get help for this function, select MATLAB 
Help from the Help menu and view the online function reference pages.
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14im2bwPurpose Convert an image to a binary image, based on threshold

Syntax BW = im2bw(I,level)
BW = im2bw(X,map,level)
BW = im2bw(RGB,level)

Description im2bw produces binary images from indexed, intensity, or RGB images. To do 
this, it converts the input image to grayscale format (if it is not already an 
intensity image), and then uses thresholding to convert this grayscale image to 
binary. The output binary image BW has values of 0 (black) for all pixels in the 
input image with luminance less than level and 1 (white) for all other pixels. 
(Note that you specify level in the range [0,1], regardless of the class of the 
input image.)

BW = im2bw(I,level) converts the intensity image I to black and white.

BW = im2bw(X,map,level) converts the indexed image X with colormap map to 
black and white.

BW = im2bw(RGB,level) converts the RGB image RGB to black and white.

Note  The function graythresh can be used to compute the level argument 
automatically.

Class Support The input image can be of class uint8, uint16, or double and it must be 
nonsparse. The output image, BW, is of class logical.

Example load trees
BW = im2bw(X,map,0.4);
imview(X,map),imview(BW)
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See Also graythresh, ind2gray, rgb2gray

Image Courtesy of Susan Cohen
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14im2colPurpose Rearrange image blocks into columns

Syntax B = im2col(A,[m n],block_type)
B = im2col(A,[m n])
B = im2col(A,'indexed',...)

Description B = im2col(A,[m n],block_type) rearranges image blocks into columns. 
block_type is a string that can have one of these values. The default value is 
enclosed in braces ({}).

For the sliding block case, each column of B contains the neighborhoods of A 
reshaped as nhood(:) where nhood is a matrix containing an m-by-n 
neighborhood of A. im2col orders the columns of B so that they can be reshaped 
to form a matrix in the normal way. For example, suppose you use a function, 
such as sum(B), that returns a scalar for each column of B. You can directly 
store the result in a matrix of size (mm-m+1)-by-(nn-n+1), using these calls.

B = im2col(A,[m n],'sliding');
C = reshape(sum(B),mm-m+1,nn-n+1);

B = im2col(A,'indexed',...) processes A as an indexed image, padding with 
0’s if the class of A is uint8, or 1’s if the class of A is double.

Class Support The input image A can be numeric or logical. The output matrix B is of the same 
class as the input image.

Value Description

'distinct' Rearranges each distinct m-by-n block in the image A into 
a column of B. im2col pads A with 0’s, if necessary, so its 
size is an integer multiple of m-by-n. If A = [A11 A12; 
A21 A22], where each Aij is m-by-n, then B = [A11(:) 
A12(:) A21(:) A22(:)].

{'sliding'} Converts each sliding m-by-n block of A into a column of B, 
with no zero padding. B has m*n rows and contains as 
many columns as there are m-by-n neighborhoods of A. If 
the size of A is [mm nn], then the size of B is 
(m*n)-by-((mm-m+1)*(nn-n+1)).
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See Also blkproc, col2im, colfilt, nlfilter
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14im2doublePurpose Convert image array to double precision

Syntax I2 = im2double(I)
RGB2 = im2double(RGB)
I = im2double(BW)
X2 = im2double(X,'indexed')

Description im2double takes an image as input, and returns an image of class double. If 
the input image is of class double, the output image is identical to it. If the 
input image is of class logical, uint8, or uint16, im2double returns the 
equivalent image of class double, rescaling or offsetting the data as necessary.

I2 = im2double(I) converts the intensity image I to double precision, 
rescaling the data if necessary.

RGB2 = im2double(RGB) converts the true-color image RGB to double precision, 
rescaling the data if necessary.

I = im2double(BW) converts the binary image BW to a double-precision 
intensity image.

X2 = im2double(X,'indexed') converts the indexed image X to double 
precision, offsetting the data if necessary.

See Also double, im2uint8, uint8
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14im2javaPurpose Convert image to Java image

im2java is a MATLAB function. To get help for this function, select MATLAB 
Help from the Help menu and view the online function reference pages.
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14im2java2dPurpose Convert image to Java buffered image

Syntax jimage = im2java2d(I)
jimage = im2java2d(X,MAP)

Description jimage = im2java2d(I) converts the image I to an instance of the Java image 
class java.awt.image.BufferedImage. The image I can be an intensity 
(grayscale), RGB, or binary image. 

jimage = im2java2d(X,MAP) converts the indexed image X with colormap MAP 
to an instance of the Java class java.awt.image.BufferedImage.

Note  The im2java2d function works with the Java 2D API. The im2java 
function works with the Java Abstract Windowing Toolkit (AWT).

Class Support Intensity, indexed, and RGB input images can be of class uint8, uint16, or 
double. Binary input images must be of class logical. 

Example This example reads an image into the MATLAB workspace and then uses 
im2java2d to convert it into an instance of the Java class 
java.awt.image.BufferedImage.

I = imread('moon.tif');
javaImage = im2java2d(I);
frame = javax.swing.JFrame;
icon = javax.swing.ImageIcon(javaImage);
label = javax.swing.JLabel(icon);
frame.getContentPane.add(label);
frame.pack
frame.show
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14im2uint16Purpose Convert image array to 16-bit unsigned integers

Syntax I2 = im2uint16(I)
RGB2 = im2uint16(RGB)
I = im2uint16(BW)
X2 = im2uint16(X,'indexed')

Description im2uint16 takes an image as input and returns an image of class uint16. If the 
input image is of class uint16, the output image is identical to it. If the input 
image is of class double or uint8, im2uint16 returns the equivalent image of 
class uint16, rescaling or offsetting the data as necessary.

I2 = im2uint16(I) converts the intensity image I to uint16, rescaling the 
data if necessary.

RGB2 = im2uint16(RGB) converts the true-color image RGB to uint16, rescaling 
the data if necessary.

I = im2uint16(BW) converts the binary image BW to a uint16 intensity image, 
changing 1-valued elements to 65535.

X2 = im2uint16(X,'indexed') converts the indexed image X to uint16, 
offsetting the data if necessary. Note that it is not always possible to convert 
an indexed image to uint16. If X is of class double, max(X(:)) must be 65536 
or less.

Note  im2uint16 does not support binary images.

See Also im2uint8, double, im2double, uint8, uint16, imapprox
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14im2uint8Purpose Convert image array to 8-bit unsigned integers

Syntax I2 = im2uint8(I)
RGB2 = im2uint8(RGB)
I = im2uint8(BW)
X2 = im2uint8(X,'indexed')

Description im2uint8 takes an image as input and returns an image of class uint8. If the 
input image is of class uint8, the output image is identical to it. If the input 
image is of class logical, uint16, or double, im2uint8 returns the equivalent 
image of class uint8, rescaling or offsetting the data as necessary.

I2 = im2uint8(I) converts the intensity image I to uint8, rescaling the data 
if necessary.

RGB2 = im2uint8(RGB) converts the true-color image RGB to uint8, rescaling 
the data if necessary.

I = im2uint8(BW) converts the binary image BW to a uint8 intensity image, 
changing 1-valued elements to 255

X2 = im2uint8(X,'indexed') converts the indexed image X to uint8, 
offsetting the data if necessary. Note that it is not always possible to convert 
an indexed image to uint8. If X is of class double, max(X(:)) must be 256 or 
less; if X is of class uint16, max(X(:)) must be 255 or less. To convert a uint16 
indexed image to uint8 by reducing the number of colors, use imapprox.

See Also im2uint16, double, im2double, uint8, imapprox, uint16
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14imabsdiffPurpose Compute absolute difference of two images 

Syntax Z = imabsdiff(X,Y)

Description Z = imabsdiff(X,Y) subtracts each element in array Y from the corresponding 
element in array X and returns the absolute difference in the corresponding 
element of the output array Z. X and Y are real, nonsparse numeric arrays with 
the same class and size. Z has the same class and size as X and Y. If X and Y are 
integer arrays, elements in the output that exceed the range of the integer type 
are truncated.

If X and Y are double arrays, you can use the expression abs(X-Y) instead of 
this function.

Note  On Intel architecture processors, imabsdiff can take advantage of the 
Intel Performance Primitives Library (IPPL), thus accelerating its execution 
time. IPPL is activated only if arrays X, Y, and Z are of class logical, uint8, or 
single, and are of the same class.

Examples This example calculates the absolute difference between two uint8 arrays. 
Note that the absolute value prevents negative values from being rounded to 
zero in the result, as they are with imsubtract.

X = uint8([ 255 10 75; 44 225 100]);
Y = uint8([ 50 50 50; 50 50 50 ]);
Z = imabsdiff(X,Y)

Z =
   205    40    25
     6   175    50

Display the absolute difference between a filtered image and the original.

I = imread('cameraman.tif');
J = uint8(filter2(fspecial('gaussian'), I));
K = imabsdiff(I,J);
imshow(K,[]) % [] = scale data automatically
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See Also imadd, imcomplement, imdivide, imlincomb, immultiply, imsubtract, ippl
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14imaddPurpose Add two images, or add a constant to an image 

Syntax Z = imadd(X,Y)

Description Z = imadd(X,Y) adds each element in array X with the corresponding element 
in array Y and returns the sum in the corresponding element of the output 
array Z. X and Y are real, nonsparse numeric arrays with the same size and 
class, or Y is a scalar double. The array returned, Z, has the same size and class, 
or Y is a scalar double. Z has the same size and class as X.

If X and Y are integer arrays, elements in the output that exceed the range of 
the integer type are truncated, and fractional values are rounded.

If X and Y are double arrays, you can use the expression X+Y instead of this 
function.

Note  On Intel architecture processors, imadd can take advantage of the Intel 
Performance Primitives Library (IPPL), thus accelerating its execution time. 
IPPL is activated if arrays X, Y, and Z are of class logical, uint8, or single 
and are of the same class, or if Y is a double scalar and arrays X and Z are 
uint8, int16, or single and are of the same class.

Examples Add two uint8 arrays. Note the truncation that occurs when the values exceed 
255.

X = uint8([ 255 0 75; 44 225 100]);
Y = uint8([ 50 50 50; 50 50 50 ]);
Z = imadd(X,Y)
Z =

   255    50   125
    94   255   150

Add two images together and specify an output class.

I = imread('rice.png');
J = imread('cameraman.tif');
K = imadd(I,J,'uint16');
imshow(K,[])
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Add a constant to an image.

I = imread('rice.png');
J = imadd(I,50);
subplot(1,2,1), imshow(I) 
subplot(1,2,2), imshow(J)

See Also imabsdiff, imcomplement, imdivide, imlincomb, immultiply, imsubtract, 
ippl
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14imadjustPurpose Adjust image intensity values or colormap

Syntax J = imadjust(I)
J = imadjust(I,[low_in; high_in],[low_out; high_out])
J = imadjust(...,gamma)
newmap = imadjust(map,[low_in high_in],[low_out high_out],gamma)
RGB2 = imadjust(RGB1,...)

Description J = imadjust(I) maps the values in intensity image I to new values in J such 
that 1% of data is saturated at low and high intensities of I. This increases the 
contrast of the output image J. This syntax is equivalent to 
imadjust(I,stretchlim(I)). 

J = imadjust(I,[low_in; high_in],[low_out; high_out]) maps the values 
in intensity image I to new values in J such that values between low_in and 
high_in map to values between low_out and high_out. Values below low_in 
and above high_in are clipped; that is, values below low_in map to low_out, 
and those above high_in map to high_out. You can use an empty matrix ([]) 
for [low_in high_in] or for [low_out high_out] to specify the default of [0 1]. 

J = imadjust(I,[low_in; high_in],[low_out; high_out],gamma) maps the 
values in intensity image I to new values in J, where gamma specifies the shape 
of the curve describing the relationship between the values in I and J. If gamma 
is less than 1, the mapping is weighted toward higher (brighter) output values. 
If gamma is greater than 1, the mapping is weighted toward lower (darker) 
output values. If you omit the argument, gamma defaults to 1 (linear mapping).

newmap = imadjust(map,[low_in; high_in],[low_out; high_out],gamma) 
transforms the colormap associated with an indexed image. If low_in, high_in, 
low_out, high_out, and gamma are scalars, then the same mapping applies to 
red, green, and blue components. Unique mappings for each color component 
are possible when 

low_in and high_in are both 1-by-3 vectors.

low_out and high_out are both 1-by-3 vectors, or gamma is a 1-by-3 vector. 

The rescaled colormap newmap is the same size as map. 
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RGB2 = imadjust(RGB1,...) performs the adjustment on each image plane 
(red, green, and blue) of the RGB image RGB1. As with the colormap 
adjustment, you can apply unique mappings to each plane. 

Note  If high_out < low_out, the output image is reversed, as in a 
photographic negative.

Class Support For syntax variations that include an input image (rather than a colormap), the 
input image can be of class uint8, uint16, or double. The output image has the 
same class as the input image. For syntax variations that include a colormap, 
the input and output colormaps are of class double.

Example Adjust a low-contrast grayscale image.

I = imread('pout.tif');
J = imadjust(I);
imview(I), imview(J)

Adjust the grayscale image, specifying the contrast limits.

K = imadjust(I,[0.3 0.7],[]);
imview(K)

Adjust an RGB image.

RGB1 = imread('peppers.png');
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RGB2 = imadjust(RGB1,[.2 .3 0; .6 .7 1],[]);
imview(RGB1), imview(RGB2)

See Also brighten, histeq, stretchlim
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14imapproxPurpose Approximate indexed image by one with fewer colors

Syntax [Y,newmap] = imapprox(X,map,n)
[Y,newmap] = imapprox(X,map,tol)
Y = imapprox(X,map,newmap)
[...] = imapprox(...,dither_option)

Description [Y,newmap] = imapprox(X,map,n) approximates the colors in the indexed 
image X and associated colormap map by using minimum variance 
quantization. imapprox returns indexed image Y with colormap newmap, which 
has at most n colors.

[Y,newmap] = imapprox(X,map,tol) approximates the colors in X and map 
through uniform quantization. newmap contains at most (floor(1/tol)+1)^3 
colors. tol must be between 0 and 1.0. 

Y = imapprox(X,map,newmap) approximates the colors in map by using 
colormap mapping to find the colors in newmap that best match the colors in map.

Y = imapprox(...,dither_option) enables or disables dithering. 
dither_option is a string that can have one of these values. The default value 
is enclosed in braces ({}).

Class Support The input image X can be of class uint8, uint16, or double. The output image 
Y is of class uint8 if the length of newmap is less than or equal to 256. If the 
length of newmap is greater than 256, Y is of class double.

Algorithm imapprox uses rgb2ind to create a new colormap that uses fewer colors.

See Also cmunique, dither, rgb2ind

Value Description

{'dither'} Dithers, if necessary, to achieve better color resolution 
at the expense of spatial resolution.

'nodither' Maps each color in the original image to the closest color 
in the new map. No dithering is performed.
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14imbothatPurpose Perform bottom-hat filtering

Syntax IM2 = imbothat(IM,SE)
IM2 = imbothat(IM,NHOOD)

Description IM2 = imbothat(IM,SE) performs morphological bottom-hat filtering on the 
grayscale or binary input image, IM, returning the filtered image, IM2. The 
argument SE is a structuring element returned by the strel function. SE must 
be a single structuring element object, not an array containing multiple 
structuring element objects.

IM2 = imbothat(IM,NHOOD) performs morphological bottom hat filtering where 
NHOOD is an array of 0’s and 1’s that specifies the size and shape of the 
structuring element. This is equivalent to imbothat(IM,strel(NHOOD)).

Class Support IM can be numeric or logical and must be nonsparse. The output image has the 
same class as the input image. If the input is binary (logical), then the 
structuring element must be flat.

Example Top-hat filtering and bottom-hat filtering can be used together to enhance 
contrast in an image. 

1 Read the image into the MATLAB workspace.
I = imread('pout.tif');
imshow(I)
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2 Create disk-shaped structuring element, needed for morphological 
processing.
se = strel('disk',3);

3 Add the original image I to the top-hat filtered image, and then subtract the 
bottom-hat filtered image.
J = imsubtract(imadd(I,imtophat(I,se)), imbothat(I,se));
figure, imshow(J)

See Also imtophat, strel
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14imclearborderPurpose Suppress light structures connected to image border

Syntax IM2 = imclearborder(IM)
IM2 = imclearborder(IM,CONN)

Description IM2 = imclearborder(IM) suppresses structures that are lighter than their 
surroundings and that are connected to the image border. IM can be an 
intensity or binary image. The output image, IM2, is intensity or binary, 
respectively. The default connectivity is 8 for two dimensions, 26 for three 
dimensions, and conndef(ndims(BW),'maximal') for higher dimensions.

Note  For intensity images, imclearborder tends to reduce the overall 
intensity level in addition to suppressing border structures.

IM2 = imclearborder(IM,CONN) specifies the desired connectivity. CONN can 
have any of the following scalar values. 

Connectivity can also be defined in a more general way for any dimension by 
using for CONN a 3-by-3-by- ... -by-3 matrix of 0’s and 1’s. The 1-valued elements 
define neighborhood locations relative to the center element of CONN. Note that 
CONN must be symmetric about its center element. 

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood
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Note  A pixel on the edge of the input image might not be considered to be a 
border pixel if a nondefault connectivity is specified. For example, if conn = 
[0 0 0; 1 1 1; 0 0 0], elements on the first and last row are not considered 
to be border pixels because, according to that connectivity definition, they are 
not connected to the region outside the image.

Class Support IM can be a numeric or logical array of any dimension, and it must be nonsparse 
and real. IM2 has the same class as IM.

Example The following examples use this simple binary image to illustrate the effect of 
imclearborder when you specify different connectivities. 

BW =
     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0
     1     0     0     1     1     1     0     0     0
     0     1     0     1     1     1     0     0     0
     0     0     0     1     1     1     0     0     0
     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0

Using a 4-connected neighborhood, the pixel at (5,2) is not considered 
connected to the border pixel (4,1), so it is not cleared.

BWc1 = imclearborder(BW,4)
BWc1 =
     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0
     0     0     0     1     1     1     0     0     0
     0     1     0     1     1     1     0     0     0
     0     0     0     1     1     1     0     0     0
     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0
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Using an 8-connected neighborhood, pixel (5,2) is considered connected to 
pixel (4,1) so both are cleared.

BWc2 = imclearborder(BW,8)

BWc2 =

     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0
     0     0     0     1     1     1     0     0     0
     0     0     0     1     1     1     0     0     0
     0     0     0     1     1     1     0     0     0
     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0

Algorithm imclearborder uses morphological reconstruction where

• Mask image is the input image.

• Marker image is zero everywhere except along the border, where it equals 
the mask image.

See Also conndef

Reference [1] Soille, P., Morphological Image Analysis: Principles and Applications, 
Springer, 1999, pp. 164-165.
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14imclosePurpose Close an image

Syntax IM2 = imclose(IM,SE)
IM2 = imclose(IM,NHOOD)

Description IM2 = imclose(IM,SE) performs morphological closing on the grayscale or 
binary image IM, returning the closed image, IM2. The structuring element, SE, 
must be a single structuring element object, as opposed to an array of objects. 

IM2 = imclose(IM,NHOOD) performs closing with the structuring element 
strel(NHOOD), where NHOOD is an array of 0’s and 1’s that specifies the 
structuring element neighborhood.

Class Support IM can be any numeric or logical class and any dimension, and must be 
nonsparse. If IM is logical, then SE must be flat. IM2 has the same class as IM.

Example This example uses imclose to join the circles in the image together by filling in 
the gaps between them and by smoothening their outer edges.  

1 Read the image into the MATLAB workspace and view it.
originalBW = imread('circles.png');
imview(originalBW);

2 Create a disk-shaped structuring element. Use a disk structuring element 
to preserve the circular nature of the object. Specify a radius of 10 pixels so 
that the largest gap gets filled.
se = strel('disk',10);
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3 Perform a morphological close operation on the image.
closeBW = imclose(originalBW,se);
imview(closeBW)

See Also imdilate, imerode, imopen, strel
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14imcomplementPurpose Complement image

Syntax IM2 = imcomplement(IM)

Description IM2 = imcomplement(IM) computes the complement of the image IM. IM can be 
a binary, intensity, or RGB image. IM2 has the same class and size as IM. 

In the complement of a binary image, zeros become ones and ones become 
zeros; black and white are reversed. In the complement of an intensity or RGB 
image, each pixel value is subtracted from the maximum pixel value supported 
by the class (or 1.0 for double-precision images) and the difference is used as 
the pixel value in the output image. In the output image, dark areas become 
lighter and light areas become darker. 

If IM is an intensity or RGB image of class double, you can use the expression 
1-IM instead of this function. If IM is a binary image, you can use the expression 
~IM instead of this function.

Examples Create the complement of a uint8 array.

X = uint8([ 255 10 75; 44 225 100]);
X2 = imcomplement(X)
X2 =
     0   245   180
   211    30   155

Reverse black and white in a binary image.

bw = imread('text.png');
bw2 = imcomplement(bw);
subplot(1,2,1),imshow(bw)
subplot(1,2,2),imshow(bw2)

Create the complement of an intensity image.

I = imread('glass.png');
J = imcomplement(I);
imview(I), imview(J)
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See Also imabsdiff, imadd, imdivide, imlincomb, immultiply, imsubtract

Original Image Complement Image
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14imcontourPurpose Create a contour plot of image data

Syntax imcontour(I)
imcontour(I,n)
imcontour(I,v)
imcontour(x,y,...)
imcontour(...,LineSpec)
[C,h] = imcontour(...)

Description imcontour(I) draws a contour plot of the intensity image I, automatically 
setting up the axes so their orientation and aspect ratio match the image. 

imcontour(I,n) draws a contour plot of the intensity image I, automatically 
setting up the axes so their orientation and aspect ratio match the image. n is 
the number of equally spaced contour levels in the plot; if you omit the 
argument, the number of levels and the values of the levels are chosen 
automatically. 

imcontour(I,v) draws a contour plot of I with contour lines at the data values 
specified in vector v. The number of contour levels is equal to length(v).

imcontour(x,y,...) uses the vectors x and y to specify the x- and y-axis limits. 

imcontour(...,LineSpec) draws the contours using the line type and color 
specified by LineSpec. Marker symbols are ignored.

[C,h] = imcontour(...) returns the contour matrix C and a vector of handles 
to the objects in the plot. (The objects are actually patches, and the lines are 
the edges of the patches.) You can use the clabel function with the contour 
matrix C to add contour labels to the plot.

Class Support The input image can be of class uint8, uint16, double, or logical.

Example I = imread('circuit.tif');
imcontour(I,3)
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See Also clabel, contour, LineSpec in the MATLAB Function Reference
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14imcropPurpose Crop an image

Syntax I2 = imcrop(I)
X2 = imcrop(X,map)
RGB2 = imcrop(RGB)

I2 = imcrop(I,rect)
X2 = imcrop(X,map,rect)
RGB2 = imcrop(RGB,rect)

[...] = imcrop(x,y,...)
[A,rect] = imcrop(...)
[x,y,A,rect] = imcrop(...)

Description imcrop crops an image to a specified rectangle. In the syntaxes below, imcrop 
displays the input image and waits for you to specify the crop rectangle with 
the mouse.

I2 = imcrop(I)
X2 = imcrop(X,map)
RGB2 = imcrop(RGB)

If you omit the input arguments, imcrop operates on the image in the current 
axes.

To specify the rectangle,

• For a single-button mouse, press the mouse button and drag to define the 
crop rectangle. Finish by releasing the mouse button.

• For a two- or three-button mouse, press the left mouse button and drag to 
define the crop rectangle. Finish by releasing the mouse button.

If you hold down the Shift key while dragging, or if you press the right mouse 
button on a two- or three-button mouse, imcrop constrains the bounding 
rectangle to be a square.

When you release the mouse button, imcrop returns the cropped image in the 
supplied output argument. If you do not supply an output argument, imcrop 
displays the output image in a new figure.
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You can also specify the cropping rectangle noninteractively, using these 
syntaxes

I2 = imcrop(I,rect)
X2 = imcrop(X,map,rect)
RGB2 = imcrop(RGB,rect)

rect is a four-element vector with the form [xmin ymin width height]; these 
values are specified in spatial coordinates. 

To specify a nondefault spatial coordinate system for the input image, precede 
the other input arguments with two, two-element vectors specifying the XData 
and YData. For example:

[...] = imcrop(x,y,...)

If you supply additional output arguments, imcrop returns information about 
the selected rectangle and the coordinate system of the input image. For 
example:

[A,rect] = imcrop(...)
[x,y,A,rect] = imcrop(...)

A is the output image. x and y are the XData and YData of the input image.

Class Support The input image A can be of class logical, uint8, uint16, or double. The 
output image B is of the same class as A. rect is always of class double.

Remarks Because rect is specified in terms of spatial coordinates, the width and height 
elements of rect do not always correspond exactly with the size of the output 
image. For example, suppose rect is [20 20 40 30], using the default spatial 
coordinate system. The upper-left corner of the specified rectangle is the center 
of the pixel (20,20) and the lower-right corner is the center of the pixel (50,60). 
The resulting output image is 31-by-41, not 30-by-40, because the output image 
includes all pixels in the input image that are completely or partially enclosed 
by the rectangle.

Example I = imread('circuit.tif');
I2 = imcrop(I,[75 68 130 112]);
imview(I), imview(I2)
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See Also zoom
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14imdilatePurpose Dilate image

Syntax IM2 = imdilate(IM,SE)
IM2 = imdilate(IM,NHOOD)
IM2 = imdilate(IM,SE,PACKOPT)
IM2 = imdilate(...,PADOPT)

Description IM2 = imdilate(IM,SE) dilates the grayscale, binary, or packed binary image 
IM, returning the dilated image, IM2. The argument SE is a structuring element 
object, or array of structuring element objects, returned by the strel function. 

If IM is logical and the structuring element is flat, imdilate performs binary 
dilation; otherwise, it performs grayscale dilation. If SE is an array of 
structuring element objects, imdilate performs multiple dilations of the input 
image, using each structuring element in SE in succession. 

IM2 = imdilate(IM,NHOOD) dilates the image IM, where NHOOD is a matrix of 
0’s and 1’s that specifies the structuring element neighborhood. This is 
equivalent to the syntax imdilate(IM,strel(NHOOD)). The imdilate function 
determines the center element of the neighborhood by 
floor((size(NHOOD)+1)/2).

IM2 = imdilate(IM,SE,PACKOPT) or imdilate(IM,NHOOD,PACKOPT) specifies 
whether IM is a packed binary image. PACKOPT can have either of the following 
values. Default value is enclosed in braces ({}).

Value Description

'ispacked' IM is treated as a packed binary image as produced by 
bwpack. IM must be a 2-D uint32 array and SE must be 
a flat 2-D structuring element. If the value of PACKOPT 
is 'ispacked', PADOPT must be 'same'.

{'notpacked'} IM is treated as a normal array. 
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IM2 = imdilate(...,PADOPT) specifies the size of the output image. PADOPT 
can have either of the following values. Default value is enclosed in braces ({}). 

PADOPT is analogous to the optional SHAPE argument to the conv2 and filter2 
functions. 

Class Support IM can be logical or numeric and must be real and nonsparse. It can have any 
dimension. If IM is logical, SE must be flat. The output has the same class as the 
input. If the input is packed binary, then the output is also packed binary.

 Examples This example dilates a binary image with a vertical line structuring element.

bw = imread('text.png');
se = strel('line',11,90);
bw2 = imdilate(bw,se);
imshow(bw), title('Original')
figure, imshow(bw2), title('Dilated')

This example dilates a grayscale image with a rolling ball structuring element.

I = imread('cameraman.tif');

Value Description

{'same'} Make the output image the same size as the input image. If 
the value of PACKOPT is 'ispacked', PADOPT must be 'same'.

'full' Compute the full dilation.
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se = strel('ball',5,5);
I2 = imdilate(I,se);
imshow(I), title('Original')
figure, imshow(I2), title('Dilated')

To determine the domain of the composition of two flat structuring elements, 
dilate the scalar value 1 with both structuring elements in sequence, using the 
'full' option.

se1 = strel('line',3,0)
se1 =
 
Flat STREL object containing 3 neighbors.
Neighborhood:
     1     1     1

se2 = strel('line',3,90)
se2 =
 
Flat STREL object containing 3 neighbors.
Neighborhood:
     1
     1
     1

composition = imdilate(1,[se1 se2],'full')
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composition =
     1     1     1
     1     1     1
     1     1     1

Algorithm imdilate automatically takes advantage of the decomposition of a structuring 
element object (if it exists). Also, when performing binary dilation with a 
structuring element object that has a decomposition, imdilate automatically 
uses binary image packing to speed up the dilation.

Dilation using bit packing is described in [2].

See Also bwpack, bwunpack, conv2, filter2, imclose, imerode, imopen, strel

References [1] Haralick, R.M., and L. G. Shapiro, Computer and Robot Vision, Vol. I, 
Addison-Wesley, 1992, pp. 158-205.

[2] van den Boomgaard and van Balen, “Image Transforms Using Bitmapped 
Binary Images,” Computer Vision, Graphics, and Image Processing: Graphical 
Models and Image Processing, Vol. 54, No. 3, May, 1992, pp. 254-258.
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14imdividePurpose Divide one image into another, or divide an image by a constant

Syntax Z = imdivide(X,Y)

Description Z = imdivide(X,Y) divides each element in the array X by the corresponding 
element in array Y and returns the result in the corresponding element of the 
output array Z. X and Y are real, nonsparse numeric arrays with the same size 
and class, or Y can be a scalar double. Z has the same size and class as X and Y.

If X is an integer array, elements in the output that exceed the range of integer 
type are truncated, and fractional values are rounded.

If X and Y are double arrays, you can use the expression X./Y instead of this 
function.

Note  On Intel architecture processors, imdivide can take advantage of the 
Intel Performance Primitives Library (IPPL), thus accelerating its execution 
time. IPPL is activated only if arrays X and Y are of class uint8, int16, or 
single and are of the same size and class.

Example Divide two uint8 arrays. Note that fractional values greater than or equal to 
0.5 are rounded up to the nearest integer. 

X = uint8([ 255 10 75; 44 225 100]);
Y = uint8([ 50 20 50; 50 50 50 ]);
Z = imdivide(X,Y)
Z =
     5     1     2
     1     5     2

Estimate and divide out the background of the rice image.

I = imread('rice.png');
background = imopen(I,strel('disk',15));
Ip = imdivide(I,background);
imview(Ip,[]) 

Divide an image by a constant factor.
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I = imread('rice.png'); 
J = imdivide(I,2);
subplot(1,2,1), imshow(I)
subplot(1,2,2), imshow(J)

See Also imabsdiff, imadd, imcomplement, imlincomb, immultiply, imsubtract, ippl



imerode

14-223

14imerodePurpose Erode image

Syntax IM2 = imerode(IM,SE)
IM2 = imerode(IM,NHOOD)
IM2 = imerode(IM,SE,PACKOPT,M)
IM2 = imerode(...,PADOPT)

Description IM2 = imerode(IM,SE) erodes the grayscale, binary, or packed binary image 
IM, returning the eroded image IM2. The argument SE is a structuring element 
object or array of structuring element objects returned by the strel function. 

If IM is logical and the structuring element is flat, imerode performs binary 
dilation; otherwise it performs grayscale erosion. If SE is an array of 
structuring element objects, imerode performs multiple erosions of the input 
image, using each structuring element in SE in succession.

IM2 = imerode(IM,NHOOD) erodes the image IM, where NHOOD is an array of 0’s 
and 1’s that specifies the structuring element neighborhood. This is equivalent 
to the syntax imerode(IM,strel(NHOOD)). The imerode function determines 
the center element of the neighborhood by floor((size(NHOOD)+1)/2)

IM2 = imerode(IM,SE,PACKOPT,M) or imerode(IM,NHOOD,PACKOPT,M) 
specifies whether IM is a packed binary image and, if it is, provides the row 
dimension M of the original unpacked image. PACKOPT can have either of the 
following values. Default value is enclosed in braces ({}).

If PACKOPT is 'ispacked', you must specify a value for M. 

Value Description

'ispacked' IM is treated as a packed binary image as produced by 
bwpack. IM must be a 2-D uint32 array and SE must be a 
flat 2-D structuring element.

{'notpacked'} IM is treated as a normal array. 
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IM2 = imerode(...,PADOPT) specifies the size of the output image. PADOPT can 
have either of the following values. Default value is enclosed in braces ({}).

PADOPT is analogous to the SHAPE input to the CONV2 and FILTER2 functions. 

Class Support IM can be numeric or logical and it can be of any dimension. If IM is logical and 
the structuring element is flat, the output image is logical; otherwise the 
output image has the same class as the input. If the input is packed binary, 
then the output is also packed binary.

Examples This example erodes a binary image with a disk structuring element.

originalBW = imread('circles.png');  
se = strel('disk',11);        
erodedBW = imerode(originalBW,se);
imview(originalBW), imview(erodedBW)

This example erodes a grayscale image with a rolling ball.

I = imread('cameraman.tif');
se = strel('ball',5,5);

Value Description

{'same'} Make the output image the same size as the input image. If 
the value of PACKOPT is 'ispacked', PADOPT must be 'same'.

'full' Compute the full erosion.
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I2 = imerode(I,se);
imshow(I), title('Original')
figure, imshow(I2), title('Eroded')

Algorithm 
Notes

imerode automatically takes advantage of the decomposition of a structuring 
element object (if a decomposition exists). Also, when performing binary 
dilation with a structuring element object that has a decomposition, imerode 
automatically uses binary image packing to speed up the dilation.

Erosion using bit packing is described in [2].

See Also bwpack, bwunpack, conv2, filter2, imclose, imdilate, imopen, strel

References [1] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision, 
Vol. I, Addison-Wesley, 1992, pp. 158-205.

[2] van den Boomgaard and van Balen, “Image Transforms Using Bitmapped 
Binary Images,” Computer Vision, Graphics, and Image Processing: Graphical 
Models and Image Processing, Vol. 54, No. 3, May, 1992, pp. 254-258.
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14imextendedmaxPurpose Extended-maxima transform

Syntax BW = imextendedmax(I,H)
BW = imextendedmax(I,H,CONN)

Description BW = imextendedmax(I,H) computes the extended-maxima transform, which 
is the regional maxima of the H-maxima transform. H is a nonnegative scalar.

Regional maxima are connected components of pixels with the same intensity 
value, t, whose external boundary pixels all have a value less than t. 

By default, imextendedmax uses 8-connected neighborhoods for 2-D images and 
26-connected neighborhoods for 3-D images. For higher dimensions, 
imextendedmax uses conndef(ndims(I),'maximal'). 

BW = imextendedmax(I,H,CONN) computes the extended-maxima transform, 
where CONN specifies the connectivity. CONN can have any of the following scalar 
values. 

Connectivity can be defined in a more general way for any dimension by using 
for CONN a 3-by-3-by- ...-by-3 matrix of 0’s and 1’s. The 1-valued elements define 
neighborhood locations relative to the center element of CONN. Note that CONN 
must be symmetric about its center element.

Class Support I can be of any nonsparse numeric class and any dimension. BW has the same 
size as I and is always logical.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood
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Example I = imread('glass.png');
BW = imextendedmax(I,80);
imview(I), imview(BW)

See Also conndef, imextendedmin, imreconstruct

Reference [1] Soille, P., Morphological Image Analysis: Principles and Applications, 
Springer-Verlag, 1999, pp. 170-171.

Original Image Extended Maxima Image
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14imextendedminPurpose Extended-minima transform

Syntax BW = imextendedmin(I,h)
BW = imextendedmin(I,h,CONN)

Description BW = imextendedmin(I,h) computes the extended-minima transform, which is 
the regional minima of the H-minima transform. h is a nonnegative scalar.

Regional minima are connected components of pixels with the same intensity 
value, t, whose external boundary pixels all have a value greater than t. 

By default, imextendedmin uses 8-connected neighborhoods for 2-D images, 
and 26-connected neighborhoods for 3-D images. For higher dimensions, 
imextendedmin uses conndef(ndims(I),'maximal'). 

BW = imextendedmin(I,h,CONN) computes the extended-minima transform, 
where CONN specifies the connectivity. CONN can have any of the following scalar 
values.

Connectivity can be defined in a more general way for any dimension by using 
for CONN a 3-by-3-by-...-by-3 matrix of 0’s and 1’s. The 1-valued elements define 
neighborhood locations relative to the center element of CONN. Note that CONN 
must be symmetric about its center element.

Class Support I can be of any nonsparse numeric class and any dimension. BW has the same 
size as I and is always logical.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood
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Example I = imread('glass.png');
BW = imextendedmin(I,50);
imview(I), imview(BW)

See Also conndef, imextendedmax, imreconstruct

Reference [1] Soille, P., Morphological Image Analysis: Principles and Applications, 
Springer-Verlag, 1999, pp. 170-171.

Original Image Extended Minima Image
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14imfillPurpose Fill image regions   

Syntax BW2 = imfill(BW,locations)
BW2 = imfill(BW,'holes')
I2 = imfill(I)

BW2 = imfill(BW)
[BW2 locations] = imfill(BW)

BW2 = imfill(BW,locations,CONN)
BW2 = imfill(BW,CONN,'holes')
I2 = imfill(I,CONN)

Description BW2 = imfill(BW,locations) performs a flood-fill operation on background 
pixels of the binary image BW, starting from the points specified in locations. 
If locations is a P-by-1 vector, it contains the linear indices of the starting 
locations. If locations is a P-by-ndims(BW) matrix, each row contains the array 
indices of one of the starting locations.

BW2 = imfill(BW,'holes') fills holes in the binary image BW. A hole is a set of 
background pixels that cannot be reached by filling in the background from the 
edge of the image.

I2 = imfill(I) fills holes in the intensity image I. In this case, a hole is an 
area of dark pixels surrounded by lighter pixels.

Interactive Use BW2 = imfill(BW) displays the binary image BW on the screen and lets you 
select the starting locations using the mouse. Click the mouse button to add 
points. Press Backspace or Delete to remove the previously selected point. A 
shift-click, right-click, or double-click selects a final point and then starts the 
fill operation; pressing Return finishes the selection without adding a point. 

Note  imfill supports interactive use only for 2-D images.

[BW2,locations] = imfill(BW) lets you select the starting points selected 
using the mouse, returning the locations of points in locations. locations is 
a vector of linear indices into the input image.
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Specifying 
Connectivity

By default, imfill uses 4-connected background neighbors for 2-D inputs and 
6-connected background neighbors for 3-D inputs. For higher dimensions the 
default background connectivity is determined by using 
conndef(NUM_DIMS,'minimal'). You can override the default connectivity 
with these syntaxes:

BW2 = imfill(BW,LOCATIONS,CONN)
BW2 = imfill(BW,CONN,'holes')
I2  = imfill(I,CONN)

To override the default connectivity and interactively specify the starting 
locations, use this syntax:

BW2 = imfill(BW,0,CONN)

CONN can have any of the following scalar values.

Connectivity can be defined in a more general way for any dimension by using 
for CONN a 3-by-3-by- ... -by-3 matrix of 0’s and 1’s. The 1-valued elements define 
neighborhood locations relative to the center element of CONN. Note that CONN 
must be symmetric about its center element.

Class Support The input image can be numeric or logical, and it must be real and nonsparse. 
It can have any dimension. The output image has the same class as the input 
image.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood
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Examples Fill in the background of a binary image from a specified starting location.

BW1 = logical([1 0 0 0 0 0 0 0
             1 1 1 1 1 0 0 0
             1 0 0 0 1 0 1 0
             1 0 0 0 1 1 1 0
             1 1 1 1 0 1 1 1
             1 0 0 1 1 0 1 0
             1 0 0 0 1 0 1 0
             1 0 0 0 1 1 1 0]);

BW2 = imfill(BW1,[3 3],8) 

Fill in the holes of a binary image.

BW4 = im2bw(imread('coins.png'));
BW5 = imfill(BW4,'holes');
imview(BW4), imview(BW5)

Fill in the holes of an intensity image.

I = imread('tire.tif');
I2 = imfill(I,'holes');
imview(I), imview(I2)

Original Image Filled Image
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Algorithm imfill uses an algorithm based on morphological reconstruction [1].

See Also bwselect, imreconstruct, roifill

Reference [1] Soille, P., Morphological Image Analysis: Principles and Applications, 
Springer-Verlag, 1999, pp. 173-174.

Original Image Filled Image
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14imfilterPurpose Multidimensional image filtering

Syntax B = imfilter(A,H)
B = imfilter(A,H,option1,option2,...)

Description B = imfilter(A,H) filters the multidimensional array A with the 
multidimensional filter H. The array A can be a nonsparse numeric array of any 
class and dimension. The result B has the same size and class as A.

Each element of the output B is computed using double-precision floating point. 
If A is an integer array, then output elements that exceed the range of the 
integer type are truncated, and fractional values are rounded.

B = imfilter(A,H,option1,option2,...) performs multidimensional 
filtering according to the specified options. Option arguments can have the 
following values.       

Boundary Options

Option Description

X Input array values outside the bounds of the array are 
implicitly assumed to have the value X. When no 
boundary option is specified, imfilter uses X = 0.

'symmetric' Input array values outside the bounds of the array are 
computed by mirror-reflecting the array across the array 
border.

'replicate' Input array values outside the bounds of the array are 
assumed to equal the nearest array border value.

'circular' Input array values outside the bounds of the array are 
computed by implicitly assuming the input array is 
periodic.
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N-D convolution is related to N-D correlation by a reflection of the filter matrix.

Note  On Intel architecture processors, imfilter can take advantage of the 
Intel Performance Primitives Library (IPPL), thus accelerating its execution 
time. IPPL is activated only if A and H are both two-dimensional and A is of 
class uint8, int16, or single.

Examples Read a color image into the workspace and view it.

originalRGB = imread('peppers.png');
imview(originalRGB)

Create a filter, h, that can be used to approximate linear camera motion.

h = fspecial('motion', 50, 45);

Apply the filter, using imfilter, to the image rgb to create a new image, rgb2.

Output Size Options

Option Description

'same' The output array is the same size as the input array. This 
is the default behavior when no output size options are 
specified.

'full' The output array is the full filtered result, and so is 
larger than the input array.

Correlation and Convolution Options

Option Description

'corr' imfilter performs multidimensional filtering using 
correlation, which is the same way that filter2 performs 
filtering. When no correlation or convolution option is 
specified, imfilter uses correlation.

'conv' imfilter performs multidimensional filtering using 
convolution.
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filteredRGB = imfilter(originalRGB, h);
imview(filteredRGB)

Note that imfilter is more memory efficient than some other filtering 
operations in that it outputs an array of the same data type as the input image 
array. In this example, the output is an array of uint8.

whos rgb2
  Name       Size           Bytes  Class

 h         37x37                   10952  double array
  rgb      384x512x3               589824  uint8 array
  rgb2     384x512x3               589824  uint8 array

This example specifies the replicate boundary option.

boundaryReplicateRGB = imfilter(originalRGB, h, 'replicate');
imview(boundaryReplicateRGB)

See Also conv2, convn, filter2, fspecial, ippl
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14imfinfoPurpose Information about graphics file

imfinfo is a MATLAB function. To get help for this function, select MATLAB 
Help from the Help menu and view the online function reference pages.
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14imhistPurpose Display a histogram of image data

Syntax imhist(I,n)
imhist(X,map)
[counts,x] = imhist(...)

Description imhist(I) displays a histogram for the intensity image I above a grayscale 
colorbar. The number of bins in the histogram is specified by the image type. If 
I is a grayscale image, imhist uses a default value of 256 bins. If I is a binary 
image, imhist uses 2 bins.

imhist(I,n) displays a histogram where n specifies the number of bins used in 
the histogram. n also specifies the length of the colorbar. If I is a binary image, 
n can only have the value 2. 

imhist(X,map) displays a histogram for the indexed image X. This histogram 
shows the distribution of pixel values above a colorbar of the colormap map. The 
colormap must be at least as long as the largest index in X. The histogram has 
one bin for each entry in the colormap.

[counts,x] = imhist(...) returns the histogram counts in counts and the 
bin locations in x so that stem(x,counts) shows the histogram. For indexed 
images, it returns the histogram counts for each colormap entry; the length of 
counts is the same as the length of the colormap.

Note  For intensity images, the n bins of the histogram are each half-open 
intervals of width . In particular, the th bin is the half-open 
interval . The scale factor  
depends on the image class.  is 1 if the intensity image is double,  is 255 if 
the intensity image is uint8, and  is 65535 if the intensity image is uint16.

Class Support The input image can be of class logical, uint8, uint16, or double.

Example I = imread('pout.tif');
imhist(I)

A n 1–( )⁄ p
A p 1.5–( ) n 1–( )⁄ x A p 0.5–( ) n 1–( )⁄<≤ A

A A
A
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See Also histeq

hist in the MATLAB Function Reference
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14imhmaxPurpose H-maxima transform

Syntax I2 = imhmax(I,h)
I2 = imhmax(I,h,CONN)

Description I2 = imhmax(I,h) suppresses all maxima in the intensity image I whose 
height is less than h, where h is a scalar. 

Regional maxima are connected components of pixels with the same intensity 
value, t, whose external boundary pixels all have a value less than t. 

By default, imhmax uses 8-connected neighborhoods for 2-D images, and 
26-connected neighborhoods for 3-D images. For higher dimensions, imhmax 
uses conndef(ndims(I),'maximal'). 

I2 = imhmax(I,h,CONN) computes the H-maxima transform, where CONN 
specifies the connectivity. CONN can have any of the following scalar values.

Connectivity can be defined in a more general way for any dimension by using 
for CONN a 3-by-3-by- ...-by-3 matrix of 0’s and 1’s. The 1-valued elements define 
neighborhood locations relative to the center element of CONN. Note that CONN 
must be symmetric about its center element.

Class Support I can be of any nonsparse numeric class and any dimension. I2 has the same 
size and class as I.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood
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Example a = zeros(10,10);
a(2:4,2:4) = 3;  % maxima 3 higher than surround
a(6:8,6:8) = 8;  % maxima 8 higher than surround
b = imhmax(a,4); % only the maxima higher than 4 survive.

See Also conndef, imhmin, imreconstruct

Reference [1] Soille, P., Morphological Image Analysis: Principles and Applications, 
Springer-Verlag, 1999, pp. 170-171.
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14imhminPurpose H-minima transform

Syntax I2 = imhmin(I,h)
I2 = imhmin(I,h,CONN)

Description I2 = imhmin(I,h) suppresses all minima in the intensity image I whose depth 
is less than h, where h is a scalar.

Regional minima are connected components of pixels with the same intensity 
value, t, whose external boundary pixels all have a value greater than t. 

By default, imhmin uses 8-connected neighborhoods for 2-D images, and 
26-connected neighborhoods for 3-D images. For higher dimensions, imhmin 
uses conndef(ndims(I),'maximal'). 

I2 = imhmin(I,h,CONN) computes the H-minima transform, where CONN 
specifies the connectivity. CONN can have any of the following scalar values.

Connectivity can be defined in a more general way for any dimension by using 
for CONN a 3-by-3-by- ...-by-3 matrix of 0’s and 1’s. The 1-valued elements define 
neighborhood locations relative to the center element of CONN. Note that CONN 
must be symmetric about its center element.

Class Support I can be of any nonsparse numeric class and any dimension. I2 has the same 
size and class as I.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood
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Example Create a sample image with two regional minima.

a = 10*ones(10,10);
a(2:4,2:4) = 7;  
a(6:8,6:8) = 2  

a =

    10    10    10    10    10    10    10    10    10    10
    10     7     7     7    10    10    10    10    10    10
    10     7     7     7    10    10    10    10    10    10
    10     7     7     7    10    10    10    10    10    10
    10    10    10    10    10    10    10    10    10    10
    10    10    10    10    10     2     2     2    10    10
    10    10    10    10    10     2     2     2    10    10
    10    10    10    10    10     2     2     2    10    10
    10    10    10    10    10    10    10    10    10    10
    10    10    10    10    10    10    10    10    10    10

Suppress all minima below a specified value. Note how the region with pixel 
valued 7 disappears in the transformed image. 

b = imhmin(a,4)

b =

    10    10    10    10    10    10    10    10    10    10
    10    10    10    10    10    10    10    10    10    10
    10    10    10    10    10    10    10    10    10    10
    10    10    10    10    10    10    10    10    10    10
    10    10    10    10    10    10    10    10    10    10
    10    10    10    10    10     6     6     6    10    10
    10    10    10    10    10     6     6     6    10    10
    10    10    10    10    10     6     6     6    10    10
    10    10    10    10    10    10    10    10    10    10
    10    10    10    10    10    10    10    10    10    10

See Also conndef, imhmax, imreconstruct

Reference [1] Soille, P., Morphological Image Analysis: Principles and Applications, 
Springer-Verlag, 1999, pp. 170-171.
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14imimposeminPurpose Impose minima

Syntax I2 = imimposemin(I,BW)
I2 = imimposemin(I,H,CONN)

Description I2 = imimposemin(I,BW) modifies the intensity image I using morphological 
reconstruction so it only has regional minima wherever BW is nonzero. BW is a 
binary image the same size as I. 

By default, imimposemin uses 8-connected neighborhoods for 2-D images and 
26-connected neighborhoods for 3-D images. For higher dimensions, 
imimposemin uses conndef(ndims(I),'minimum'). 

I2 = imimposemin(I,H,CONN) specifies the connectivity, where CONN can have 
any of the following scalar values.

Connectivity can also be defined in a more general way for any dimension by 
using for CONN a 3-by-3-by-...-by-3 matrix of 0’s and 1’s. The 1-valued elements 
define neighborhood locations relative to the center element of CONN. Note that 
CONN must be symmetric about its center element.

Class Support I can be of any nonsparse numeric class and any dimension. BW must be a 
nonsparse numeric array with the same size as I. I2 has the same size and 
class as I.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood
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Example Modify an image so that it only has regional minima at one location. 

1 Read an image and display it. This image is called the mask image.
mask = imread('glass.png');
imshow(mask)

2 Create the marker image that will be used to process the mask image. 

The example creates a binary image that is the same size as the mask image 
and sets a small area of the binary image to 1. These pixels define the 
location in the mask image where a regional minimum will be imposed. 
marker = false(size(mask));
marker(65:70,65:70) = true;

To show where these pixels of interest fall on the original image, this code 
superimposes the marker over the mask. The small white square marks the 
spot. This code is not essential to the impose minima operation.
J = mask;
J(marker) = 255;
figure, imshow(J); title('Marker Image Superimposed on Mask');
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3 Impose the regional minimum on the input image using the imimposemin 
function.

The imimposemin function uses morphological reconstruction of the mask 
image with the marker image to impose the minima at the specified location. 
Note how all the dark areas of the original image, except the marked area, 
are lighter.
K = imimposemin(mask,marker);
figure, imshow(K);

4 To illustrate how this operation removes all minima in the original image 
except the imposed minimum, compare the regional minima in the original 
image with the regional minimum in the processed image. These calls to 
imregionalmin return binary images that specify the locations of all the 
regional minima in both images. 

BW = imregionalmin(mask);
figure, imshow(BW);  title('Regional Minima in Original Image')
BW2 = imregionalmin(K);
figure, imshow(BW2), title('Regional Minima After Processing');
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Algorithm imimposemin uses a technique based on morphological reconstruction.

See Also conndef, imreconstruct, imregionalmin

Regional Minima in Original Image Regional Minima After Processing
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14imlincombPurpose Compute linear combination of images

Syntax Z = imlincomb(K1,A1,K2,A2,...,Kn,An)
Z = imlincomb(K1,A1,K2,A2,...,Kn,An,K)
Z = imlincomb(..., output_class)

Description Z = imlincomb(K1,A1,K2,A2,...,Kn,An) computes

K1*A1 + K2*A2 + ... + Kn*An

where K1, K2, through Kn are real, double scalars and A1, A2, through An are 
real, nonsparse, numeric arrays with the same class and size. Z has the same 
class and size as A1.

Z = imlincomb(K1,A1,K2,A2,...,Kn,An,K) computes

K1*A1 + K2*A2 + ... + Kn*An + K

where imlincomb adds K, a real, double scalar, to the sum of the products of K1 
through Kn and A1 through An. 

Z = imlincomb(...,output_class) lets you specify the class of Z. 
output_class is a string containing the name of a numeric class.

When performing a series of arithmetic operations on a pair of images, you can 
achieve more accurate results if you use imlincomb to combine the operations, 
rather than nesting calls to the individual arithmetic functions, such as imadd. 
When you nest calls to the arithmetic functions, and the input arrays are of an 
integer class, each function truncates and rounds the result before passing it to 
the next function, thus losing accuracy in the final result. imlincomb computes 
each element of the output Z individually, in double-precision floating point. If 
Z is an integer array, imlincomb truncates elements of Z that exceed the range 
of the integer type and rounds off fractional values.

On Intel architecture processors, imlincomb can take advantage of the Intel 
Performance Primitives Library (IPPL), thus accelerating its execution time. 
IPPL is activated only in the following cases:

Z = imlincomb( 1.0, A1, 1.0, A2)

Z = imlincomb( 1.0, A1,-1.0, A2)

Z = imlincomb(-1.0, A1, 1.0, A2)
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 Z = imlincomb( 1.0 , A1, K)

where A1, A2, and Z are of class uint8, int16, or single and are of the same 
class.

Examples Example 1
Scale an image by a factor of 2.

I = imread('cameraman.tif');
J = imlincomb(2,I);
imview(J)

Example 2
Form a difference image with the zero value shifted to 128.

I = imread('cameraman.tif');
J = uint8(filter2(fspecial('gaussian'), I));
K = imlincomb(1,I,-1,J,128); % K(r,c) = I(r,c) - J(r,c) + 128
imview(K)

Example 3
Add two images with a specified output class.

I = imread('rice.png');
J = imread('cameraman.tif');
K = imlincomb(1,I,1,J,'uint16');
imview(K,[])

Example 4
To illustrate how imlincomb performs all the arithmetic operations before 
truncating the result, compare the results of calculating the average of two 
arrays, X and Y, using nested arithmetic functions and then using imlincomb.

In the version that uses nested arithmetic functions, imadd adds 255 and 50 
and truncates the result to 255 before passing it to imdivide. The average 
returned in Z(1,1) is 128. 

X = uint8([ 255 10 75; 44 225 100]);
Y = uint8([ 50 20 50; 50 50 50 ]);
Z = imdivide(imadd(X,Y),2)
Z =
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   128    15    63
    47   128    75

imlincomb performs the addition and division in double precision and only 
truncates the final result. The average returned in Z2(1,1) is 153.

Z2 = imlincomb(.5,X,.5,Y)
Z2 =
   153    15    63
    47   138    75

See Also imadd, imcomplement, imdivide, immultiply, imsubtract
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14immoviePurpose Make a movie of a multiframe indexed image

Syntax mov = immovie(X,map)
mov = immovie(RGB)

Description mov = immovie(X,map) returns the movie structure array mov from the images 
in the multiframe indexed image X with the colormap map. As it creates the 
movie array, it displays the movie frames on the screen. You can play the movie 
using the MATLAB movie function. For details about the movie structure 
array, see the reference page for getframe.

X comprises multiple indexed images, all having the same size and all using the 
colormap map. X is an m-by-n-by-1-by-k array, where k is the number of images.

mov = immovie(RGB) returns the movie structure array mov from the images in 
the multiframe, true-color image RGB. 

RGB comprises multiple true-color images, all having the same size. RGB is an 
m-by-n-by-3-by-k array, where k is the number of images.

Remarks You can also use the MATLAB function avifile to make movies from images. 
The avifile function creates AVI files. In addition, you can convert an existing 
MATLAB movie into an AVI file by using the movie2avi function.

Class Support An indexed image can be uint8, uint16, double, or logical. A true-color image 
can be uint8, uint16, or double. mov is a MATLAB movie structure.

Example load mri
mov = immovie(D,map);
movie(mov,3)

See Also avifile, getframe, montage, movie, movie2avi 
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14immultiplyPurpose Multiply two images, or multiply an image by a constant

Syntax Z = immultiply(X,Y)

Description Z = immultiply(X,Y) multiplies each element in array X by the corresponding 
element in array Y and returns the product in the corresponding element of the 
output array Z. 

If X and Y are real numeric arrays with the same size and class, then Z has the 
same size and class as X. If X is a numeric array and Y is a scalar double, then 
Z has the same size and class as X.

If X is logical and Y is numeric, then Z has the same size and class as Y. If X is 
numeric and Y is logical, then Z has the same size and class as X.

immultiply computes each element of Z individually in double-precision 
floating point. If X is an integer array, then elements of Z exceeding the range 
of the integer type are truncated, and fractional values are rounded.

If X and Y are double arrays, you can use the expression X.*Y instead of this 
function.

Note  On Intel architecture processors, immultiply can take advantage of the 
Intel Performance Primitives Library (IPPL), thus accelerating its execution 
time. IPPL is activated only if arrays X, Y, and Z are of class logical, uint8, or 
single, and are of the same class.

Example Multiply an image by itself. Note how the example converts the class of the 
image from uint8 to uint16 before performing the multiplication to avoid 
truncating the results. 

I = imread('moon.tif');
I16 = uint16(I);
J = immultiply(I16,I16);
imshow(I), figure, imshow(J)

Scale an image by a constant factor:

I = imread('moon.tif');
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J = immultiply(I,0.5);
subplot(1,2,1), imshow(I)
subplot(1,2,2), imshow(J)

See also imabsdiff, imadd, imcomplement, imdivide, imlincomb, imsubtract, ippl
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14imnoisePurpose Add noise to an image

Syntax J = imnoise(I,type)
J = imnoise(I,type,parameters)

Description J = imnoise(I,type) adds noise of a given type to the intensity image I. type 
is a string that can have one of these values. 

J = imnoise(I,type,parameters) accepts an algorithm type plus additional 
modifying parameters particular to the type of algorithm chosen. If you omit 
these arguments, imnoise uses default values for the parameters. Here are 
examples of the noise types and their parameters:

• J = imnoise(I,'gaussian',m,v) adds Gaussian white noise of mean m and 
variance v to the image I. The default is zero mean noise with 0.01 variance.

• J = imnoise(I,'localvar',V) adds zero-mean, Gaussian white noise of 
local variance V to the image I. V is an array of the same size as I.

• J = imnoise(I,'localvar',image_intensity,var) adds zero-mean, 
Gaussian noise to an image I, where the local variance of the noise, var, is a 
function of the image intensity values in I. The image_intensity and var 
arguments are vectors of the same size, and plot(image_intensity,var) 
plots the functional relationship between noise variance and image 
intensity. The image_intensity vector must contain normalized intensity 
values ranging from 0 to 1.

• J = imnoise(I,'poisson') generates Poisson noise from the data instead 
of adding artificial noise to the data. In order to respect Poisson statistics, the 

Value Description

'gaussian' Gaussian white noise

'localvar' Zero-mean Gaussian white noise with an 
intensity-dependent variance

'poisson' Poisson noise

'salt & pepper' On and off pixels

'speckle' Multiplicative noise
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intensities of unit8 and uint16 images must correspond to the number of 
photons (or any other quanta of information). Double-precision images are 
used when the number of photons per pixel can be much larger than 65535 
(but less than 10^12); the intensity values vary between 0 and 1 and 
correspond to the number of photons divided by 10^12.

• J = imnoise(I,'salt & pepper',d) adds salt and pepper noise to the image 
I, where d is the noise density. This affects approximately d*prod(size(I)) 
pixels. The default is 0.05 noise density.

• J = imnoise(I,'speckle',v) adds multiplicative noise to the image I, 
using the equation J = I+n*I, where n is uniformly distributed random noise 
with mean 0 and variance v. The default for v is 0.04.

Note  The mean and variance parameters for 'gaussian', 'localvar', and 
'speckle' noise types are always specified as if the image were of class 
double in the range [0, 1]. If the input image is of class uint8 or uint16, the 
imnoise function converts the image to double, adds noise according to the 
specified type and parameters, and then converts the noisy image back to the 
same class as the input.

Class Support I can be of class uint8, uint16, or double. The output image J is of the same 
class as I. If I has more than two dimensions it is treated as a 
multidimensional intensity image and not as an RGB image.

Example I = imread('eight.tif');
J = imnoise(I,'salt & pepper',0.02);
imshow(I)
figure, imshow(J)
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See Also rand, randn in the MATLAB Function Reference
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14imopenPurpose Open an image

Syntax IM2 = imopen(IM,SE)
IM2 = imopen(IM,NHOOD)

Description IM2 = imopen(IM,SE) performs morphological opening on the grayscale or 
binary image IM with the structuring element SE. The argument SE must be a 
single structuring element object, as opposed to an array of objects.

IM2 = imopen(IM,NHOOD) performs opening with the structuring element 
strel(NHOOD), where NHOOD is an array of 0’s and 1’s that specifies the 
structuring element neighborhood. 

Class Support IM can be any numeric or logical class and any dimension, and must be 
nonsparse. If IM is logical, then SE must be flat. IM2 has the same class as IM.

Example This example uses imopen to filter out the smaller objects in an image.

1 Read the image into the MATLAB workspace and display it.
I = imread('snowflakes.png');
imview(I)

2 Create a disk-shaped structuring element with a radius of 5 pixels.
se = strel('disk',5);

3 Remove snowflakes having a radius less than 5 pixels by opening it with the    
disk-shaped structuring element created in step 2. 
I_opened = imopen(I,se);
imview(I_opened,[])
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See Also imclose, imdilate, imerode, strel
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14impixelPurpose Determine pixel color values

Syntax P = impixel(I)
P = impixel(X,map)
P = impixel(RGB)

P = impixel(I,c,r)
P = impixel(X,map,c,r)
P = impixel(RGB,c,r)
[c,r,P] = impixel(...)

P = impixel(x,y,I,xi,yi)
P = impixel(x,y,X,map,xi,yi)
P = impixel(x,y,RGB,xi,yi)
[xi,yi,P] = impixel(x,y,...)

Description impixel returns the red, green, and blue color values of specified image pixels. 
In the syntaxes below, impixel displays the input image and waits for you to 
specify the pixels with the mouse.

P = impixel(I)
P = impixel(X,map)
P = impixel(RGB)

If you omit the input arguments, impixel operates on the image in the current 
axes.

Use normal button clicks to select pixels. Press Backspace or Delete to remove 
the previously selected pixel. A shift-click, right-click, or double-click adds a 
final pixel and ends the selection; pressing Return finishes the selection 
without adding a pixel.

When you finish selecting pixels, impixel returns an m-by-3 matrix of RGB 
values in the supplied output argument. If you do not supply an output 
argument, impixel returns the matrix in ans.

You can also specify the pixels noninteractively, using these syntaxes.

P = impixel(I,c,r)
P = impixel(X,map,c,r)
P = impixel(RGB,c,r)
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r and c are equal-length vectors specifying the coordinates of the pixels whose 
RGB values are returned in P. The kth row of P contains the RGB values for the 
pixel (r(k),c(k)).

If you supply three output arguments, impixel returns the coordinates of the 
selected pixels. For example,

[c,r,P] = impixel(...)

To specify a nondefault spatial coordinate system for the input image, use 
these syntaxes.

P = impixel(x,y,I,xi,yi)
P = impixel(x,y,X,map,xi,yi)
P = impixel(x,y,RGB,xi,yi)

x and y are two-element vectors specifying the image XData and YData. xi and 
yi are equal-length vectors specifying the spatial coordinates of the pixels 
whose RGB values are returned in P. If you supply three output arguments, 
impixel returns the coordinates of the selected pixels.

[xi,yi,P] = impixel(x,y,...)

Class Support The input image can be of class uint8, uint16, double, or logical. All other 
inputs and outputs are of class double.

Remarks impixel works with indexed, intensity, and RGB images. impixel always 
returns pixel values as RGB triplets, regardless of the image type:

• For an RGB image, impixel returns the actual data for the pixel. The values 
are either uint8 integers or double floating-point numbers, depending on 
the class of the image array.

• For an indexed image, impixel returns the RGB triplet stored in the row of 
the colormap that the pixel value points to. The values are double 
floating-point numbers.

• For an intensity image, impixel returns the intensity value as an RGB 
triplet, where R=G=B. The values are either uint8 integers or double 
floating-point numbers, depending on the class of the image array.
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Example RGB = imread('peppers.png');
c = [12 146 410];
r = [104 156 129];
pixels = impixel(RGB,c,r)

pixels =

    62    34    63
   166    54    60
    59    28    47

See Also improfile, pixval
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14improfilePurpose Compute pixel-value cross-sections along line segments

Syntax c = improfile
c = improfile(n)

c = improfile(I,xi,yi)
c = improfile(I,xi,yi,n)

[cx,cy,c] = improfile(...)
[cx,cy,c,xi,yi] = improfile(...)

[...] = improfile(x,y,I,xi,yi)
[...] = improfile(x,y,I,xi,yi,n)

[...] = improfile(...,method)

Description improfile computes the intensity values along a line or a multiline path in an 
image. improfile selects equally spaced points along the path you specify, and 
then uses interpolation to find the intensity value for each point. improfile 
works with grayscale intensity images and RGB images.

If you call improfile with one of these syntaxes, it operates interactively on 
the image in the current axes.

c = improfile
c = improfile(n)

n specifies the number of points to compute the intensity value for. If you do not 
provide this argument, improfile chooses a value for n, roughly equal to the 
number of pixels the path traverses.

You specify the line or path using the mouse, by clicking points in the image. 
Press Backspace or Delete to remove the previously selected point. A 
shift-click, right-click, or double-click adds a final point and ends the selection; 
pressing Return finishes the selection without adding a point. When you finish 
selecting points, improfile returns the interpolated data values in c. c is an 
n-by-1 vector if the input is a grayscale intensity image, or an n-by-1-by-3 array 
if the input is an RGB image.
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If you omit the output argument, improfile displays a plot of the computed 
intensity values. If the specified path consists of a single line segment, 
improfile creates a two-dimensional plot of intensity values versus the 
distance along the line segment; if the path consists of two or more line 
segments, improfile creates a three-dimensional plot of the intensity values 
versus their x- and y-coordinates.

You can also specify the path noninteractively, using these syntaxes.

c = improfile(I,xi,yi)
c = improfile(I,xi,yi,n)

xi and yi are equal-length vectors specifying the spatial coordinates of the 
endpoints of the line segments.

You can use these syntaxes to return additional information.

[cx,cy,c] = improfile(...)
[cx,cy,c,xi,yi] = improfile(...)

cx and cy are vectors of length n, containing the spatial coordinates of the 
points at which the intensity values are computed.

To specify a nondefault spatial coordinate system for the input image, use 
these syntaxes.

[...] = improfile(x,y,I,xi,yi)
[...] = improfile(x,y,I,xi,yi,n)

x and y are two-element vectors specifying the image XData and YData.

[...] = improfile(...,method) uses the specified interpolation method. 
method is a string that can have one of these values. The default value is 
enclosed in braces ({}).

Value Description

{'nearest'} Nearest-neighbor interpolation

'bilinear' Bilinear interpolation

'bicubic' Bicubic interpolation
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Class Support The input image can be uint8, uint16, double, or logical. All other inputs and 
outputs must be double.

Example I = imread('liftingbody.png');
x = [19 427 416 77];
y = [96 462 37 33];
improfile(I,x,y),grid on;

See Also impixel, pixval

interp2 in the MATLAB Function Reference
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14imreadPurpose Read image from graphics file

imread is a MATLAB function. To get help for this function, select MATLAB 
Help from the Help menu and view the online function reference page.
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14imreconstructPurpose Morphological reconstruction

Syntax IM = imreconstruct(MARKER,MASK)
IM = imreconstruct(MARKER,MASK,CONN)

Description IM = imreconstruct(MARKER,MASK) performs morphological reconstruction of 
the image MARKER under the image MASK. MARKER and MASK can be two intensity 
images or two binary images with the same size. The returned image IM is an 
intensity or binary image, respectively. MARKER must be the same size as MASK, 
and its elements must be less than or equal to the corresponding elements of 
MASK.

By default, imreconstruct uses 8-connected neighborhoods for 2-D images and 
26-connected neighborhoods for 3-D images. For higher dimensions, 
imreconstruct uses conndef(ndims(I),'maximal').

IM = imreconstruct(MARKER,MASK,CONN) performs morphological 
reconstruction with the specified connectivity. CONN can have any of the 
following scalar values. 

Connectivity can be defined in a more general way for any dimension by using 
for CONN a 3-by-3-by- ... -by-3 matrix of 0’s and 1’s. The 1-valued elements define 
neighborhood locations relative to the center element of CONN. Note that CONN 
must be symmetric about its center element.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood
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Morphological reconstruction is the algorithmic basis for several other Image 
Processing Toolbox functions, including imclearborder, imextendedmax, 
imextendedmin, imfill, imhmax, imhmin, and imimposemin.

Class Support MARKER and MASK must be nonsparse numeric or logical arrays with the same 
class and any dimension. IM is of the same class as MARKER and MASK.

Algorithm imreconstruct uses the fast hybrid grayscale reconstruction algorithm 
described in [1].

See Also imclearborder, imextendedmax, imextendedmin, imfill, imhmax, imhmin, 
imimposemin

Reference [1] Vincent, L., “Morphological Grayscale Reconstruction in Image Analysis: 
Applications and Efficient Algorithms,” IEEE Transactions on Image 
Processing, Vol. 2, No. 2, April, 1993, pp. 176-201.
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14imregionalmaxPurpose Find regional maxima

Syntax BW = imregionalmax(I)
BW = imregionalmax(I,CONN)

Description BW = imregionalmax(I) finds the regional maxima of I. imregionalmax 
returns the binary image BW that identifies the locations of the regional 
maxima in I. BW is the same size as I. In BW, pixels that are set to 1 identify 
regional maxima; all other pixels are set to 0. 

Regional maxima are connected components of pixels with the same intensity 
value, t, whose external boundary pixels all have a value less than t. 

By default, imregionalmax uses 8-connected neighborhoods for 2-D images and 
26-connected neighborhoods for 3-D images. For higher dimensions, 
imregionalmax uses conndef(ndims(I),'maximal'). 

BW = imregionalmax(I,CONN) computes the regional maxima of I using the 
specified connectivity. CONN can have any of the following scalar values. 

Connectivity can be defined in a more general way for any dimension by using 
for CONN a 3-by-3-by- ...-by-3 matrix of 0’s and 1’s. The 1-valued elements define 
neighborhood locations relative to the center element of CONN. Note that CONN 
must be symmetric about its center element.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood
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Class Support I can be any nonsparse, numeric class and any dimension. BW is logical.

Example Create a sample image with several regional maxima.

A = 10*ones(10,10);
A(2:4,2:4) = 22; 
A(6:8,6:8) = 33; 
A(2,7) = 44;
A(3,8) = 45;
A(4,9) = 44;
A =
   10    10    10    10    10    10    10    10    10    10
   10    22    22    22    10    10    44    10    10    10
   10    22    22    22    10    10    10    45    10    10
   10    22    22    22    10    10    10    10    44    10
   10    10    10    10    10    10    10    10    10    10
   10    10    10    10    10    33    33    33    10    10
   10    10    10    10    10    33    33    33    10    10
   10    10    10    10    10    33    33    33    10    10
   10    10    10    10    10    10    10    10    10    10
   10    10    10    10    10    10    10    10    10    10

Find the regional maxima.

regmax = imregionalmax(A)
regmax =
     0     0     0     0     0     0     0     0     0     0
     0     1     1     1     0     0     0     0     0     0
     0     1     1     1     0     0     0     1     0     0
     0     1     1     1     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     1     1     1     0     0
     0     0     0     0     0     1     1     1     0     0
     0     0     0     0     0     1     1     1     0     0
     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0

See Also conndef, imreconstruct, imregionalmin
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14imregionalminPurpose Find regional minima

Syntax BW = imregionalmin(I)
BW = imregionalmin(I,CONN)

Description BW = imregionalmin(I) computes the regional minima of I. The output binary 
image BW has value 1 corresponding to the pixels of I that belong to regional 
minima and 0 otherwise. BW is the same size as I.

Regional minima are connected components of pixels with the same intensity 
value, t, whose external boundary pixels all have a value greater than t. 

By default, imregionalmin uses 8-connected neighborhoods for 2-D images and 
26-connected neighborhoods for 3-D images. For higher dimensions, 
imregionalmin uses conndef(ndims(I),'maximal'). 

BW = imregionalmin(I,CONN) specifies the desired connectivity. CONN can have 
any of the following scalar values. 

Connectivity can be defined in a more general way for any dimension by using 
for CONN a 3-by-3-by- ...-by-3 matrix of 0’s and 1’s. The 1-valued elements define 
neighborhood locations relative to the center element of CONN. Note that CONN 
must be symmetric about its center element.

Class Support I can be any nonsparse, numeric class and any dimension. BW is logical.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood
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Example A = 10*ones(10,10);
A(2:4,2:4) = 3;  % minima 3 lower than surround
A(6:8,6:8) = 8;  % minima 8 lower than surround
A =
10    10    10    10    10    10    10    10    10    10
10     7     7     7    10    10    10    10    10    10
10     7     7     7    10    10    10    10    10    10
10     7     7     7    10    10    10    10    10    10
10    10    10    10    10    10    10    10    10    10

  10    10    10    10    10     2     2     2    10    10
  10    10    10    10    10     2     2     2    10    10
  10    10    10    10    10     2     2     2    10    10
  10    10    10    10    10    10    10    10    10    10
  10    10    10    10    10    10    10    10    10    10

B = imregionalmin(A)
B = 
     0     0     0     0     0     0     0     0     0     0
     0     1     1     1     0     0     0     0     0     0
     0     1     1     1     0     0     0     0     0     0
     0     1     1     1     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     1     1     1     0     0
     0     0     0     0     0     1     1     1     0     0
     0     0     0     0     0     1     1     1     0     0
     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0

See Also conndef, imreconstruct, imregionalmax
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14imresizePurpose Resize an image

Syntax B = imresize(A,m)
B = imresize(A,m,method)
B = imresize(A,[mrows ncols],method)

B = imresize(...,method,n)
B = imresize(...,method,h)

Description B = imresize(A,m) returns an image B that is m times the size of A, using 
nearest-neighbor interpolation. A can be an indexed image, grayscale image, 
RGB, or binary image. If m is between 0 and 1.0, B is smaller than A. If m is 
greater than 1.0, B is larger than A.

B = imresize(A,m,method) returns an image that is m times the size of A using 
the interpolation method specified by method. method is a string that can have 
one of these values. The default value is enclosed in braces ({}).

B = imresize(A,[mrows ncols],method) returns an image of the size 
specified by [mrows ncols]. If the specified size does not produce the same 
aspect ratio as the input image has, the output image is distorted.

When the specified output size is smaller than the size of the input image, and 
method is 'bilinear' or 'bicubic', imresize applies a lowpass filter before 
interpolation to reduce aliasing. The default filter size is 11-by-11.

You can specify a different order for the default filter using

B = imresize(...,method,n)

n is an integer scalar specifying the size of the filter, which is n-by-n. If n is 0 
(zero), imresize omits the filtering step.

Value Description

{'nearest'} Nearest-neighbor interpolation

'bilinear' Bilinear interpolation

'bicubic' Bicubic interpolation
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You can also specify your own filter using this syntax.

B = imresize(...,method,h)

h is any two-dimensional FIR filter (such as those returned by ftrans2, fwind1, 
fwind2, or fsamp2).

Class Support The input image A can be numeric or logical and it must be nonsparse. The 
output image B is of the same class as the input image.

See Also imrotate, imtransform, tformarray

interp2 in the MATLAB Function Reference
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14imrotatePurpose Rotate an image

Syntax B = imrotate(A,angle)
B = imrotate(A,angle,method)
B = imrotate(A,angle,method,bbox)

Description B = imrotate(A,angle) rotates the image A by angle degrees in a 
counterclockwise direction, using the nearest-neighbor interpolation. To rotate 
the image clockwise, specify a negative angle. 

B = imrotate(A,angle,method) rotates the image A by angle degrees in a 
counterclockwise direction, using the interpolation method specified by 
method. method is a string that can have one of these values. The default value 
is enclosed in braces ({}).

B = imrotate(A,angle,method,bbox) rotates the image A through angle 
degrees. The bbox argument specifies the bounding box of the returned image. 
bbox is a string that can have one of these values. The default value is enclosed 
in braces ({}).

Value Description

{'nearest'} Nearest-neighbor interpolation 

'bilinear' Bilinear interpolation

'bicubic' Bicubic interpolation
Note:  Bicubic interpolation can produce pixel values 
outside the original range.

Value Description

'crop' Output image B includes only the central portion of the 
rotated image and is the same size as A. 

{'loose'} Output image B includes the whole rotated image and is 
generally larger than the input image A. imrotate sets 
pixels in areas outside the original image to zero.
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Class Support The input image A can be numeric or logical and it must be nonsparse. The 
output image B is of the same class as the input image.

Example This example reads solar spectra image, stored in FITS format, and rotates the 
the image to bring it into horizontal alignment. A rotation of -1 degree is all 
that is required.

I = fitsread('solarspectra.fts');
I = mat2gray(I);
J = imrotate(I,-1,'bilinear','crop');
imshow(I)
figure, imshow(J)

See Also imcrop, imresize, imtransform, tformarray

Original Image Rotated Image
Image Courtesy Ann Walker
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14imshowPurpose Display an image

Syntax imshow(I,n)
imshow(I,[low high])
imshow(BW)
imshow(X,map)
imshow(RGB)
imshow(...,display_option)

imshow(x,y,A,...)
imshow filename
h = imshow(...)

Description imshow(I,n) displays the intensity image I with n discrete levels of gray. If you 
omit n, imshow uses 256 gray levels on 24-bit displays, or 64 gray levels on other 
systems.

imshow(I,[low high]) displays I as a grayscale intensity image, specifying 
the data range for I. imshow displays the value low (and any value less than 
low) as black and displays the value high (and any value greater than high) as 
white. Values in between are displayed as intermediate shades of gray using 
the default number of gray levels. If you use an empty matrix ([]) for [low 
high], imshow uses [min(I(:)) max(I(:))]; that is, the minimum value in I 
is displayed as black, and the maximum value is displayed as white.

imshow(BW) displays the binary image BW. imshow displays pixels with the 
value 0 (zero) as black and pixels with the value 1 as white.

imshow(X,map) displays the indexed image X with the colormap map.

imshow(RGB) displays the true-color image RGB.

imshow(...,display_option) displays the image, where display_option 
specifies how imshow handles the sizing of the image. display_option is a 
string that can have either of these values. Either option string can be 
abbreviated. If you do not supply this argument, imshow determines whether to 
call truesize based on the setting of the 'ImshowTruesize' preference.
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.

imshow(x,y,A,...) uses the two-element vectors x and y to establish a 
nondefault spatial coordinate system. x and y specify the MATLAB Handle 
Graphics image object properties XData and YData.

imshow filename displays the image stored in the graphics file filename. 
imshow calls imread to read the image from the file, but the image data is not 
stored in the MATLAB workspace. The file must be in the current directory or 
on the MATLAB path.

h = imshow(...) returns the handle to the image object created by imshow.

Class Support The input image can be of class logical, uint8, uint16, or double, and it must 
be nonsparse.

Remarks You can use the iptsetpref function to set several toolbox preferences that 
modify the behavior of imshow. For example:

• 'ImshowBorder' controls whether imshow displays the image with a border 
around it.

• 'ImshowAxesVisible' controls whether imshow displays the image with the 
axes box and tick labels.

• 'ImshowTruesize' controls whether imshow calls the truesize function.

Note that the display_option argument to imshow enables you to override the 
'ImshowTruesize' preference. 

For more information about these preferences, see the reference entry for 
iptsetpref.

See Also getimage, imread, iptgetpref, iptsetpref, subimage, truesize, warp

image, imagesc in the MATLAB Function Reference

Value Description

'notruesize' Call the truesize function, which maps each pixel in 
the image to one screen pixel.

'truesize' Do not call the truesize function. 
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14imsubtractPurpose Subtract one image from another, or subtract a constant from an image

Syntax Z = imsubtract(X,Y)

Description Z = imsubtract(X,Y) subtracts each element in array Y from the 
corresponding element in array X and returns the difference in the 
corresponding element of the output array Z. X and Y are real, nonsparse 
numeric arrays of the same size and class, or Y is a double scalar. The array 
returned, Z, has the same size and class as X.

If X is an integer array, then elements of the output that exceed the range of 
the integer type are truncated, and fractional values are rounded.

If X and Y are double arrays, then you can use the expression X-Y instead of this 
function.

Note  On Intel architecture processors, imsubtract can take advantage of the 
Intel Performance Primitives Library (IPPL), thus accelerating its execution 
time. IPPL is activated only if array X is of class uint8, int16, or single.

Examples Subtract two uint8 arrays. Note that negative results are rounded to 0.

X = uint8([ 255 10 75; 44 225 100]);
Y = uint8([ 50 50 50; 50 50 50 ]);
Z = imadd(X,Y)
Z =

   205    0   25
    0   175   50

Estimate and subtract the background of an image:

I = imread('rice.png');
background = imopen(I,strel('disk',15));
Ip = imsubtract(I,background);
imview(Ip,[])

Subtract a constant value from an image:
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I = imread('rice.png');
Iq = imsubtract(I,50);
imview(I),imview(Iq)

See Also imabsdiff, imadd, imcomplement, imdivide, imlincomb, immultiply, ippl
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14imtophatPurpose Perform top-hat filtering

Syntax IM2 = imtophat(IM,SE)
IM2 = imtophat(IM,NHOOD)

Description IM2 = imtophat(IM,SE) performs morphological top-hat filtering on the 
grayscale or binary input image IM using the structuring element SE, where SE 
is returned by strel. SE must be a single structuring element object, not an 
array containing multiple structuring element objects.

IM2 = imtophat(IM,NHOOD), where NHOOD is an array of 0’s and 1’s that 
specifies the size and shape of the structuring element, is the same as 
imptophat(IM,strel(NHOOD)).

Class Support IM can be numeric or logical and must be nonsparse. The output image IM2 has 
the same class as the input image. If the input is binary (logical), the 
structuring element must be flat.

Example You can use top-hat filtering to correct uneven illumination when the 
background is dark. This example uses top-hat filtering with a disk-shaped 
structuring element to remove the uneven background illumination from an 
image. 

1 Read an image into the MATLAB workspace.
I = imread('rice.png');
imshow(I)
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2 Create the structuring element and perform top-hat filtering of the image. 
se = strel('disk',12);
J = imtophat(I,se);
figure, imshow(J)

3 Use imadjust to improve the visibility of the result.
K = imadjust(J);
figure, imshow(K)

See Also imbothat, strel
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14imtransformPurpose Apply 2-D spatial transformation to image

Syntax B = imtransform(A,TFORM)
B = imtransform(A,TFORM,INTERP)
[B,XDATA,YDATA] = imtransform(...)
[B,XDATA,YDATA] = imtransform(...,param1,val1,param2,val2,...) 

Description B = imtransform(A,TFORM) transforms the image A according to the 2-D 
spatial transformation defined by TFORM, which is a spatial transformation 
structure (TFORM) as returned by maketform or cp2tform. If ndims(A) > 2, such 
as for an RGB image, then the same 2-D transformation is automatically 
applied to all 2-D planes along the higher dimensions.

When you use this syntax, imtransform automatically shifts the origin of your 
output image to make as much of the transformed image visible as possible. If 
you are using imtransform to do image registration, this syntax is not likely to 
give you the results you expect; you might want to set 'XData' and 'YData' 
explicitly. 

B = imtransform(A,TFORM,INTERP) specifies the form of interpolation to use. 
INTERP can have one of these values. The default value is enclosed in braces 
({}).

Alternatively, INTERP can be a RESAMPLER structure returned by 
makeresampler. This option allows more control over how resampling is 
performed. 

[B,XDATA,YDATA] = imtransform(...) returns the location of the output 
image B in the output X-Y space. XDATA and YDATA are two-element vectors. The 
elements of XDATA specify the x-coordinates of the first and last columns of B. 
The elements of YDATA specify the y-coordinates of the first and last rows of B. 
Normally, imtransform computes XDATA and YDATA automatically so that B 

Value Description

'bicubic' Bicubic interpolation

{'bilinear'} Bilinear interpolation

'nearest' Nearest-neighbor interpolation 
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contains the entire transformed image A. However, you can override this 
automatic computation; see below.

[B,XDATA,YDATA] = imtransform(...,param1,val1,param2,val2,...) 
specifies parameters that control various aspects of the spatial transformation. 
This table lists all the parameters you can specify. Note that parameter names 
can be abbreviated and are not case sensitive.

Parameter Description

'UData'
'VData'

Both of these parameters are two-element real 
vectors. 'UData' and 'VData' specify the spatial 
location of the image A in the 2-D input space U-V. 
The two elements of 'UData' give the 
u-coordinates (horizontal) of the first and last 
columns of A, respectively. The two elements of 
'VData' give the v-coordinates (vertical) of the 
first and last rows of A, respectively.

The default values for 'UData' and 'VData' are 
[1 size(A,2)] and [1 size(A,1)], respectively.

'XData'
'YData'

Both of these parameters are two-element real 
vectors. 'XData' and 'YData' specify the spatial 
location of the output image B in the 2-D output 
space X-Y. The two elements of 'XData' give the 
x-coordinates (horizontal) of the first and last 
columns of B, respectively. The two elements of 
'YData' give the y-coordinates (vertical) of the 
first and last rows of B, respectively.

If 'XData' and 'YData' are not specified, 
imtransform estimates values for them that will 
completely contain the entire transformed output 
image.
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'XYScale' A one- or two-element real vector. The first 
element of 'XYScale' specifies the width of each 
output pixel in X-Y space. The second element (if 
present) specifies the height of each output pixel. 
If 'XYScale' has only one element, then the same 
value is used for both width and height. 
If 'XYScale' is not specified but 'Size' is, then 
'XYScale' is computed from 'Size', 'XData', 
and 'YData'. If neither 'XYScale' nor 'Size' is 
provided, then the scale of the input pixels is 
used for 'XYScale'.

'Size' A two-element vector of nonnegative integers. 
'Size' specifies the number of rows and columns 
of the output image B. For higher dimensions, the 
size of B is taken directly from the size of A. In 
other words, size(B,k) equals size(A,k) for k > 
2. If 'Size' is not specified, then it is computed 
from 'XData', 'YData', and 'XYScale'.

Parameter Description
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Notes • When you do not specify the output-space location for B using 'XData' and 
'YData', imtransform estimates them automatically using the function 
findbounds. For some commonly used transformations, such as affine or 
projective, for which a forward mapping is easily computable, findbounds is 
fast. For transformations that do not have a forward mapping, such as the 
polynomial ones computed by cp2tform, findbounds can take significantly 
longer. If you can specify 'XData' and 'YData' directly for such 
transformations, imtransform might run noticeably faster.

• The automatic estimate of 'XData' and 'YData' using findbounds is not 
guaranteed in all cases to completely contain all the pixels of the 
transformed input image.

'FillValues' An array containing one or several fill values.
Fill values are used for output pixels when the 
corresponding transformed location in the input 
image is completely outside the input image 
boundaries. If A is 2-D, 'FillValues' must be a 
scalar. However, if A's dimension is greater than 
two, then 'FillValues' can be an array whose 
size satisfies the following constraint: 
size(fill_values,k) must equal either 
size(A,k+2) or 1. 
For example, if A is a uint8 RGB image that is 
200-by-200-by-3, then possibilities for 
'FillValues' include
0 Fill with black
[0;0;0] Fill with black
255 Fill with white
[255;255;255] Fill with white
[0;0;255] Fill with blue
[255;255;0] Fill with yellow

If A is 4-D with size 200-by-200-by-3-by-10, then 
'FillValues' can be a scalar, 1-by-10, 3-by-1, or 
3-by-10.

Parameter Description
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• The output values XDATA and YDATA might not exactly equal the input 
'XData' and 'YData' parameters. This can happen either because of the 
need for an integer number of rows and columns, or if you specify values for 
'XData', 'YData', 'XYScale', and 'Size' that are not entirely consistent. In 
either case, the first element of XDATA and YDATA always equals the first 
element of 'XData' and 'YData', respectively. Only the second elements of 
XDATA and YDATA might be different.

• imtransform assumes spatial-coordinate conventions for the transformation 
TFORM. Specifically, the first dimension of the transformation is the 
horizontal or x-coordinate, and the second dimension is the vertical or 
y-coordinate. Note that this is the reverse of the array subscripting 
convention in MATLAB.

• TFORM must be a 2-D transformation to be used with imtransform. For 
arbitrary-dimensional array transformations, see tformarray.

Class Support The input image A can be of any nonsparse numeric class, real or complex, or it 
can be of class logical. The class of B is the same as the class of A.

Example Example 1
Apply a horizontal shear to an intensity image.

I = imread('cameraman.tif');
tform = maketform('affine',[1 0 0; .5 1 0; 0 0 1]);
J = imtransform(I,tform);
imshow(I), figure, imshow(J)

Example 2
A projective transformation can map a square to a quadrilateral. In this 
example, set up an input coordinate system so that the input image fills the 
unit square and then transform the image into the quadrilateral with vertices 
(0 0), (1 0), (1 1), (0 1) to the quadrilateral with vertices (-4 2), (-8 3), (-3 -5), (6 
3). Fill with gray and use bicubic interpolation. Make the output size the same 
as the input size.

I = imread('cameraman.tif');
udata = [0 1];  vdata = [0 1];  % input coordinate system
tform = maketform('projective',[ 0 0;  1  0;  1  1; 0 1],...
                               [-4 2; -8 -3; -3 -5; 6 3]);
[B,xdata,ydata] = imtransform(I, tform, 'bicubic', ...
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'udata', udata,...
'vdata', vdata,...
'size', size(I),...
'fill', 128);

subplot(1,2,1), imshow(udata,vdata,I), axis on
subplot(1,2,2), imshow(xdata,ydata,B), axis on

Example 3
Register an aerial photo to an orthophoto.

Read in the aerial photo.

unregistered = imread('westconcordaerial.png');
figure, imshow(unregistered)

Read in the orthophoto.

figure, imshow('westconcordorthophoto.png')

Load control points that were previously picked. 

load westconcordpoints      

Create a transformation structure for a projective transformation.

t_concord = cp2tform(input_points,base_points,'projective');

Get the width and height of the orthophoto and perform the transformation.

info = imfinfo('westconcordorthophoto.png');

registered = imtransform(unregistered,t_concord,...
    'XData',[1 info.Width], 'YData',[1 info.Height]);
figure, imshow(registered)                       

See Also cp2tform, imresize, imrotate, maketform, makeresampler, tformarray
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14imviewPurpose Display image in the Image Viewer

Syntax imview(I)
imview(RGB)
imview(X,map)
imview(I,range)
imview(filename)
imview(...,'InitialMagnification',initial_mag)
h = imview(...)
imview close all

Description imview(I) displays the intensity image I.

imview(RGB) displays the true-color image RGB.

imview(X,map) displays the indexed image X with colormap map.

imview(I,range) displays the intensity image I, where range is a two-element 
vector [LOW HIGH] that controls the black-to-white range in the displayed 
image. imview displays the value LOW (and any value less than LOW) as black, 
and the value HIGH (and any value greater than HIGH) as white. Values in 
between are displayed as intermediate shades of gray. range can also be empty 
([]), in which case imview displays the minimum value of I as black and the 
maximum value of I as white. In other words, imview(I,[]) is equivalent to 
imview(I,[min(I(:)) max(I(:))]).

imview(filename) displays the image contained in the file specified by 
filename. The file must contain an image that can be read by imread. If the file 
contains multiple images, the first one is displayed.

With no input arguments, imview displays a file chooser dialog box so you can 
select an image file interactively.

H = imview(...) returns a handle H to the tool. close(H) closes the image 
viewer.

imview close all closes all image viewers.
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imview(...,'InitialMagnification',initial_mag) displays the image, 
specifying the InitialMagnification parameter that controls the initial 
magnification used to display the image. The value of this parameter, 
initial_mag, can have either of the following values.

By default, the initial magnification is set to the value returned by 
iptgetpref('ImviewInitialMagnification').

Class Support The input image can be of class logical, uint8, uint16, or double.

Examples This example opens a file specified as a text string and displays it.

imview('board.tif')

This example opens an indexed image and displays it.

[X,map] = imread('trees.tif');
imview(X,map)

This example brings the intensity image in the file specified into the MATLAB 
workspace and displays it.

I = imread('cameraman.tif');
imview(I)

This example displays an image with a specified range and returns a handle to 
the Image Viewer. The example uses the close function to close the Image 
Viewer. 

h = imview(I,[0 80]);
close(h)

Value Description

100 Display image at 100% magnification; that is, every 
image pixel maps to one screen pixel

'fit' Scale entire image to fit in the Image Viewer window
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Notes Managing Multiple Image Viewer Windows
If you have multiple Image Viewer windows open and you want to close all of 
them, use this command:

imview close all

You can also close all open Image Viewer windows by choosing Close All from 
the Window menu on the MATLAB Desktop. Note, however, that this will 
close all windows listed in the Window menu, not just Image Viewer windows.

You can also use the Window menu to navigate to a particular Image Viewer 
that you have open.

Managing Memory Usage
To increase the amount of memory available to the Image Viewer, create a file 
named 'java.opts' and put it in your MATLAB startup directory. By default, 
MATLAB gives the Java Virtual Machine 64 MB.

The java.opts file should contain a line like this one, which gives the Java 
Virtual Machine 128 MB:

-Xmx128m

To avoid virtual memory “thrashing,” set the -Xmx option to no more than 66% 
real RAM.

On UNIX systems, create the java.opts file in a directory where you intend to 
start MATLAB and move to that directory before starting MATLAB.

On Windows systems,

1 Create the java.opts file in a directory where you intend to start MATLAB. 

2 Create a shortcut to MATLAB. 

3 Right-click the shortcut and select Properties.

4 In the Properties dialog box, specify the name of the directory in which you 
created the java.opts file as the MATLAB startup directory. 

The MATLAB desktop and the Image Viewer share Java Virtual Machine 
memory. If you are having trouble viewing large images, consider running 
MATLAB with the -nodesktop mode enabled. This should allow you to use the 
Image Viewer to view large images. 
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See Also imread, imshow
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14imwritePurpose Write image to graphics file

imwrite is a function in MATLAB. To get help for this function, select 
MATLAB Help from the Help menu and view the online function reference 
page.
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14ind2grayPurpose Convert an indexed image to an intensity image

Syntax I = ind2gray(X,map)

Description I = ind2gray(X,map) converts the image X with colormap map to an intensity 
image I. ind2gray removes the hue and saturation information from the input 
image while retaining the luminance. 

Class Support X can be of class uint8, uint16, or double. I is of class double.

Example load trees
I = ind2gray(X,map);
imshow(X,map)
figure,imshow(I)

Algorithm ind2gray converts the colormap to NTSC coordinates using rgb2ntsc, and sets 
the hue and saturation components (I and Q) to zero, creating a gray colormap. 
ind2gray then replaces the indices in the image X with the corresponding 
grayscale intensity values in the gray colormap.

See Also gray2ind, imshow, rgb2ntsc

Image Courtesy of Susan Cohen
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14ind2rgbPurpose Convert an indexed image to an RGB image

Syntax RGB = ind2rgb(X,map)

Description RGB = ind2rgb(X,map) converts the matrix X and corresponding colormap map 
to RGB (true-color) format.

Class Support X can be of class uint8, uint16, or double. RGB is an m-by-n-by-3 array of class 
double.

See Also ind2gray, rgb2ind
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14ipplPurpose Check for presence of the Intel Performance Primitives Library (IPPL)

Syntax TF = ippl
[TF B] = ippl

Description The Intel Performance Primitives Library (IPPL) provides a collection of basic 
functions used in signal and image processing. The IPPL takes advantage of 
the parallelism of the Single-Instruction, Multiple-Data (SIMD) instructions 
that make up the core of the MMX technology and Streaming SIMD 
Extensions. These instructions are available only on the Intel architecture 
processors. IPPL is used by some of the Image Processing Toolbox functions to 
accelerate their execution time.

TF = ippl returns true (1) if IPPL is available and false (0) otherwise.

[TF B] = ippl returns an additional column cell array B. Each row of B 
contains a string describing a specific IPPL module.

When IPPL is available, the Image Processing Toolbox image arithmetic 
functions (imabsdiff, imadd, imsubtract, imdivide, immultiply, and 
imlincomb) and the imfilter function take advantage of it. Toolbox functions 
that use these functions also benefit. 

Notes IPPL is utilized only for some data types and only under specific conditions. See 
the help sections of the functions listed above for detailed information on when 
IPPL is activated.

The IPPL function is likely to change.

See Also imabsdiff, imadd, imdivide, imfilter, imlincomb, immultiply, imsubtract 
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14iptdemosPurpose Display index of Image Processing Toolbox demos

Syntax iptdemos

Description iptdemos displays the HTML page that lists all the Image Processing demos. 
iptdemos displays the page in the MATLAB Help browser.  
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14iptgetprefPurpose Return Image Processing Toolbox preferences

Syntax prefs = iptgetpref
value = iptgetpref(prefname)

Description prefs = iptgetpref without an input argument returns a structure 
containing all the Image Processing Toolbox preferences with their current 
values. Each field in the structure has the name of an Image Processing 
Toolbox preference. See iptsetpref for a list. 

value = iptgetpref(prefname) returns the value of the Image Processing 
Toolbox preference specified by the string prefname. See iptsetpref for a 
complete list of valid preference names. Preference names are not case 
sensitive and can be abbreviated.

Example value = iptgetpref('ImshowAxesVisible')

value =

off

See Also imshow, iptsetpref
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14iptsetprefPurpose Set Image Processing Toolbox preferences or display valid values

Syntax iptsetpref(prefname)
iptsetpref(prefname,value)

Description iptsetpref(prefname) displays the valid values for the Image Processing 
Toolbox preference specified by prefname. 

iptsetpref(prefname,value) sets the Image Processing Toolbox preference 
specified by the string prefname to the value specified by value. The setting 
persists until the end of the current MATLAB session, or until you change the 
setting. (To make the value persist between sessions, put the command in your 
startup.m file.)

This table describes the available preferences. Note that the preference names 
are case insensitive and can be abbreviated. The default value is enclosed in 
braces ({}).

Preference Name Description

'ImshowBorder' Controls whether imshow includes a border around the 
image in the figure window. 

{'loose'} — Include a border between the image and the 
edges of the figure window, thus leaving room for axes 
labels, titles, etc. 

'tight' — Adjust the figure size so that the image entirely 
fills the figure.

Note: There can still be a border if the image is very small, 
or if there are other objects besides the image and its axes 
in the figure.

'ImshowAxesVisible' Controls whether imshow includes visible axes and tick 
labels in the figure window.

'on' — Include axes box and tick labels.

{'off'} — Do not include axes box and tick labels.
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Example iptsetpref('ImshowBorder','tight')

See Also imshow, imview, iptgetpref, truesize

axis in the MATLAB Function Reference

'ImshowTruesize' Controls whether imshow calls the truesize function. 

{'manual'} — Do not call the truesize function.

'auto' — Let imshow decide whether to call the truesize 
function. imshow calls truesize if there are no other 
objects in the resulting figure besides the image and its 
axes.

Note: You can override this setting for a particular call to 
imshow by specifying the display_option argument by 
calling the truesize function after displaying the image.

'ImviewInitialMagnification' Controls the initial magnification of an image displayed in 
the Image Viewer, imview. 

{100} — Display the image at 100% magnification. 

'fit' — Scale the image to fit in the imview window.
 
Note: You can override this setting for a particular call to 
imview by specifying the 'InitialMagnification' 
parameter.

'TruesizeWarning' Controls whether the truesize function displays a warning 
if the image is too large to fit on the screen.

{'on'} — The truesize function displays the message. The 
entire image is still displayed, but at less than true size. 

'off'— truesize does not display the warning.
 
Note: This preference applies even when you call truesize 
indirectly, such as through imshow.

Preference Name Description
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14iradonPurpose Compute inverse Radon transform

Syntax I = iradon(R,theta)
I = iradon(R,theta,interp,filter,frequency_scaling,output_size)
[I,H] = iradon(...)

Description I = iradon(R,theta) reconstructs the image I from projection data in the 
two-dimensional array R. The columns of R are parallel beam projection data. 
iradon assumes that the center of rotation is the center point of the projections, 
which is defined as ceil(size(R,1)/2).

theta describes the angles (in degrees) at which the projections were taken. It 
can be either a vector containing the angles or a scalar specifying D_theta, the 
incremental angle between projections. If theta is a vector, it must contain 
angles with equal spacing between them. If theta is a scalar specifying 
D_theta, the projections were taken at angles theta = m*D_theta, where 
m = 0,1,2,...,size(R,2) 1. If the input is the empty matrix ([]), D_theta 
defaults to 180/size(R,2). 

iradon uses the filtered back-projection algorithm to perform the inverse 
Radon transform. The filter is designed directly in the frequency domain and 
then multiplied by the FFT of the projections. The projections are zero-padded 
to a power of 2 before filtering to prevent spatial domain aliasing and to speed 
up the FFT.

I = iradon(P,theta,interp,filter,frequency_scaling,output_size) 
specifies parameters to use in the inverse Radon transform. You can specify 
any combination of the last four arguments. iradon uses default values for any 
of these arguments that you omit.

interp specifies the type of interpolation to use in the back projection. The 
available options are listed in order of increasing accuracy and computational 
complexity. The default value is enclosed in braces ({}).

Value Description

'nearest' Nearest-neighbor interpolation 
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filter specifies the filter to use for frequency domain filtering. filter can be 
any of the strings that specify standard filters. The default value is enclosed in 
braces ({}).

frequency_scaling is a scalar in the range (0,1] that modifies the filter by 
rescaling its frequency axis. The default is 1. If frequency_scaling is less than 
1, the filter is compressed to fit into the frequency range 
[0,frequency_scaling], in normalized frequencies; all frequencies above 
frequency_scaling are set to 0. 

output_size is a scalar that specifies the number of rows and columns in the 
reconstructed image. If output_size is not specified, the size is determined 
from the length of the projections.

n = 2*floor(size(R,1)/(2*sqrt(2)))

If you specify output_size, iradon reconstructs a smaller or larger portion of 
the image but does not change the scaling of the data. If the projections were 

{'linear'} Linear interpolation

'spline' Spline interpolation

Value Description

{'Ram-Lak'} Cropped Ram-Lak or ramp filter. The frequency 
response of this filter is | f |. Because this filter is 
sensitive to noise in the projections, one of the filters 
listed below might be preferable. These filters multiply 
the Ram-Lak filter by a window that deemphasizes 
high frequencies.

'Shepp-Logan' Multiplies the Ram-Lak filter by a sinc function

'Cosine' Multiplies the Ram-Lak filter by a cosine function

'Hamming' Multiplies the Ram-Lak filter by a Hamming window

'Hann' Multiplies the Ram-Lak filter by a Hann window

Value Description
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calculated with the radon function, the reconstructed image might not be the 
same size as the original image. 

[I,H] = iradon(...) returns the frequency response of the filter in the vector 
H.

Class Support All input arguments must be of class double. Output arguments are of class 
double.

Example P = phantom(128); 
R = radon(P,0:179); 
I = iradon(R,0:179,'nearest','Hann'); 
imview(P), imview(I)

Algorithm iradon uses the filtered back projection algorithm to perform the inverse 
Radon transform. The filter is designed directly in the frequency domain and 
then multiplied by the FFT of the projections. The projections are zero-padded 
to a power of 2 before filtering to prevent spatial domain aliasing and to speed 
up the FFT.

See Also fan2para, fanbeam, ifanbeam, para2fan, phantom, radon

References [1] Kak, A. C., and M. Slaney, Principles of Computerized Tomographic 
Imaging, New York, NY, IEEE Press, 1988.
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14isbwPurpose Return true for a binary image

Note  This function is obsolete and may be removed in future versions. Use 
islogical instead.

Syntax flag = isbw(A)

Description flag = isbw(A) returns 1 if A is a binary image and 0 otherwise.

The input image A is considered to be a binary image if it is a nonsparse logical 
array.

Class Support The input image A can be any MATLAB array. 

See Also isind, isgray, isrgb
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14isflatPurpose Return true for flat structuring element

Syntax TF = isflat(SE)

Description TF = isflat(SE) returns true (1) if the structuring element SE is flat; 
otherwise it returns false (0). If SE is an array of STREL objects, then TF is the 
same size as SE.

Class Support SE is a STREL object. TF is a double-precision value.

See Also strel
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14isgrayPurpose Return true for intensity image

Note  This function is obsolete and may be removed in future versions. 

Syntax flag = isgray(A)

Description flag = isgray(A) returns 1 if A is a grayscale intensity image and 0 otherwise.

isgray uses these criteria to decide whether A is an intensity image:

• If A is of class double, all values must be in the range [0,1], and the number 
of dimensions of A must be 2.

• If A is of class uint16 or uint8, the number of dimensions of A must be 2.

Note  A four-dimensional array that contains multiple intensity images 
returns 0, not 1.

Class Support The input image A can be of class logical, uint8, uint16, or double.

See Also isbw, isind, isrgb
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14isindPurpose Return true for an indexed image

Note  This function is obsolete and may be removed in future versions. 

Syntax flag = isind(A)

Description flag = isind(A) returns 1 if A is an indexed image and 0 otherwise.

isind uses these criteria to determine if A is an indexed image:

• If A is of class double, all values in A must be integers greater than or equal 
to 1, and the number of dimensions of A must be 2.

• If A is of class uint8 or uint16, the number of dimensions of A must be 2.

Note  A four-dimensional array that contains multiple indexed images 
returns 0, not 1.

Class Support A can be of class logical, uint8, uint16, or double.

See Also isbw, isgray, isrgb
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14isrgbPurpose Return true for an RGB image

Note  This function is obsolete and may be removed in future versions. 

Syntax flag = isrgb(A)

Description flag = isrgb(A) returns 1 if A is an RGB true-color image and 0 otherwise.

isrgb uses these criteria to determine whether A is an RGB image:

• If A is of class double, all values must be in the range [0,1], and A must be 
m-by-n-by-3.

• If A is of class uint16 or uint8, A must be m-by-n-by-3.

Note  A four-dimensional array that contains multiple RGB images returns 0, 
not 1.

Class Support A can be of class logical, uint8, uint16, or double. 

See Also isbw, isgray, isind
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14lab2doublePurpose Convert  data to double

Syntax labd = lab2double(lab)

Description labd = lab2double(lab) converts an M-by-3 or M-by-N-by-3 array of  
 color values to class double. The output array labd has the same size 

as lab.

The Image Processing Toolbox follows the convention that double-precision 
 arrays contain 1976 CIE  values.  arrays that are 

uint8 or uint16 follow the convention in the ICC profile specification 
(ICC.1:2001-4, www.color.org) for representing  values as unsigned 
8-bit or 16-bit integers. The ICC encoding convention is illustrated by these 
tables.

Class Support lab is a uint8, uint16, or double array that must be real and nonsparse. labd 
is double.

See Also applycform, lab2uint8, lab2uint16, makecform, whitepoint, xyz2double, 
xyz2uint16

L∗ a∗ b∗

Value (L*) uint8 Value uint16 Value

0.0 0 0

100.0 255 65280

100.0 + (25500/65280) None 65535

Value (a* or b*) uint8 Value uint16 Value

-128.0 0 0

0.0 128 32768

127.0 255 65280

127.0 + (255/256) None 65535

L∗ a∗ b∗

L∗ a∗ b∗ L∗ a∗ b∗ L∗ a∗ b∗

L∗ a∗ b∗
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14lab2uint16Purpose Convert  data to uint16

Syntax lab16 = lab2uint16(lab)

Description lab16 = lab2uint16(lab) converts an M-by-3 or M-by-N-by-3 array of 
 color values to uint16. lab16 has the same size as lab.

The Image Processing Toolbox follows the convention that double-precision 
 arrays contain 1976 CIE  values.  arrays that are 

uint8 or uint16 follow the convention in the ICC profile specification 
(ICC.1:2001-4, www.color.org) for representing  values as unsigned 
8-bit or 16-bit integers. The ICC encoding convention is illustrated by these 
tables.

Class Support lab can be a uint8, uint16, or double array that must be real and nonsparse. 
lab16 is of class uint16.

See Also applycform, lab2double, lab2uint8, makecform, whitepoint, xyz2double, 
xyz2uint16

L∗ a∗ b∗

Value (L*) uint8 Value uint16 Value

0.0 0 0

100.0 255 65280

100.0 + (25500/65280) None 65535

Value (a* or b*) uint8 Value uint16 Value

-128.0 0 0

0.0 128 32768

127.0 255 65280

127.0 + (255/256) None 65535

L∗ a∗ b∗

L∗ a∗ b∗ L∗ a∗ b∗ L∗ a∗ b∗

L∗ a∗ b∗
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14lab2uint8Purpose Convert  data to uint8

Syntax lab8 = lab2uint8(lab)

Description lab8 = lab2uint8(lab) converts an M-by-3 or M-by-N-by-3 array of  
color values to uint8. lab8 has the same size as lab.

The Image Processing Toolbox follows the convention that double-precision 
 arrays contain 1976 CIE  values.  arrays that are 

uint8 or uint16 follow the convention in the ICC profile specification 
(ICC.1:2001-4, www.color.org) for representing  values as unsigned 
8-bit or 16-bit integers. The ICC encoding convention is illustrated by these 
tables.

Class Support lab is a uint8, uint16, or double array that must be real and nonsparse. lab8 
is uint8.

See Also applycform, lab2double, lab2uint16, makecform, whitepoint, xyz2double, 
xyz2uint16

L∗ a∗ b∗

Value (L*) uint8 Value uint16 Value

0.0 0 0

100.0 255 65280

100.0 + (25500/65280) None 65535

Value (a* or b*) uint8 Value uint16 Value

-128.0 0 0

0.0 128 32768

127.0 255 65280

127.0 + (255/256) None 65535

L∗ a∗ b∗

L∗ a∗ b∗ L∗ a∗ b∗ L∗ a∗ b∗

L∗ a∗ b∗
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14label2rgbPurpose Convert a label matrix into an RGB image

Syntax RGB = label2rgb(L)
RGB = label2rgb(L,map)
RGB = label2rgb(L,map,zerocolor)
RGB = label2rgb(L,map,zerocolor,order)

Description RGB = label2rgb(L) converts a label matrix L, such as those returned by 
bwlabel or watershed, into an RGB color image for the purpose of visualizing 
the labeled regions. The label2rgb function determines the color to assign to 
each object based on the number of objects in the label matrix and range of 
colors in the colormap. The label2rgb function picks colors from the entire 
range. 

RGB = label2rgb(L,map) defines the colormap map to be used in the RGB 
image. map can have any of the following values:

• n-by-3 colormap matrix

• String containing the name of a MATLAB colormap function, such as 'jet' 
or 'gray' (See colormap for a list of supported colormaps.)

• Function handle of a colormap function, such as @jet or @gray 

If you do not specify map, the default value is 'jet'.

RGB = label2rgb(L,map,zerocolor) defines the RGB color of the elements 
labeled 0 (zero) in the input label matrix L. As the value of zerocolor, specify 
an RGB triple or one of the strings listed in this table. 

Value Color

'b' Blue

'c' Cyan

'g' Green

'k' Black

'm' Magenta

'r' Red
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If you do not specify zerocolor, the default value for zero-labeled elements is 
[1 1 1] (white).

RGB = label2rgb(L,map,zerocolor,order) controls how label2rgb assigns 
colormap colors to regions in the label matrix. If order is 'noshuffle' (the 
default), label2rgb assigns colormap colors to label matrix regions in 
numerical order. If order is 'shuffle', label2rgb assigns colormap colors 
pseudorandomly. 

Class Support The input label matrix L can have any nonsparse, numeric class. It must 
contain finite, nonnegative integers. The output of label2rgb is of class uint8. 

Example I = imread('rice.png'); 
figure, imshow(I), title('original image') 
BW = im2bw(I, graythresh(I)); 
L = bwlabel(BW); 
RGB = label2rgb(L); 
RGB2 = label2rgb(L, 'spring', 'c', 'shuffle'); 
imview(RGB), imview(RGB2)

See Also bwlabel, bwlabeln, ismember, watershed

'w' White

'y' Yellow

Value Color
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14makecformPurpose Create a color transformation structure

Syntax C = makecform(type)
C = makecform(type, 'whitepoint', WP)
C = makecform('icc', src_profile, dest_profile)
C = makecform('icc', src_profile, dest_profile, 
    'SourceRenderingIntent', src_intent, 'DestRenderingIntent',
    dest_intent)
C = makecform('clut', profile, LUTtype)
C = makecform('mattrc', MatTrc, 'Direction', direction)

Description C = makecform(type) creates the color transformation structure C that defines 
the color space conversion specified by type. To perform the transformation, 
pass the color transformation structure as an argument to the applycform 
function.

The type argument specifies one of the conversions listed in the following table. 
makecform supports conversions between members of the family of 
device-independent color spaces defined by the CIE, Commission 
Internationale de l’Éclairage (International Commission on Illumination). In 
addition, makecform supports conversions to and from the sRGB standard. For 
a list of the abbreviations used by the Image Processing Toolbox for each color 
space, see the Remarks section of this reference page. 

Type Description

'lab2lch' Convert from  to the  color space.

'lab2srgb'1 Convert from  to the  color space.

'lab2xyz'1 Convert from  to the  color space.

'lch2lab' Convert from  to the  color space.

'srgb2lab'1 Convert from  to the  color space.

'srgb2xyz' Convert from  to the  color space.

'upvpl2xyz' Convert from  to the  color space.

'uvl2xyz' Convert from  to the  color space.

L∗ a∗ b∗ L∗ ch

L∗ a∗ b∗ srgb

L∗ a∗ b∗ XYZ

L∗ ch L∗ a∗ b∗

srgb L∗ a∗ b∗

srgb XYZ

u ′v ′L XYZ

uvL XYZ
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1 For the 'xyz2lab', 'lab2xyz', 'srgb2lab', and 'lab2srgb' transforms, you 
can optionally specify the value of the reference illuminant, known as the white 
point. Use the syntax 

C = makecform(type,'WhitePoint', WP)

where WP is a 1-by-3 vector of XYZ values scaled so that Y = 1.  The default is 
the CIE illuminant D50 as specified in the International Color Consortium 
specification ICC.1:2001-04. You can use the whitepoint function to create the 
WP vector.

C = makecform('icc', src_profile, dest_profile) creates a color 
transform based on two ICC profiles. src_profile and dest_profile are ICC 
profile structures returned by iccread. 

C = makecform('icc', src_profile, dest_profile, 
'SourceRenderingIntent', src_intent, 'DestRenderingIntent', 
DEST_INTENT) creates a color transform based on two ICC color profiles, 
src_profile and dest_profile, specifying rendering intent arguments for the 
source, src_intent, and the destination, dest_intent, profiles. 

Rendering intents specify the style of reproduction that should be used when 
these profiles are combined. For most devices, the range of reproducible colors 
is much smaller than the range of colors represented by the PCS. Rendering 
intents define gamut mapping techniques. Possible values for these rendering 

'xyl2xyz' Convert from  to the  color space.

'xyz2lab'1 Convert from  to the  color space.

'xyz2srgb' Convert from  to the  color space.

'xyz2upvpl' Convert from  to the  color space.

'xyz2uvl' Convert from  to the  color space.

'xyz2xyl' Convert from  to the  color space.

Type Description

xyY XYZ

XYZ L∗ a∗ b∗

XYZ srgb

XYZ u ′v ′L

XYZ uvL

XYZ xyY
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intents are listed below. Each rendering intent has distinct aesthetic and 
color-accuracy tradeoffs. 

C = makecform('clut', profile, LUTtype) creates the color transformation 
structure C based on a color lookup table (CLUT) contained in an ICC color 
profile. profile is an ICC profile structure returned by iccread. LUTtype 

Value Description

'AbsoluteColorimetric' Maps all out-of-gamut colors to the nearest 
gamut surface while maintaining the 
relationship of all in-gamut colors. This 
absolute rendering contains color data that 
is relative to a perfectly reflecting diffuser.

'Perceptual' (default) Employs vendor-specific gamut mapping 
techniques for optimizing the range of 
producible colors of a given device. The 
objective is to provide the most aesthetically 
pleasing result even though the relationship 
of the in-gamut colors might not be 
maintained. This media-relative rendering 
contains color data that is relative to the 
device’s white point.

'RelativeColorimetric' Maps all out-of-gamut colors to the nearest 
gamut surface while maintaining the 
relationship of all in-gamut colors. This 
media-relative rendering contains color data 
that is relative to the device’s white point.

'Saturation' Employs vendor-specific gamut mapping 
techniques for maximizing the saturation of 
device colors. This rendering is generally 
used for simple business graphics such as 
bar graphs and pie charts. This 
media-relative rendering contains color data 
that is relative to the device’s white point.
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specifies which clut in the profile structure is to be used. It can be one of 
these strings.

LUT Type Description

'AToB0' Contains the components of a 16- or 8-bit LUTtag 
that transforms device colors to PCS colors using the 
perceptual rendering.

'AToB1' Contains the components of a 16- or 8-bit LUTtag 
that transforms device colors to PCS colors using the 
relative rendering.

'AToB2' Contains the components of a 16- or 8-bit LUTtag 
that transforms device colors to PCS colors using the 
saturation rendering.

'BToA0' Contains the components of a 16- or 8-bit LUTtag 
that transforms PCS colors to device colors using the 
perceptual rendering.

'BToA1' Contains the components of a 16- or 8-bit LUTtag 
that transforms PCS colors to device colors using the 
colorimetric rendering.

'BToA2' Contains the components of a 16- or 8-bit LUTtag 
that transforms PCS colors to device colors using the 
saturation rendering.

'Gamut' Contains the components of a 16- or 8-bit LUTtag 
that determines which PCS colors are out of gamut 
for a given device.

'Preview0' Contains the components of a 16- or 8-bit Preview 
LUTtag that transforms PCS colors to the PCS colors 
available for soft proofing using the perceptual 
rendering.
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C = makecform('mattrc', MatTrc, 'Direction', direction) creates the 
color transformation structure C based on a Matrix/Tone Reproduction Curve 
(MatTRC) model, contained in an ICC color profile. direction can be either 
'forward' or 'inverse' and specifies whether the MatTRC is to be applied in 
the forward or inverse direction. For more information, see section 6.3.1.2 of 
the International Color Consortium specification ICC.1:2001-04 
(www.color.org).

Remarks The Image Processing Toolbox uses the following abbreviations to represent 
color spaces.

'Preview1' Contains the components of a 16- or 8-bit Preview 
LUTtag that transforms PCS colors to the PCS colors 
available for soft proofing using the relative 
colorimetric rendering.

'Preview2' Contains the components of a 16- or 8-bit Preview 
LUTtag that transforms PCS colors to the PCS colors 
available for soft proofing using the saturation 
rendering.

LUT Type Description

Abbreviation Description

xyz 1931 CIE XYZ tristimulus values

xyl 1931 CIE xyY chromaticity values

uvl 1960 CIE uvL values

upvpl 1976 CIE the  values

lab 1976 CIE  values

lch Polar transformation of CIE  values, 
where c = chroma and h = hue

srgb Standard computer monitor RGB values, (IEC 
61966-2-1)

u ′v ′L

L∗ a∗ b∗

L∗ a∗ b∗
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Example Convert RGB image to L*a*b*, assuming input image is uint8.

rgb = imread('peppers.png');
cform = makecform('srgb2lab');
lab = applycform(rgb,cform); 

See Also applycform, lab2double, lab2uint16, lab2uint8, whitepoint, xyz2double, 
xyz2uint16
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14makelutPurpose Construct a lookup table for use with applylut

Syntax lut = makelut(fun,n)
lut = makelut(fun,n,P1,P2,...)

Description lut = makelut(fun,n) returns a lookup table for use with applylut. fun is 
either a string containing the name of a function or an inline function object. 
The function should take a 2-by-2 or 3-by-3 matrix of 1’s and 0’s as input and 
return a scalar. n is either 2 or 3, indicating the size of the input to fun. makelut 
creates lut by passing all possible 2-by-2 or 3-by-3 neighborhoods to fun, one 
at a time, and constructing either a 16-element vector (for 2-by-2 
neighborhoods) or a 512-element vector (for 3-by-3 neighborhoods). The vector 
consists of the output from fun for each possible neighborhood.

lut = makelut(fun,n,P1,P2,...) passes the additional parameters 
P1,P2,... to fun.

Class Support lut is returned as a vector of class double.

Example In this example, the function returns 1 (true) if the number of 1’s in the 
neighborhood is 2 or greater, and returns 0 (false) otherwise. makelut then uses 
the function to construct a lookup table for 2-by-2 neighborhoods.

f = inline('sum(x(:)) >= 2');
lut = makelut(f,2)

lut =

     0
     0
     0
     1
     0
     1
     1
     1
     0
     1
     1
     1
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     1
     1
     1
     1

See Also applylut



makeresampler

14-321

14makeresamplerPurpose Create resampling structure

Syntax R = makeresampler(interpolant,padmethod)

Description R = makeresampler(interpolant,padmethod) creates a separable resampler 
structure for use with tformarray and imtransform. 

The interpolant argument specifies the interpolating kernel that the 
separable resampler uses. In its simplest form, interpolant can have any of 
the following strings as a value. 

If you are using a custom interpolating kernel, you can specify interpolant as 
a cell array in either of these forms:

To specify the interpolation method independently along each dimension, you 
can combine both types of interpolant specifications. The number of elements 
in the cell array must equal the number of transform dimensions. For example, 
if you specify this value for interpolant

{'nearest', 'linear', {2 KERNEL_TABLE}}

Interpolant Description

'cubic'  Cubic interpolation

'linear'  Linear interpolation

'nearest'  Nearest-neighbor interpolation

{half_width, positive_half} half_width is a positive scalar designating 
the half width of a symmetric interpolating 
kernel. positive_half is a vector of values 
regularly sampling the kernel on the closed 
interval [0 positive_half].

{half_width, interp_fcn} interp_fcn is a function handle that 
returns interpolating kernel values, given 
an array of input values in the interval 
[0 positive_half].
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the resampler uses nearest-neighbor interpolation along the first transform 
dimension, linear interpolation along the second dimension, and a custom 
table-based interpolation along the third.

The padmethod argument controls how the resampler interpolates or assigns 
values to output elements that map close to or outside the edge of the input 
array. The following table lists all the possible values of padmethod.

In the case of 'fill', 'replicate', 'circular', or 'symmetric', the 
resampling performed by tformarray or imtransform occurs in two logical 
steps: 

1 Pad the array A infinitely to fill the entire input transform space.

Pad Method Description

'bound' Assigns values from the fill value array to points that 
map outside the array and repeats border elements of 
the array for points that map inside the array (same as 
'replicate'). When interpolant is 'nearest', this 
pad method produces the same results as 'fill'. 
'bound' is like 'fill', but avoids mixing fill values 
and input image values. 

'circular' Pads array with circular repetition of elements within 
the dimension. Same as padarray.

'fill' Generates an output array with smooth-looking edges 
(except when using nearest-neighbor interpolation). 
For output points that map near the edge of the input 
array (either inside or outside), it combines input 
image and fill values. When interpolant is 'nearest', 
this pad method produces the same results as 'bound'.

'replicate' Pads array by repeating border elements of array. 
Same as padarray.

'symmetric' Pads array with mirror reflections of itself. Same as 
padarray.
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2 Evaluate the convolution of the padded A with the resampling kernel at the 
output points specified by the geometric map.

Each nontransform dimension is handled separately. The padding is virtual, 
(accomplished by remapping array subscripts) for performance and memory 
efficiency. If you implement a custom resampler, you can implement these 
behaviors.

Custom 
Resamplers

The syntaxes described above construct a resampler structure that uses the 
separable resampler function that ships with the Image Processing Toolbox. It 
is also possible to create a resampler structure that uses a user-written 
resampler by using this syntax:

R = makeresampler(PropertyName,PropertyValue,...) 

The makeresampler function supports the following properties. 

Property Description

'Type' Can have the value 'separable' or 'custom' and must always be supplied. 
If 'Type' is 'separable', the only other properties that can be specified are 
'Interpolant' and 'PadMethod', and the result is equivalent to using the 
makeresampler(interpolant,padmethod) syntax. If 'Type' is 'custom', 
you must specify the 'NDims' and 'ResampleFcn' properties and, optionally, 
the 'CustomData' property. 

'PadMethod' See the padmethod argument for more information.

'Interpolant' See the interpolant argument for more information. 

'NDims' Positive integer indicating the dimensionality the custom resampler can 
handle. Use a value of Inf to indicate that the custom resampler can handle 
any dimension. If 'Type' is 'custom', NDims is required.
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Example Stretch an image in the y-direction using a separable resampler that applies 
cubic interpolation in the y-direction and nearest-neighbor interpolation in the 
x-direction. (This is equivalent to, but faster than, applying bicubic 
interpolation.)

A = imread('moon.tif');
resamp = makeresampler({'nearest','cubic'},'fill');
stretch = maketform('affine',[1 0; 0 1.3; 0 0]);
B = imtransform(A,stretch,resamp);

See Also imtransform, tformarray

'ResampleFcn' Handle to a function that performs the resampling. The function is called 
with the following interface.

B = resample_fcn(A,M,TDIMS_A,TDIMS_B,FSIZE_A,FSIZE_B,F,R)

See the help for tformarray for information about the inputs A, TDIMS_A, 
TDIMS_B, and F. The argument M is an array that maps the transform 
subscript space of B to the transform subscript space of A. If A has N 
transform dimensions (N = length(TDIMS_A)) and B has P transform 
dimensions (P = length(TDIMS_B)), then ndims(M) = P + 1, if N > 1 and P 
if N == 1, and size(M,P + 1) = N.

The first P dimensions of M correspond to the output transform space, 
permuted according to the order in which the output transform dimensions 
are listed in TDIMS_B. (In general TDIMS_A and TDIMS_B need not be sorted in 
ascending order, although such a limitation might be imposed by specific 
resamplers.) Thus, the first P elements of size(M) determine the sizes of the 
transform dimensions of B. The input transform coordinates to which each 
point is mapped are arrayed across the final dimension of M, following the 
order given in TDIMS_A. M must be double. FSIZE_A and FSIZE_B are the full 
sizes of A and B, padded with 1’s as necessary to be consistent with TDIMS_A, 
TDIMS_B, and size(A).

'CustomData' User-defined.

Property Description
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14maketformPurpose Create geometric transformation structure

Syntax T = maketform(transformtype,...)

Description T = maketform(transformtype,...) creates a multidimensional spatial 
transformation structure (called a TFORM struct) that can be used with the 
tformfwd, tforminv, fliptform, imtransform, or tformarray functions.

transformtype can be any of the following spatial transformation types. 
maketform supports a special syntax for each transformation type. See the 
following sections for information about these syntaxes. 

Transform 
Types

Affine
T = maketform('affine',A) builds a TFORM struct T for an N-dimensional 
affine transformation. A is a nonsingular real (N+1)-by-(N+1) or (N+1)-by-N 
matrix. If A is (N+1)-by-(N+1), the last column of A must be [zeros(N,1);1]. 
Otherwise, A is augmented automatically, such that its last column is 
[zeros(N,1);1]. The matrix A defines a forward transformation such that 
tformfwd(U,T), where U is a 1-by-N vector, returns a 1-by-N vector X, such 
that X = U * A(1:N,1:N) + A(N+1,1:N). T has both forward and inverse 
transformations.

T = maketform('affine',U,X) builds a TFORM struct T for a two-dimensional 
affine transformation that maps each row of U to the corresponding row of X. 

Transform Type Description

'affine' Affine transformation in 2-D or N-D

'projective' Projective transformation in 2-D or N-D

'custom' User-defined transformation that can be N-D to 
M-D

'box' Independent affine transformation (scale and 
shift) in each dimension

'composite' Composition of an arbitrary number of more basic 
transformations
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The U and X arguments are each 3-by-2 and define the corners of input and 
output triangles. The corners cannot be collinear. 

Projective
T = maketform('projective',A) builds a TFORM struct for an N-dimensional 
projective transformation. A is a nonsingular real (N+1)-by-(N+1) matrix. 
A(N+1,N+1) cannot be 0. The matrix A defines a forward transformation such 
that tformfwd(U,T), where U is a 1-by-N vector, returns a 1-by-N vector X, such 
that X = W(1:N)/W(N+1), where W = [U 1] * A. The transformation structure 
T has both forward and inverse transformations.

T = maketform('projective',U,X) builds a TFORM struct T for a 
two-dimensional projective transformation that maps each row of U to the 
corresponding row of X. The U and X arguments are each 4-by-2 and define the 
corners of input and output quadrilaterals. No three corners can be collinear.

Custom
T = maketform('custom',NDIMS_IN,NDIMS_OUT,...

FORWARD_FCN,INVERSE_FCN,TDATA) builds a custom TFORM 
struct T based on user-provided function handles and parameters. NDIMS_IN 
and NDIMS_OUT are the numbers of input and output dimensions. FORWARD_FCN 
and INVERSE_FCN are function handles to forward and inverse functions. Those 
functions must support the following syntaxes:

where U is a P-by-NDIMS_IN matrix whose rows are points in the 
transformation's input space, and X is a P-by-NDIMS_OUT matrix whose rows are 
points in the transformation's output space. The TDATA argument can be any 
MATLAB array and is typically used to store parameters of the custom 
transformation. It is accessible to FORWARD_FCN and INVERSE_FCN via the tdata 
field of T. Either FORWARD_FCN or INVERSE_FCN can be empty, although at least 
INVERSE_FCN must be defined to use T with tformarray or imtransform.

Box
T = maketform('box',tsize,LOW,HIGH) or 
T = maketform('box',INBOUNDS, OUTBOUNDS) builds an N-dimensional affine 

Forward function: X = FORWARD_FCN(U,T)

Inverse function: U = INVERSE_FCN(X,T)
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TFORM struct T. The tsize argument is an N-element vector of positive integers. 
LOW and HIGH are also N-element vectors. The transformation maps an input 
box defined by the opposite corners ones(1,N) and tsize or, alternatively, by 
corners INBOUNDS(1,:) and INBOUND(2,:) to an output box defined by the 
opposite corners LOW and HIGH or OUTBOUNDS(1,:) and OUTBOUNDS(2,:). LOW(K) 
and HIGH(K) must be different unless tsize(K) is 1, in which case the affine 
scale factor along the Kth dimension is assumed to be 1.0. Similarly, 
INBOUNDS(1,K) and INBOUNDS(2,K) must be different unless OUTBOUNDS(1,K) 
and OUTBOUNDS(2,K) are the same, and vice versa. The 'box' TFORM is typically 
used to register the row and column subscripts of an image or array to some 
world coordinate system.

Composite
T = maketform('composite',T1,T2,...,TL) or 
T = maketform('composite', [T1 T2 ... TL]) builds a TFORM struct T whose 
forward and inverse functions are the functional compositions of the forward 
and inverse functions of T1, T2, ..., TL. 

For example, if L = 3, then tformfwd(U,T) is the same as 
tformfwd(tformfwd(tformfwd(U,T3),T2),T1). The components T1 through 
TL must be compatible in terms of the numbers of input and output dimensions. 
T has a defined forward transform function only if all the component 
transforms have defined forward transform functions. T has a defined inverse 
transform function only if all the component functions have defined inverse 
transform functions.

Example Make and apply an affine transformation.

T = maketform('affine',[.5 0 0; .5 2 0; 0 0 1]);
tformfwd([10 20],T)
I = imread('cameraman.tif');
I2 = imtransform(I,T);
imshow(I2)

See Also tformfwd, tforminv, fliptform, imtransform, tformarray
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14mat2grayPurpose Convert a matrix to a grayscale intensity image

Syntax I = mat2gray(A,[amin amax])
I = mat2gray(A)

Description I = mat2gray(A,[amin amax]) converts the matrix A to the intensity image I. 
The returned matrix I contains values in the range 0 (black) to 1.0 (full 
intensity or white). amin and amax are the values in A that correspond to 0 and 
1.0 in I.

I = mat2gray(A) sets the values of amin and amax to the minimum and 
maximum values in A.

Class Support The input array A and the output image I are of class double.

Example I = imread('rice.png');
J = filter2(fspecial('sobel'),I);
K = mat2gray(J);
imview(I), imview(K)

See Also gray2ind
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14mean2Purpose Compute the mean of the elements of a matrix

Syntax B = mean2(A)

Description B = mean2(A) computes the mean of the values in A.

Class Support The input image A can be numeric or logical. The output image B is a scalar 
of class double.

Algorithm mean2 computes the mean of an array A using mean(A(:)).

See Also std2

mean, std in the MATLAB Function Reference



medfilt2

14-330

14medfilt2Purpose Perform two-dimensional median filtering 

Syntax B = medfilt2(A,[m n])
B = medfilt2(A)
B = medfilt2(A,'indexed',...)

Description Median filtering is a nonlinear operation often used in image processing to 
reduce “salt and pepper” noise. Median filtering is more effective than 
convolution when the goal is to simultaneously reduce noise and preserve 
edges.

B = medfilt2(A,[m n]) performs median filtering of the matrix A in two 
dimensions. Each output pixel contains the median value in the m-by-n 
neighborhood around the corresponding pixel in the input image. medfilt2 
pads the image with 0’s on the edges, so the median values for the points within 
[m n]/2 of the edges might appear distorted.

B = medfilt2(A) performs median filtering of the matrix A using the default 
3-by-3 neighborhood. 

B = medfilt2(A,'indexed',...) processes A as an indexed image, padding 
with 0’s if the class of A is uint8, or 1’s if the class of A is double.

Class Support The input image A can be of class logical, uint8, uint16, or double (unless the 
'indexed' syntax is used, in which case A cannot be of class uint16). The 
output image B is of the same class as A. 

Note  For information about performance considerations, see ordfilt2. 

Remarks If the input image A is of an integer class, all the output values are returned as 
integers. If the number of pixels in the neighborhood (i.e., m*n) is even, some of 
the median values might not be integers. In these cases, the fractional parts 
are discarded. Logical input is treated similarly.

For example, suppose you call medfilt2 using 2-by-2 neighborhoods, and the 
input image is a uint8 array that includes this neighborhood.

1 5
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4 8

medfilt2 returns an output value of 4 for this neighborhood, although the true 
median is 4.5.

Example This example adds salt and pepper noise to an image, then restores the image 
using medfilt2.

I = imread('eight.tif');
J = imnoise(I,'salt & pepper',0.02);
K = medfilt2(J);
imview(J), imview(K)

Algorithm medfilt2 uses ordfilt2 to perform the filtering.

See Also filter2, ordfilt2, wiener2

Reference [1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood 
Cliffs, NJ, Prentice Hall, 1990, pp. 469-476.
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14montagePurpose Display multiple image frames as a rectangular montage

Syntax montage(I)
montage(BW)
montage(X,map)
montage(RGB)
h = montage(...)

Description montage displays all the frames of a multiframe image array in a single image 
object, arranging the frames so that they roughly form a square.

montage(I) displays the k frames of the intensity image array I. I is 
m-by-n-by-1-by-k.

montage(BW) displays the k frames of the binary image array BW. BW is 
m-by-n-by-1-by-k.

montage(X,map) displays the k frames of the indexed image array X, using the 
colormap map for all frames. X is m-by-n-by-1-by-k.

montage(RGB) displays the k frames of the true-color image array RGB. RGB is 
m-by-n-by-3-by-k.

h = montage(...) returns the handle to the image object.

Class Support The input image can be of class logical, uint8, uint16, or double.

Example load mri
montage(D,map)
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See Also immovie
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14nlfilterPurpose Perform general sliding-neighborhood operations

Syntax B = nlfilter(A,[m n],fun)
B = nlfilter(A,[m n],fun,P1,P2,...)
B = nlfilter(A,'indexed',...)

Description B = nlfilter(A,[m n],fun) applies the function fun to each m-by-n sliding 
block of A. fun is a function that accepts an m-by-n matrix as input and returns 
a scalar result.

c = fun(x)

c is the output value for the center pixel in the m-by-n block x. nlfilter calls 
fun for each pixel in A. nlfilter zero-pads the m-by-n block at the edges, if 
necessary.

B = nlfilter(A,[m n],fun,P1,P2,...) passes the additional parameters 
P1,P2,... to fun.

B = nlfilter(A,'indexed',...) processes A as an indexed image, padding 
with 1’s if A is of class double and 0’s if A is of class uint8.

Class Support The input image A can be of any class supported by fun. The class of B depends 
on the class of the output from fun.

Remarks nlfilter can take a long time to process large images. In some cases, the 
colfilt function can perform the same operation much faster.

Example fun can be a function_handle, created using @. This example produces the 
same result as calling medfilt2 with a 3-by-3 neighborhood.

B = nlfilter(A,[3 3],@myfun);

where myfun is an M-file containing

function scalar = myfun(x)
scalar = median(x(:));

fun can also be an inline object. The example above can be written as

fun = inline('median(x(:))');

See Also blkproc, colfilt
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14normxcorr2Purpose Normalized two-dimensional cross-correlation

Syntax C = normxcorr2(TEMPLATE,A)

Description C = normxcorr2(TEMPLATE,A) computes the normalized cross-correlation of 
the matrices TEMPLATE and A. The matrix A must be larger than the matrix 
TEMPLATE for the normalization to be meaningful. The values of TEMPLATE 
cannot all be the same. The resulting matrix C contains the correlation 
coefficients, which can range in value from -1.0 to 1.0.

Class Support The input matrices can be of class uint8, uint16, or double.

Algorithm normxcorr2 uses the following general procedure:

1 Calculate cross-correlation in the spatial or the frequency domain, 
depending on size of images.

2 Calculate local sums by precomputing running sums. [1]

3 Use local sums to normalize the cross-correlation to get correlation 
coefficients. [2]

Example T = .2*ones(11); % make light gray plus on dark gray background
T(6,3:9) = .6;
T(3:9,6) = .6;
BW = T>0.5;      % make white plus on black background
imview(BW), title('Binary')
figure, imshow(T), title('Template')

% make new image that offsets template T
T_offset = .2*ones(21);
offset = [3 5];  % shift by 3 rows, 5 columns
T_offset( (1:size(T,1))+offset(1), (1:size(T,2))+offset(2) ) = T;
imview(T_offset), title('Offset Template')

% cross-correlate BW and T_offset to recover offset
cc = normxcorr2(BW,T_offset);
[max_cc, imax] = max(abs(cc(:)));
[ypeak, xpeak] = ind2sub(size(cc),imax(1));
corr_offset = [ (ypeak-size(T,1)) (xpeak-size(T,2)) ];
isequal(corr_offset,offset) % 1 means offset was recovered
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See Also corrcoef

References [1] Lewis, J. P., “Fast Normalized Cross-Correlation,” Industrial Light & 
Magic, 
<http://www.idiom.com/~zilla/Papers/nvisionInterface/nip.html>

[2] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision, 
Volume II, Addison-Wesley, 1992, pp. 316-317.
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14ntsc2rgbPurpose Convert NTSC values to RGB color space

Syntax rgbmap = ntsc2rgb(yiqmap)
RGB = ntsc2rgb(YIQ)

Description rgbmap = ntsc2rgb(yiqmap) converts the m-by-3 NTSC (television) color 
values in yiqmap to RGB color space. If yiqmap is m-by-3 and contains the NTSC 
luminance (Y) and chrominance (I and Q) color components as columns, then 
rgbmap is an m-by-3 matrix that contains the red, green, and blue values 
equivalent to those colors. Both rgbmap and yiqmap contain intensities in the 
range 0 to 1.0. The intensity 0 corresponds to the absence of the component, 
while the intensity 1.0 corresponds to full saturation of the component.

RGB = ntsc2rgb(YIQ) converts the NTSC image YIQ to the equivalent 
true-color image RGB.

ntsc2rgb computes the RGB values from the NTSC components using

Class Support The input image or colormap must be of class double. The output is of class 
double.

See Also rgb2ntsc, rgb2ind, ind2rgb, ind2gray

R
G
B

1.000  0.956  0.621
1.000  0.272–   0.647–

1.000  1.106–   1.703

Y
I
Q

=
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14ordfilt2Purpose Perform two-dimensional order-statistic filtering

Syntax B = ordfilt2(A,order,domain)
B = ordfilt2(A,order,domain,S)
B = ordfilt2(...,padopt)

Description B = ordfilt2(A,order,domain) replaces each element in A by the orderth 
element in the sorted set of neighbors specified by the nonzero elements in 
domain.

B = ordfilt2(A,order,domain,S), where S is the same size as domain, uses 
the values of S corresponding to the nonzero values of domain as additive 
offsets. 

B = ordfilt2(...,padopt) controls how the matrix boundaries are padded. 
Set padopt to 'zeros' (the default) or 'symmetric'. If padopt is 'zeros', A is 
padded with 0’s at the boundaries. If padopt is 'symmetric', A is symmetrically 
extended at the boundaries.

Class Support The class of A can be logical, uint8, uint16, or double. The class of B is the 
same as the class of A, unless the additive offset form of ordfilt2 is used, in 
which case the class of B is double. 

Remarks domain is equivalent to the structuring element used for binary image 
operations. It is a matrix containing only 1’s and 0’s; the 1’s define the 
neighborhood for the filtering operation.

For example, B = ordfilt2(A,5,ones(3,3)) implements a 3-by-3 median 
filter; B = ordfilt2(A,1,ones(3,3)) implements a 3-by-3 minimum filter; 
and B = ordfilt2(A,9,ones(3,3)) implements a 3-by-3 maximum filter. 
B = ordfilt2(A,1,[0 1 0; 1 0 1; 0 1 0]) replaces each element in A by the 
minimum of its north, east, south, and west neighbors. 

The syntax that includes S (the matrix of additive offsets) can be used to 
implement grayscale morphological operations, including grayscale dilation 
and erosion.

Performance Considerations
When working with large domain matrices that do not contain any zero-valued 
elements, ordfilt2 can achieve higher performance if A is in an integer data 
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format (uint8, int8, uint16, int16). The gain in speed is larger for uint8 and 
int8 than for the 16-bit data types. For 8-bit data formats, the domain matrix 
must contain seven or more rows. For 16-bit data formats, the domain matrix 
must contain three or more rows and 520 or more elements.

See Also medfilt2

Reference [1] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision, 
Volume I, Addison-Wesley, 1992.

[2] Huang, T.S., G.J.Yang, and G.Y.Tang. “A fast two-dimensional median 
filtering algorithm.”, IEEE transactions on Acoustics, Speech and Signal 
Processing, Vol ASSP 27, No. 1, February 1979.
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14otf2psfPurpose Convert optical transfer function to point-spread function

Syntax PSF = otf2psf(OTF)
PSF = otf2psf(OTF,OUTSIZE)

Description PSF = otf2psf(OTF) computes the inverse Fast Fourier Transform (IFFT) of 
the optical transfer function (OTF) array and creates a point-spread function 
(PSF), centered at the origin. By default, the PSF is the same size as the OTF.

PSF = otf2psf(OTF,OUTSIZE) converts the OTF array into a PSF array, where 
OUTSIZE specifies the size of the output point-spread function. The size of the 
output array must not exceed the size of the OTF array in any dimension.

To center the PSF at the origin, otf2psf circularly shifts the values of the 
output array down (or to the right) until the (1,1) element reaches the central 
position, then it crops the result to match dimensions specified by OUTSIZE.

Note that this function is used in image convolution/deconvolution when the 
operations involve the FFT.

Class Support OTF can be any nonsparse, numeric array. PSF is of class double.

Example PSF  = fspecial('gaussian',13,1);
OTF  = psf2otf(PSF,[31 31]); % PSF --> OTF
PSF2 = otf2psf(OTF,size(PSF)); % OTF --> PSF2
subplot(1,2,1); surf(abs(OTF)); title('|OTF|');
axis square; axis tight
subplot(1,2,2); surf(PSF2); title('Corresponding PSF');
axis square; axis tight

See Also psf2otf, circshift, padarray
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14padarrayPurpose Pad an array

Syntax B = padarray(A,padsize)
B = padarray(A,padsize,padval)
B = padarray(A,padsize,padval,direction)
B = padarray(A,padsize,method,direction)

Description B = padarray(A,padsize) pads array A with padsize(k) number of 0’s along 
the kth dimension of A. padsize should be a vector of positive integers. 

B = padarray(A,padsize,padval) pads array A with padval (a scalar) instead 
of with 0’s.

B = padarray(A,padsize,padval,direction) pads A in the direction 
specified by the string direction. direction can be one of the following 
strings. The default value is enclosed in braces ({}). 

B = padarray(A,padsize,method,direction) pads array A using the specified 
padding method. method specifies the method used to determine the values of 
the elements added as padding. You can use the following strings to specify the 
method used to determine pad values. 

Value Meaning

{'both'} Pads before the first element and after the last array 
element along each dimension. This is the default.

'post' Pad after the last array element along each dimension. 

'pre' Pad before the first array element along each dimension. 

Value Meaning

'circular' Pad with circular repetition of elements within the 
dimension.

'replicate' Pad by repeating border elements of array.

'symmetric' Pad array with mirror reflections of itself.
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Class Support When padding with a constant value, A can be numeric or logical. When 
padding using the 'circular', 'replicate', or 'symmetric' methods, A can 
be of any class. B is of the same class as A.

Example Add three elements of padding to the beginning of a vector. The padding 
elements contain mirror copies of the array. 

b = padarray([1 2 3 4],3,'symmetric','pre')
b =

     3     2     1     1     2     3     4

Add three elements of padding to the end of the first dimension of the array and 
two elements of padding to the end of the second dimension. Use the value of 
the last array element as the padding value.

B = padarray([1 2; 3 4],[3 2],'replicate','post')
B =

     1     2     2     2
     3     4     4     4
     3     4     4     4
     3     4     4     4
     3     4     4     4

Add three elements of padding to each dimension of a three-dimensional array. 
Each pad element contains the value 0.

A = [ 1 2; 3 4];
B = [ 5 6; 7 8];
C = cat(3,A,B)
C(:,:,1) =

     1     2
     3     4

C(:,:,2) =

     5     6
     7     8
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D = padarray(C,[3 3],0,'both')
D(:,:,1) =
     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0
     0     0     0     1     2     0     0     0
     0     0     0     3     4     0     0     0
     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0

D(:,:,2) =
     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0
     0     0     0     5     6     0     0     0
     0     0     0     7     8     0     0     0
     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0

See Also circshift, imfilter
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14para2fanPurpose Compute fan-beam projections from parallel-beam tomography data

Syntax F = para2fan(P,D)
I = para2fan(...,param1,val1,param2,val2,...)
[F,fan_positions,fan_rotation_angles] = fan2para(...)

Description F = para2fan(P,D) computes the fan-beam data (sinogram) F from the 
parallel-beam data (sinogram) P. Each column of P contains the parallel-beam 
sensor samples at one rotation angle. D is the distance in pixels from the center 
of rotation to the center of the sensors. 

The sensors are assumed to have a one-pixel spacing. The parallel-beam 
rotation angles are assumed to be spaced equally to cover [0,180] degrees. The 
calculated fan-beam rotation angles cover [0,360) with the same spacing as the 
parallel-beam rotation angles. The calculated fan-beam angles are equally 
spaced with the spacing set to the smallest angle implied by the sensor spacing.

I = para2fan(...,param1,val1,param2,val2,...) specifies parameters 
that control various aspects of the para2fan conversion. Parameter names can 
be abbreviated, and case does not matter. Default values are enclosed in braces 
like this: {default}. Parameters include

Parameter Description

'FanCoverage' String specifying the range through which the beams are 
rotated.

Possible values: {'cycle'} or 'minimal'

See ifanbeam for details.

'FanRotationIncrement' Positive real scalar specifying the rotation angle increment of 
the fan-beam projections in degrees.

If 'FanCoverage' is 'cycle', 'FanRotationIncrement' must 
be a factor of 360.

If 'FanRotationIncrement' is not specified, then it is set to 
the same spacing as the parallel-beam rotation angles.
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'FanSensorGeometry' Text string specifying how sensors are positioned.
Possible values:  {'arc'} or  'line' 
See fanbeam for details.

'FanSensorSpacing' Positive real scalar specifying the spacing of the fan beams. 
Interpretation of the value depends on the setting of 
'FanSensorGeometry':

If 'FanSensorGeometry' is 'arc', the value defines the 
angular spacing in degrees. Default value is 1.

If 'FanSensorGeometry' is 'line', the value defines the linear 
spacing in pixels. 

If 'FanSensorSpacing' is not specified, the default is the 
smallest value implied by 'ParallelSensorSpacing' such 
that

If 'FanSensorGeometry' is 'arc', 'FanSensorSpacing' is

  180/PI*ASIN(PSPACE/D) 

where PSPACE is the value of  'ParallelSensorSpacing'.

If 'FanSensorGeometry' is 'line', 'FanSensorSpacing' is

 D*ASIN(PSPACE/D)

'Interpolation' Text string specifying the type of interpolation used between 
the parallel-beam and fan-beam data.

'nearest' — Nearest-neighbor

{'linear'} — Linear

'spline' — Piecewise cubic spline

'pchip' — Piecewise cubic Hermite (PCHIP)

'cubic' — Same as 'pchip'

Parameter Description
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[F,fan_positions,fan_rotation_angles] = fan2para(...) If 
'FanSensorGeometry' is 'arc', fan_positions contains the fan-beam sensor 
measurement angles. If 'FanSensorGeometry' is 'line', fan_positions 
contains the fan-beam sensor positions along the line of sensors. 
fan_rotation_angles contains rotation angles.

Class Support All numeric input arguments must be of class double. The output arguments 
are of class double.

Example Generate parallel-beam projections

ph = phantom(128);
theta = 0:180;

'ParallelCoverage' Text string specifying the range of rotation.

'cycle' — Parallel data covers 360 degrees

{'halfcycle'} — Parallel data covers 180 degrees

'ParallelRotationIncrement' Positive real scalar specifying the parallel-beam rotation 
angle increment, measured in degrees. Parallel beam angles 
are calculated to cover [0,180) degrees with increment 
PAR_ROT_INC, where PAR_ROT_INC is the value of 
'ParallelRotationIncrement'. 180/PAR_ROT_INC must be 
an integer. 
If 'ParallelRotationIncrement' is not specified, the 
increment is assumed to be the same as the increment of the 
fan-beam rotation angles.

'ParallelSensorSpacing' Positive real scalar specifying the spacing of the 
parallel-beam sensors in pixels. The range of sensor locations 
is implied by the range of fan angles and is given by

[D*sin(min(FAN_ANGLES)),D*sin(max(FAN_ANGLES))]

If 'ParallelSensorSpacing' is not specified, the spacing is 
assumed to be uniform and is set to the minimum spacing 
implied by the fan angles and sampled over the range implied 
by the fan angles.

Parameter Description
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[P,xp] = radon(ph,theta);
imshow(theta,xp,P,[],'n'), axis normal
title('Parallel-Beam Projections')
xlabel('\theta (degrees)')
ylabel('x''')
colormap(hot), colorbar

Convert to fan-beam projections

[F,Fpos,Fangles] = para2fan(P,100);  
figure, imshow(Fangles,Fpos,F,[],'n'), axis normal
title('Fan-Beam Projections')
xlabel('\theta (degrees)')
ylabel('Sensor Locations (degrees)')
colormap(hot), colorbar

See Also fan2para, fanbeam, iradon, ifanbeam, phantom, radon
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14phantomPurpose Generate a head phantom image

Syntax P = phantom(def,n)
P = phantom(E,n)
[P,E] = phantom(...)

Description P = phantom(def,n) generates an image of a head phantom that can be used 
to test the numerical accuracy of radon and iradon or other two-dimensional 
reconstruction algorithms. P is a grayscale intensity image that consists of one 
large ellipse (representing the brain) containing several smaller ellipses 
(representing features in the brain).

def is a string that specifies the type of head phantom to generate. Valid values 
are

• 'Shepp-Logan'— Test image used widely by researchers in tomography

• 'Modified Shepp-Logan' (default) — Variant of the Shepp-Logan phantom 
in which the contrast is improved for better visual perception

n is a scalar that specifies the number of rows and columns in P. If you omit the 
argument, n defaults to 256.

P = phantom(E,n) generates a user-defined phantom, where each row of the 
matrix E specifies an ellipse in the image. E has six columns, with each column 
containing a different parameter for the ellipses. This table describes the 
columns of the matrix.

Column Parameter Meaning

Column 1 A Additive intensity value of the 
ellipse

Column 2 a Length of the horizontal semiaxis of 
the ellipse 

Column 3 b Length of the vertical semiaxis of 
the ellipse

Column 4 x0 x-coordinate of the center of the 
ellipse
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For purposes of generating the phantom, the domains for the x- and y-axes 
span [-1,1]. Columns 2 through 5 must be specified in terms of this range.

[P,E] = phantom(...) returns the matrix E used to generate the phantom.

Class Support All inputs and all outputs must be of class double. 

Remarks For any given pixel in the output image, the pixel’s value is equal to the sum of 
the additive intensity values of all ellipses that the pixel is a part of. If a pixel 
is not part of any ellipse, its value is 0. 

The additive intensity value A for an ellipse can be positive or negative; if it is 
negative, the ellipse will be darker than the surrounding pixels. Note that, 
depending on the values of A, some pixels can have values outside the range 
[0,1].

Example P = phantom('Modified Shepp-Logan',200);
imshow(P)

Column 5 y0 y-coordinate of the center of the 
ellipse

Column 6 phi Angle (in degrees) between the 
horizontal semiaxis of the ellipse 
and the x-axis of the image

Column Parameter Meaning
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Reference [1] Jain, Anil K., Fundamentals of Digital Image Processing, Englewood Cliffs, 
NJ, Prentice Hall, 1989, p. 439.

See Also radon, iradon
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14pixvalPurpose Display information about image pixels

Syntax pixval on
pixval off
pixval
pixval(fig,option)
pixval(ax,option)
pixval(H,option)

Description pixval on turns on interactive display of information about image pixels in the 
current figure. pixval installs a black bar at the bottom of the figure, which 
displays the (x,y) coordinates for whatever pixel the cursor is currently over 
and the color information for that pixel. If the image is binary or intensity, the 
color information is a single intensity value. If the image is indexed or RGB, 
the color information is an RGB triplet. The values displayed are the actual 
data values, regardless of the class of the image array, or whether the data is 
in normal image range.

If you click the image and hold down the mouse button while you move the 
cursor, pixval also displays the Euclidean distance between the point you 
clicked and the current cursor location. pixval draws a line between these 
points to indicate the distance being measured. When you release the mouse 
button, the line and the distance display disappear.

You can move the display bar by clicking it and dragging it to another place in 
the figure.

pixval off turns interactive display off in the current figure. You can also turn 
off the display by clicking the button on the right side of the display bar.

pixval toggles interactive display on or off in the current figure.

pixval(fig,option) applies the pixval command to the figure specified by 
fig. option is a string containing 'on' or 'off'.

pixval(ax,option) applies the pixval command to the figure that contains 
the axes ax. option is a string containing 'on' or 'off'.

pixval(H,option) applies the pixval command to the figure that contains the 
image object H. option is a string containing 'on' or 'off'.
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See Also impixel, improfile
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14poly2maskPurpose Convert region polygon to region mask

Syntax BW = poly2mask(x,y,m,n)

Purpose BW = poly2mask(x,y,m,n) computes a binary region-of-interest mask BW from 
a region-of-interest polygon represented by the vectors x and y. The size of BW 
is m-by-n. Pixels in BW that are inside the polygon (x,y) are set to 1; pixels 
outside the polygon are set to 0 (zero). The class of BW is logical.

poly2mask closes the polygon automatically if it isn't already closed.

Example x = [63 186 54 190 63];
y = [60 60 209 204 60];
bw = poly2mask(x,y,256,256);
imshow(bw)
hold on
plot(x,y,'b','LineWidth',2)
hold off

Create a mask using random points.

x = 256*rand(1,4);
y = 256*rand(1,4);
x(end+1) = x(1);
y(end+1) = y(1);
bw = poly2mask(x,y,256,256);
imshow(bw)
hold on
plot(x,y,'b','LineWidth',2)
hold off

See Also roipoly
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14psf2otfPurpose Convert point-spread function to optical transfer function

Syntax OTF = psf2otf(PSF)
OTF = psf2otf(PSF,OUTSIZE)

Description OTF = psf2otf(PSF) computes the fast Fourier transform (FFT) of the 
point-spread function (PSF) array and creates the optical transfer function 
array, OTF, that is not influenced by the PSF off-centering. By default, the OTF 
array is the same size as the PSF array.

OTF = psf2otf(PSF,OUTSIZE) converts the PSF array into an OTF array, where 
OUTSIZE specifies the size of the OTF array. OUTSIZE cannot be smaller than the 
PSF array size in any dimension.

To ensure that the OTF is not altered because of PSF off-centering, psf2otf 
postpads the PSF array (down or to the right) with 0’s to match dimensions 
specified in OUTSIZE, then circularly shifts the values of the PSF array up (or to 
the left) until the central pixel reaches (1,1) position.

Note that this function is used in image convolution/deconvolution when the 
operations involve the FFT. 

Class Support PSF can be any nonsparse, numeric array. OTF is of class double.

Example PSF  = fspecial('gaussian',13,1);
OTF  = psf2otf(PSF,[31 31]); % PSF --> OTF
subplot(1,2,1); surf(PSF); title('PSF');
axis square; axis tight
subplot(1,2,2); surf(abs(OTF)); title('Corresponding |OTF|');
axis square; axis tight

See Also otf2psf, circshift, padarray
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14qtdecompPurpose Perform quadtree decomposition

Syntax S = qtdecomp(I)
S = qtdecomp(I,threshold)
S = qtdecomp(I,threshold,mindim)
S = qtdecomp(I,threshold,[mindim maxdim])

S = qtdecomp(I,fun)
S = qtdecomp(I,fun,P1,P2,...)

Description qtdecomp divides a square image into four equal-sized square blocks, and then 
tests each block to see if it meets some criterion of homogeneity. If a block 
meets the criterion, it is not divided any further. If it does not meet the 
criterion, it is subdivided again into four blocks, and the test criterion is applied 
to those blocks. This process is repeated iteratively until each block meets the 
criterion. The result can have blocks of several different sizes.

S = qtdecomp(I) performs a quadtree decomposition on the intensity image I 
and returns the quadtree structure in the sparse matrix S. If S(k,m) is nonzero, 
then (k,m) is the upper left corner of a block in the decomposition, and the size 
of the block is given by S(k,m). By default, qtdecomp splits a block unless all 
elements in the block are equal. 

S = qtdecomp(I,threshold) splits a block if the maximum value of the block 
elements minus the minimum value of the block elements is greater than 
threshold. threshold is specified as a value between 0 and 1, even if I is of 
class uint8 or uint16. If I is uint8, the threshold value you supply is 
multiplied by 255 to determine the actual threshold to use; if I is uint16, the 
threshold value you supply is multiplied by 65535.

S = qtdecomp(I,threshold,mindim) will not produce blocks smaller than 
mindim, even if the resulting blocks do not meet the threshold condition.

S = qtdecomp(I,threshold,[mindim maxdim]) will not produce blocks 
smaller than mindim or larger than maxdim. Blocks larger than maxdim are split 
even if they meet the threshold condition. maxdim/mindim must be a power of 2.

S = qtdecomp(I,fun) uses the function fun to determine whether to split a 
block. qtdecomp calls fun with all the current blocks of size m-by-m stacked into 
an m-by-m-by-k array, where k is the number of m-by-m blocks. fun should return 
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a logical k-element vector, whose values are 1 if the corresponding block should 
be split, and 0 otherwise. (For example, if k(3) is 0, the third m-by-m block 
should not be split.) fun can be a function_handle, created using @, or an inline 
object. 

S = qtdecomp(I,fun,P1,P2,...) passes P1,P2,... as additional arguments 
to fun. 

Class Support For the syntaxes that do not include a function, the input image can be of class 
logical, uint8, uint16, or double. For the syntaxes that include a function, 
the input image can be of any class supported by the function. The output 
matrix is always of class sparse.

Remarks qtdecomp is appropriate primarily for square images whose dimensions are a 
power of 2, such as 128-by-128 or 512-by-512. These images can be divided 
until the blocks are as small as 1-by-1. If you use qtdecomp with an image 
whose dimensions are not a power of 2, at some point the blocks cannot be 
divided further. For example, if an image is 96-by-96, it can be divided into 
blocks of size 48-by-48, then 24-by-24, 12-by-12, 6-by-6, and finally 3-by-3. No 
further division beyond 3-by-3 is possible. To process this image, you must set 
mindim to 3 (or to 3 times a power of 2); if you are using the syntax that includes 
a function, the function must return 0 at the point when the block cannot be 
divided further.

Example I = [1     1     1     1     2     3     6     6
     1     1     2     1     4     5     6     8
     1     1     1     1    10    15     7     7
     1     1     1     1    20    25     7     7
    20    22    20    22     1     2     3     4
    20    22    22    20     5     6     7     8
    20    22    20    20     9    10    11    12
    22    22    20    20    13    14    15    16];

S = qtdecomp(I,5);

full(S)
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ans =

     4     0     0     0     2     0     2     0
     0     0     0     0     0     0     0     0
     0     0     0     0     1     1     2     0
     0     0     0     0     1     1     0     0
     4     0     0     0     2     0     2     0
     0     0     0     0     0     0     0     0
     0     0     0     0     2     0     2     0
     0     0     0     0     0     0     0     0

View the block representation of quadtree decomposition.

I = imread('liftingbody.png');
S = qtdecomp(I,.27);
blocks = repmat(uint8(0),size(S));

for dim = [512 256 128 64 32 16 8 4 2 1];    
numblocks = length(find(S==dim));    
if (numblocks > 0)        

values = repmat(uint8(1),[dim dim numblocks]);
values(2:dim,2:dim,:) = 0;
blocks = qtsetblk(blocks,S,dim,values);

end
end

blocks(end,1:end) = 1;
blocks(1:end,end) = 1;

imshow(I),figure,imshow(blocks,[])

The following figure shows the original image and a representation of the 
quadtree decomposition of the image.
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See Also qtgetblk, qtsetblk

Image Courtesy of NASA
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14qtgetblkPurpose Get block values in quadtree decomposition

Syntax [vals,r,c] = qtgetblk(I,S,dim)
[vals,idx] = qtgetblk(I,S,dim)

Description [vals,r,c] = qtgetblk(I,S,dim) returns in vals an array containing the 
dim-by-dim blocks in the quadtree decomposition of I. S is the sparse matrix 
returned by qtdecomp; it contains the quadtree structure. vals is a 
dim-by-dim-by-k array, where k is the number of dim-by-dim blocks in the 
quadtree decomposition; if there are no blocks of the specified size, all outputs 
are returned as empty matrices. r and c are vectors containing the row and 
column coordinates of the upper left corners of the blocks.

[vals,idx] = qtgetblk(I,S,dim) returns in idx a vector containing the 
linear indices of the upper left corners of the blocks.

Class Support I can be of class logical, uint8, uint16, or double. S is of class sparse.

Remarks The ordering of the blocks in vals matches the columnwise order of the blocks 
in I. For example, if vals is 4-by-4-by-2, vals(:,:,1) contains the values from 
the first 4-by-4 block in I, and vals(:,:,2) contains the values from the second 
4-by-4 block.

Example This example continues the qtdecomp example.

[vals,r,c] = qtgetblk(I,S,4) 
 
vals(:,:,1) =
 
     1     1     1     1
     1     1     2     1
     1     1     1     1
     1     1     1     1
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vals(:,:,2) =
 
    20    22    20    22
    20    22    22    20
    20    22    20    20
    22    22    20    20
 
 
r =
 
     1
     5

c =
 
     1
     1

See Also qtdecomp, qtsetblk
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14qtsetblkPurpose Set block values in quadtree decomposition

Syntax J = qtsetblk(I,S,dim,vals)

Description J = qtsetblk(I,S,dim,vals) replaces each dim-by-dim block in the quadtree 
decomposition of I with the corresponding dim-by-dim block in vals. S is the 
sparse matrix returned by qtdecomp; it contains the quadtree structure. vals 
is a dim-by-dim-by-k array, where k is the number of dim-by-dim blocks in the 
quadtree decomposition. 

Class Support I can be of class logical, uint8, uint16, or double. S is of class sparse.

Remarks The ordering of the blocks in vals must match the columnwise order of the 
blocks in I. For example, if vals is 4-by-4-by-2, vals(:,:,1) contains the 
values used to replace the first 4-by-4 block in I, and vals(:,:,2) contains the 
values for the second 4-by-4 block.

Example This example continues the qtgetblock example.

newvals = cat(3,zeros(4),ones(4)); 
J = qtsetblk(I,S,4,newvals)
 
J =
 
     0     0     0     0     2     3     6     6
     0     0     0     0     4     5     6     8
     0     0     0     0    10    15     7     7
     0     0     0     0    20    25     7     7
     1     1     1     1     1     2     3     4
     1     1     1     1     5     6     7     8
     1     1     1     1     9    10    11    12
     1     1     1     1    13    14    15    16

See Also qtdecomp, qtgetblk
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radon
Purpose Radon transform

Syntax R = radon(I,theta)
[R,xp] = radon(...)

Description R = radon(I,theta) returns the Radon transform R of the intensity image I 
for the angle theta degrees. 

The Radon transform is the projection of the image intensity along a radial line 
oriented at a specific angle. If theta is a scalar, R is a column vector containing 
the Radon transform for theta degrees. If theta is a vector, R is a matrix in 
which each column is the Radon transform for one of the angles in theta. If you 
omit theta, it defaults to 0:179.

[R,xp] = radon(...) returns a vector xp containing the radial coordinates 
corresponding to each row of R.

The radial coordinates returned in xp are the values along the x'-axis, which is 
oriented at theta degrees counterclockwise from the x-axis. The origin of both 
axes is the center pixel of the image, which is defined as

floor((size(I)+1)/2)

For example, in a 20-by-30 image, the center pixel is (10,15).

Class Support I can be of class double, logical, or any integer class. All other inputs and 
outputs are of class double.

Example iptsetpref('ImshowAxesVisible','on')
I = zeros(100,100);
I(25:75,25:75) = 1;
theta = 0:180;
[R,xp] = radon(I,theta);
imshow(theta,xp,R,[],'notruesize')
xlabel('\theta (degrees)')
ylabel('x''')
colormap(hot), colorbar
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See Also fan2para, fanbeam, ifanbeam, iradon, para2fan, phantom

References Bracewell, Ronald N., Two-Dimensional Imaging, Englewood Cliffs, NJ, 
Prentice Hall, 1995, pp. 505-537.

Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, 
NJ, Prentice Hall, 1990, pp. 42-45.
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14reflectPurpose Reflect structuring element

Syntax SE2 = reflect(SE)

Description SE2 = reflect(SE) reflects a structuring element through its center. The 
effect is the same as if you rotated the structuring element's domain 180 
degrees around its center (for a 2-D structuring element). If SE is an array of 
structuring element objects, then reflect(SE) reflects each element of SE, and 
SE2 has the same size as SE.

Class Support SE and SE2 are STREL objects.

Example se = strel([0 0 1; 0 0 0; 0 0 0])
se2 = reflect(se)
se =
Flat STREL object containing 1 neighbor.

Neighborhood:
     0     0     1
     0     0     0
     0     0     0

se2 =
Flat STREL object containing 1 neighbor.

Neighborhood:
     0     0     0
     0     0     0
     1     0     0

See Also strel
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14regionpropsPurpose Measure properties of image regions

Syntax STATS = regionprops(L,properties)

Description STATS = regionprops(L,properties) measures a set of properties for each 
labeled region in the label matrix L. Positive integer elements of L correspond 
to different regions. For example, the set of elements of L equal to 1 corresponds 
to region 1; the set of elements of L equal to 2 corresponds to region 2; and so 
on. The return value STATS is a structure array of length max(L(:)). The fields 
of the structure array denote different measurements for each region, as 
specified by properties.

properties can be a comma-separated list of strings, a cell array containing 
strings, the single string 'all', or the string 'basic'. This table lists the set 
of valid property strings. Property strings are case insensitive and can be 
abbreviated.

If properties is the string 'all', then all the preceding measurements are 
computed. If properties is not specified or if it is the string 'basic', then 
these measurements are computed: 'Area', 'Centroid', and 'BoundingBox'.

Definitions 'Area'— Scalar; the actual number of pixels in the region. (This value might 
differ slightly from the value returned by bwarea, which weights different 
patterns of pixels differently.)

'Area' 'EquivDiameter' 'MajorAxisLength'

'BoundingBox' 'EulerNumber' 'MinorAxisLength'

'Centroid' 'Extent' 'Orientation'

'ConvexArea' 'Extrema' 'PixelIdxList'

'ConvexHull' 'FilledArea' 'PixelList'

'ConvexImage' 'FilledImage' 'Solidity'

'Eccentricity' 'Image'
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'BoundingBox'— 1-by-ndims(L)*2 vector; the smallest rectangle containing 
the region. BoundingBox is [ul_corner width], where

'Centroid'— 1-by-ndims(L) vector; the center of mass of the region. Note that 
the first element of Centroid is the horizontal coordinate (or x-coordinate) of 
the center of mass, and the second element is the vertical coordinate (or 
y-coordinate). All other elements of Centroid are in order of dimension.

This figure illustrates the centroid and bounding box. The region consists of the 
white pixels; the green box is the bounding box, and the red dot is the centroid.

'MajorAxisLength'— Scalar; the length (in pixels) of the major axis of the 
ellipse that has the same normalized second central moments as the region. 
This property is supported only for 2-D input label matrices.

'MinorAxisLength' — Scalar; the length (in pixels) of the minor axis of the 
ellipse that has the same normalized second central moments as the region. 
This property is supported only for 2-D input label matrices.

'Eccentricity' — Scalar; the eccentricity of the ellipse that has the same 
second-moments as the region. The eccentricity is the ratio of the distance 
between the foci of the ellipse and its major axis length. The value is between 
0 and 1. (0 and 1 are degenerate cases; an ellipse whose eccentricity is 0 is 
actually a circle, while an ellipse whose eccentricity is 1 is a line segment.) This 
property is supported only for 2-D input label matrices.

'Orientation' — Scalar; the angle (in degrees) between the x-axis and the 
major axis of the ellipse that has the same second-moments as the region. This 
property is supported only for 2-D input label matrices.

ul_corner is in the form [x y z ...] and specifies the upper left 
corner of the bounding box

width is in the form [x_width y_width ...] and specifies 
the width of the bounding box along each dimension
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This figure illustrates the axes and orientation of the ellipse. The left side of 
the figure shows an image region and its corresponding ellipse. The right side 
shows the same ellipse, with features indicated graphically; the solid blue lines 
are the axes, the red dots are the foci, and the orientation is the angle between 
the horizontal dotted line and the major axis.

'Image' — Binary image (logical) of the same size as the bounding box of the 
region; the on pixels correspond to the region, and all other pixels are off.

'FilledImage' — Binary image (logical) of the same size as the bounding 
box of the region. The on pixels correspond to the region, with all holes filled in.

'FilledArea' — Scalar; the number of on pixels in FilledImage.

Original Image, Containing a Single Region Image Returned
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'ConvexHull' — p-by-2 matrix; the smallest convex polygon that can contain 
the region. Each row of the matrix contains the x- and y-coordinates of one 
vertex of the polygon. This property is supported only for 2-D input label 
matrices.

'ConvexImage' — Binary image (logical); the convex hull, with all pixels 
within the hull filled in (i.e., set to on). (For pixels that the boundary of the hull 
passes through, regionprops uses the same logic as roipoly to determine 
whether the pixel is inside or outside the hull.) The image is the size of the 
bounding box of the region. This property is supported only for 2-D input label 
matrices.

'ConvexArea' — Scalar; the number of pixels in 'ConvexImage'. This property 
is supported only for 2-D input label matrices.

'EulerNumber' – Scalar; equal to the number of objects in the region minus the 
number of holes in those objects. This property is supported only for 2-D input 
label matrices.

'Extrema' — 8-by-2 matrix; the extrema points in the region. Each row of the 
matrix contains the x- and y-coordinates of one of the points. The format of the 
vector is [top-left top-right right-top right-bottom bottom-right 
bottom-left left-bottom left-top]. This property is supported only for 2-D 
input label matrices.

Original Image, Containing a Single Region Image Returned
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This figure illustrates the extrema of two different regions. In the region on the 
left, each extrema point is distinct; in the region on the right, certain extrema 
points (e.g., top-left and left-top) are identical.

'EquivDiameter' — Scalar; the diameter of a circle with the same area as the 
region. Computed as sqrt(4*Area/pi). This property is supported only for 2-D 
input label matrices.

'Solidity' — Scalar; the proportion of the pixels in the convex hull that are 
also in the region. Computed as Area/ConvexArea. This property is supported 
only for 2-D input label matrices.

'Extent' — Scalar; the proportion of the pixels in the bounding box that are 
also in the region. Computed as the Area divided by the area of the bounding 
box. This property is supported only for 2-D input label matrices.

'PixelIdxList' — p-element vector containing the linear indices of the pixels 
in the region. 

'PixelList' — p-by-ndims(L) matrix; the actual pixels in the region. Each 
row of the matrix has the form [x y z ...] and specifies the coordinates of one 
pixel in the region.

Class Support The input label matrix L can have any numeric class.

Remarks Using the Comma-Separated List Syntax
The comma-separated list syntax for structure arrays is very useful when you 
work with the output of regionprops. For example, for a field that contains a 
scalar, you can use this syntax to create a vector containing the value of this 
field for each region in the image.

top-left

left-top

left-bottom

bottom-left

top-right

right-bottom

right-top

bottom-right

top-left

left-top

left-bottom

bottom-left

top-right

right-bottom

right-top

bottom-right
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For instance, if stats is a structure array with field Area, then the following 
two expressions are equivalent:

stats(1).Area, stats(2).Area, ..., stats(end).Area

and

stats.Area

Therefore, you can use these calls to create a vector containing the area of each 
region in the image.

stats = regionprops(L,'Area');
allArea = [stats.Area];

allArea is a vector of the same length as the structure array stats.

Selecting Regions Based on Certain Criteria
The function ismember is useful in conjunction with regionprops for selecting 
regions based on certain criteria. For example, these commands create a binary 
image containing only the regions whose area is greater than 80.

idx = find([stats.Area] > 80);
BW2 = ismember(L,idx);

Performance Considerations
Most of the measurements take very little time to compute. The exceptions are 
these, which can take significantly longer, depending on the number of regions 
in L:

• 'ConvexHull'
• 'ConvexImage'
• 'ConvexArea'
• 'FilledImage'

Note that computing certain groups of measurements takes about the same 
amount of time as computing just one of them because regionprops takes 
advantage of intermediate computations used in both computations. Therefore, 
it is fastest to compute all the desired measurements in a single call to 
regionprops.
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Working with Binary Images
You must convert a binary image to a label matrix before calling regionprops.

Two common ways to convert a binary image to a label matrix are by using the 
bwlabel function,

L = bwlabel(BW);

or using the double function,

L = double(BW);

Note, however, that these functions produce different but equally valid label 
matrices from the same binary image. 

For example, given the following logical matrix, BW,

1 1 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 1 1

bwlabel creates a label matrix containing two contiguous regions labeled by 
the integer values 1 and 2. 

mylabel = bwlabel(BW)

mylabel =

     1     1     0     0     0     0
     1     1     0     0     0     0
     0     0     0     0     0     0
     0     0     0     0     2     2
     0     0     0     0     2     2

The double function creates a label matrix containing one discontiguous region 
labeled by the integer value 1. 

mylabel2 = double(BW)

mylabel2 =

     1     1     0     0     0     0
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     1     1     0     0     0     0
     0     0     0     0     0     0
     0     0     0     0     1     1
     0     0     0     0     1     1

Because each result is legitimately desirable in certain situations, 
regionprops does not attempt to perform either type of conversion on binary 
images and instead requires that you convert them using either method. 

Example BW = imread('text.png');
L = bwlabel(BW);
stats = regionprops(L,'all');
stats(23)

ans = 

               Area: 90
           Centroid: [69.7556 89.8667]
        BoundingBox: [64.5000 83.5000 11 13]
        SubarrayIdx: {1x2 cell}
    MajorAxisLength: 14.5814
    MinorAxisLength: 11.8963
       Eccentricity: 0.5783
        Orientation: -89.2740
         ConvexHull: [19x2 double]
        ConvexImage: [13x11 logical]
         ConvexArea: 121
              Image: [13x11 logical]

        FilledImage: [13x11 logical]
         FilledArea: 98
        EulerNumber: 0
            Extrema: [8x2 double]
      EquivDiameter: 10.7047
           Solidity: 0.7438
             Extent: 0.6294
       PixelIdxList: [90x1 double]
          PixelList: [90x2 double]

See Also bwlabel, bwlabeln, ismember, watershed
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ismember (MATLAB function)
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14rgb2grayPurpose Convert an RGB image or colormap to grayscale

Syntax I = rgb2gray(RGB)
newmap = rgb2gray(map)

Description rgb2gray converts RGB images to grayscale by eliminating the hue and 
saturation information while retaining the luminance.

I = rgb2gray(RGB) converts the true-color image RGB to the grayscale intensity 
image I.

newmap = rgb2gray(map) returns a grayscale colormap equivalent to map.

Class Support If the input is an RGB image, it can be of class uint8, uint16, or double. The 
output image I is of the same class as the input image. If the input is a 
colormap, the input and output colormaps are both of class double.

Algorithm rgb2gray converts the RGB values to NTSC coordinates, sets the hue and 
saturation components to zero, and then converts back to RGB color space.

See Also ind2gray, ntsc2rgb, rgb2ind, rgb2ntsc
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14rgb2hsvPurpose Convert RGB values to hue-saturation-value (HSV) color space

rgb2hsv is a function in MATLAB. To get help for this function, select 
MATLAB Help from the Help menu and view the online function reference 
pages.
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14rgb2indPurpose Convert an RGB image to an indexed image

Syntax [X,map] = rgb2ind(RGB,tol)
[X,map] = rgb2ind(RGB,n)
X = rgb2ind(RGB,map)
[...] = rgb2ind(...,dither_option)

Description rgb2ind converts RGB images to indexed images using one of three different 
methods: uniform quantization, minimum variance quantization, and 
colormap mapping. For all these methods, rgb2ind also dithers the image 
unless you specify 'nodither' for dither_option.

[X,map] = rgb2ind(RGB,tol) converts the RGB image to an indexed image X 
using uniform quantization. map contains at most (floor(1/tol)+1)^3 colors. 
tol must be between 0 and 1.0. 

[X,map] = rgb2ind(RGB,n) converts the RGB image to an indexed image X 
using minimum variance quantization. map contains at most n colors. n must be 
less than or equal to 65536.

X = rgb2ind(RGB,map) converts the RGB image to an indexed image X with 
colormap map by matching colors in RGB with the nearest color in the colormap 
map. size(map,1) must be less than or equal to 65536.

[...] = rgb2ind(...,dither_option) enables or disables dithering. 
dither_option is a string that can have one of these values:

• 'dither' (default) dithers, if necessary, to achieve better color resolution at 
the expense of spatial resolution.

• 'nodither' maps each color in the original image to the closest color in the 
new map. No dithering is performed.

Class Support The input image can be of class uint8, uint16, or double. If the length of map 
is less than or equal to 256, the output image is of class uint8. Otherwise, the 
output image is of class uint16.

Remarks If you specify tol, rgb2ind uses uniform quantization to convert the image. 
This method involves cutting the RGB color cube into smaller cubes of length 
tol. For example, if you specify a tol of 0.1, the edges of the cubes are 
one-tenth the length of the RGB cube. The total number of small cubes is
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n = (floor(1/tol)+1)^3

Each cube represents a single color in the output image. Therefore, the 
maximum length of the colormap is n. rgb2ind removes any colors that don’t 
appear in the input image, so the actual colormap can be much smaller than n.

If you specify n, rgb2ind uses minimum variance quantization. This method 
involves cutting the RGB color cube into smaller boxes (not necessarily cubes) 
of different sizes, depending on how the colors are distributed in the image. If 
the input image actually uses fewer colors than the number you specify, the 
output colormap is also smaller.

If you specify map, rgb2ind uses colormap mapping, which involves finding the 
colors in map that best match the colors in the RGB image.

Example RGB = imread('peppers.png');
[X,map] = rgb2ind(RGB,128);
imshow(X,map)

See Also cmunique, dither, imapprox, ind2rgb, rgb2gray
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14rgb2ntscPurpose Convert RGB values to NTSC color space

Syntax yiqmap = rgb2ntsc(rgbmap)
YIQ = rgb2ntsc(RGB)

Description yiqmap = rgb2ntsc(rgbmap) converts the m-by-3 RGB values in rgbmap to 
NTSC color space. yiqmap is an m-by-3 matrix that contains the NTSC 
luminance (Y) and chrominance (I and Q) color components as columns that are 
equivalent to the colors in the RGB colormap.

YIQ = rgb2ntsc(RGB) converts the true-color image RGB to the equivalent 
NTSC image YIQ.

Remarks In the NTSC color space, the luminance is the grayscale signal used to display 
pictures on monochrome (black and white) televisions. The other components 
carry the hue and saturation information.

rgb2ntsc defines the NTSC components using

Class Support If the input is an RGB image, it can be of class uint8, uint16, or double; the 
output image is of class double. If the input is a colormap, the input and output 
colormaps are both of class double.

See Also ntsc2rgb, rgb2ind, ind2rgb, ind2gray

Y
I
Q

0.299  0.587  0.114
0.596  0.274–   0.322–

0.211  0.523–   0.312

R
G
B

=
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14rgb2ycbcrPurpose Convert RGB values to YCbCr color space

Syntax ycbcrmap = rgb2ycbcr(rgbmap)
YCBCR = rgb2ycbcr(RGB)

Description ycbcrmap = rgb2ycbcr(rgbmap) converts the RGB values in rgbmap to the 
YCbCr color space. ycbcrmap is an m-by-3 matrix that contains the YCbCr 
luminance (Y) and chrominance (Cb and Cr) color components as columns. 
Each row represents the equivalent color to the corresponding row in the RGB 
colormap.

YCBCR = rgb2ycbcr(RGB) converts the true-color image RGB to the equivalent 
image in the YCbCr color space.

Class Support If the input is an RGB image, it can be of class uint8, uint16, or double; the 
output image is of the same class as the input image. If the input is a colormap, 
the input and output colormaps are both of class double.

See Also ntsc2rgb, rgb2ntsc, ycbcr2rgb
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14rgbplotPurpose Plot colormap

rgbplot is a MATLAB function. To get help for this function, select MATLAB 
Help from the Help menu and view the online function reference page.
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14roicolorPurpose Select region of interest, based on color

Syntax BW = roicolor(A,low,high)
BW = roicolor(A,v)

Description roicolor selects a region of interest within an indexed or intensity image and 
returns a binary image. (You can use the returned image as a mask for masked 
filtering using roifilt2.)

BW = roicolor(A,low,high) returns a region of interest selected as those 
pixels that lie within the colormap range [low high].

BW = (A >= low) & (A <= high)

BW is a binary image with 0’s outside the region of interest and 1’s inside.

BW = roicolor(A,v) returns a region of interest selected as those pixels in A 
that match the values in vector v. BW is a binary image with 1’s where the 
values of A match the values of v.

Class Support The input image A must be numeric. The output image BW is of class logical.

Example I = imread('rice.png'); 
BW = roicolor(I,128,255);
imshow(I);
figure, imshow(BW)

See Also roifilt2, roipoly
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14roifillPurpose Smoothly interpolate within an arbitrary image region

Syntax J = roifill(I,c,r)
J = roifill(I)

J = roifill(I,BW)
[J,BW] = roifill(...)

J = roifill(x,y,I,xi,yi)
[x,y,J,BW,xi,yi] = roifill(...)

Description roifill fills in a specified polygon in an intensity image. It smoothly 
interpolates inward from the pixel values on the boundary of the polygon by 
solving Laplace’s equation. roifill can be used, for example, to erase small 
objects in an image.

J = roifill(I,c,r) fills in the polygon specified by c and r, which are 
equal-length vectors containing the row-column coordinates of the pixels on 
vertices of the polygon. The kth vertex is the pixel (r(k),c(k)).

J = roifill(I) displays the image I on the screen and lets you specify the 
polygon using the mouse. If you omit I, roifill operates on the image in the 
current axes. Use normal button clicks to add vertices to the polygon. Pressing 
Backspace or Delete removes the previously selected vertex. A shift-click, 
right-click, or double-click adds a final vertex to the selection and then starts 
the fill; pressing Return finishes the selection without adding a vertex.

J = roifill(I,BW) uses BW (a binary image the same size as I) as a mask. 
roifill fills in the regions in I corresponding to the nonzero pixels in BW. If 
there are multiple regions, roifill performs the interpolation on each region 
independently.

[J,BW] = roifill(...) returns the binary mask used to determine which 
pixels in I get filled. BW is a binary image the same size as I with 1’s for pixels 
corresponding to the interpolated region of I and 0’s elsewhere.

J = roifill(x,y,I,xi,yi) uses the vectors x and y to establish a nondefault 
spatial coordinate system. xi and yi are equal-length vectors that specify 
polygon vertices as locations in this coordinate system.
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[x,y,J,BW,xi,yi] = roifill(...) returns the XData and YData in x and y, 
the output image in J, the mask image in BW, and the polygon coordinates in xi 
and yi. xi and yi are empty if the roifill(I,BW) form is used. 

If roifill is called with no output arguments, the resulting image is displayed 
in a new figure.

Class Support The input image I can of class uint8, uint16, or double. The input binary mask 
BW can be any numeric class or logical. The output binary mask BW is always 
logical. The output image J is of the same class as I. All other inputs and 
outputs are of class double.

Example I = imread('eight.tif');
c = [222 272 300 270 221 194];
r = [21 21 75 121 121 75];
J = roifill(I,c,r);
imshow(I)
figure, imshow(J)

See Also roifilt2, roipoly
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14roifilt2Purpose Filter a region of interest

Syntax J = roifilt2(h,I,BW)
J = roifilt2(I,BW,fun)
J = roifilt2(I,BW,fun,P1,P2,...)

Description J = roifilt2(h,I,BW) filters the data in I with the two-dimensional linear 
filter h. BW is a binary image the same size as I that is used as a mask for 
filtering. roifilt2 returns an image that consists of filtered values for pixels 
in locations where BW contains 1’s, and unfiltered values for pixels in locations 
where BW contains 0’s. For this syntax, roifilt2 calls filter2 to implement 
the filter.

J = roifilt2(I,BW,fun) processes the data in I using the function fun. The 
result J contains computed values for pixels in locations where BW contains 1’s, 
and the actual values in I for pixels in locations where BW contains 0’s.

fun can be a function_handle, created using @, or an inline object. fun should 
take a matrix as a single argument and return a matrix of the same size.

 y = fun(x)

J = roifilt2(I,BW,fun,P1,P2,...) passes the additional parameters 
P1,P2,... to fun.

Class Support For the syntax that includes a filter h, the input image I can be of class uint8, 
uint16, or double, and the output array J has the same class as the input 
image. For the syntax that includes a function, I can be of any class supported 
by fun, and the class of J depends on the class of the output from fun.

Example This example continues the roipoly example.

I = imread('eight.tif');
c = [222 272 300 270 221 194];
r = [21 21 75 121 121 75];
BW = roipoly(I,c,r);
h = fspecial('unsharp');
J = roifilt2(h,I,BW);
imshow(J), figure, imshow(J)
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See Also filter2, roipoly
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14roipolyPurpose Select a polygonal region of interest

Syntax BW = roipoly(I,c,r)
BW = roipoly(I)

BW = roipoly(x,y,I,xi,yi)
[BW,xi,yi] = roipoly(...)
[x,y,BW,xi,yi] = roipoly(...)

Description Use roipoly to select a polygonal region of interest within an image. roipoly 
returns a binary image that you can use as a mask for masked filtering.

BW = roipoly(I,c,r) returns the region of interest selected by the polygon 
described by vectors c and r. BW is a binary image the same size as I with 0’s 
outside the region of interest and 1’s inside.

BW = roipoly(I) displays the image I on the screen and lets you specify the 
polygon using the mouse. If you omit I, roipoly operates on the image in the 
current axes. Use normal button clicks to add vertices to the polygon. Pressing 
Backspace or Delete removes the previously selected vertex. A shift-click, 
right-click, or double-click adds a final vertex to the selection and then starts 
the fill; pressing Return finishes the selection without adding a vertex.

BW = roipoly(x,y,I,xi,yi) uses the vectors x and y to establish a nondefault 
spatial coordinate system. xi and yi are equal-length vectors that specify 
polygon vertices as locations in this coordinate system.

[BW,xi,yi] = roipoly(...) returns the polygon coordinates in xi and yi. 
Note that roipoly always produces a closed polygon. If the points specified 
describe a closed polygon (i.e., if the last pair of coordinates is identical to the 
first pair), the length of xi and yi is equal to the number of points specified. If 
the points specified do not describe a closed polygon, roipoly adds a final point 
having the same coordinates as the first point. (In this case the length of xi and 
yi is one greater than the number of points specified.)

[x,y,BW,xi,yi] = roipoly(...) returns the XData and YData in x and y, the 
mask image in BW, and the polygon coordinates in xi and yi.

If roipoly is called with no output arguments, the resulting image is displayed 
in a new figure.
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Class Support The input image I can be of class uint8, uint16, or double. The output image 
BW is of class logical. All other inputs and outputs are of class double.

Remarks For any of the roipoly syntaxes, you can replace the input image I with two 
arguments, m and n, that specify the row and column dimensions of an arbitrary 
image. For example, these commands create a 100-by-200 binary mask.

c = [112 112 79 79];
r = [37 66 66 37];
BW = roipoly(100,200,c,r);

If you specify m and n with an interactive form of roipoly, an m-by-n black 
image is displayed, and you use the mouse to specify a polygon within this 
image.

Example I = imread('eight.tif');
c = [222 272 300 270 221 194];
r = [21 21 75 121 121 75];
BW = roipoly(I,c,r);
imshow(I)
figure, imshow(BW)

See Also roifilt2, roicolor, roifill, poly2mask
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14std2Purpose Compute the standard deviation of the elements of a matrix

Syntax b = std2(A)

Description b = std2(A) computes the standard deviation of the values in A.

Class Support A can be numeric or logical. B is a scalar of class double.

Algorithm std2 computes the standard deviation of the array A using std(A(:)).

See Also corr2, mean2

std, mean in the MATLAB Function Reference
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14strelPurpose Create morphological structuring element

Syntax SE = strel(shape,parameters)

Description SE = strel(shape,parameters) creates a structuring element, SE, of the type 
specified by shape. This table lists all the supported shapes. Depending on 
shape, strel can take additional parameters. See the syntax descriptions that 
follow for details about creating each type of structuring element.

SE = strel('arbitrary',NHOOD) creates a flat structuring element where 
NHOOD specifies the neighborhood. NHOOD is a matrix containing 1's and 0's; the 
location of the 1's defines the neighborhood for the morphological operation. 
The center (or origin) of NHOOD is its center element, given by 
floor((size(NHOOD)+1)/2). You can omit the 'arbitrary' string and just use 
strel(NHOOD).

Flat Structuring Elements

'arbitrary' 'pair'

'diamond' 'periodicline'

'disk' 'rectangle'

'line' 'square'

'octagon'

Nonflat Structuring Elements

'arbitrary' 'ball'

1     0     0

     1     0     0

     1     0     1

Origin

NHOOD = [ 1 0 0; 1 0 0; 1 0 1];

SE = 
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SE = strel('arbitrary',NHOOD,HEIGHT) creates a nonflat structuring 
element, where NHOOD specifies the neighborhood. HEIGHT is a matrix the same 
size as NHOOD containing the height values associated with each nonzero 
element of NHOOD. The HEIGHT matrix must be real and finite valued. You can 
omit the 'arbitrary' string and just use strel(NHOOD,HEIGHT).

SE = strel('ball',R,H,N) creates a nonflat, ball-shaped structuring element 
(actually an ellipsoid) whose radius in the X-Y plane is R and whose height is H. 
Note that R must be a nonnegative integer, H must be a real scalar, and N must 
be an even nonnegative integer. When N is greater than 0, the ball-shaped 
structuring element is approximated by a sequence of N nonflat, line-shaped 
structuring elements. When N equals 0, no approximation is used, and the 
structuring element members consist of all pixels whose centers are no greater 
than R away from the origin. The corresponding height values are determined 
from the formula of the ellipsoid specified by R and H. If N is not specified, the 
default value is 8. 

Note  Morphological operations run much faster when the structuring 
element uses approximations (N > 0) than when it does not (N = 0). 

SE = strel('diamond',R) creates a flat, diamond-shaped structuring 
element, where R specifies the distance from the structuring element origin to 
the points of the diamond. R must be a nonnegative integer scalar.

SE = strel('disk',R,N) creates a flat, disk-shaped structuring element, 
where R specifies the radius. R must be a nonnegative integer. N must be 0, 4, 
6, or 8. When N is greater than 0, the disk-shaped structuring element is 
approximated by a sequence of N periodic-line structuring elements. When N 

Origin

 0     0     0     1     0     0     0

     0     0     1     1     1     0     0

     0     1     1     1     1     1     0

     1     1     1     1     1     1     1

     0     1     1     1     1     1     0

     0     0     1     1     1     0     0

     0     0     0     1     0     0     0

SE = 

R=3
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equals 0, no approximation is used, and the structuring element members 
consist of all pixels whose centers are no greater than R away from the origin. 
If N is not specified, the default value is 4.

Note  Morphological operations run much faster when the structuring 
element uses approximations (N > 0) than when it does not (N = 0). However, 
structuring elements that do not use approximations (N = 0) are not suitable 
for computing granulometries. Sometimes it is necessary for strel to use two 
extra line structuring elements in the approximation, in which case the 
number of decomposed structuring elements used is N + 2.

SE = strel('line',LEN,DEG) creates a flat, linear structuring element, where 
LEN specifies the length, and DEG specifies the angle (in degrees) of the line, as 
measured in a counterclockwise direction from the horizontal axis. LEN is 

Origin
0     0     0     1     0     0     0

     0     1     1     1     1     1     0

     0     1     1     1     1     1     0

     1     1     1     1     1     1     1

     0     1     1     1     1     1     0

     0     1     1     1     1     1     0

     0     0     0     1     0     0     0

R=3

SE=
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approximately the distance between the centers of the structuring element 
members at opposite ends of the line. 

SE = strel('octagon',R) creates a flat, octagonal structuring element, where 
R specifies the distance from the structuring element origin to the sides of the 
octagon, as measured along the horizontal and vertical axes. R must be a 
nonnegative multiple of 3. 

SE = strel('pair',OFFSET) creates a flat structuring element containing two 
members. One member is located at the origin. The second member's location 
is specified by the vector OFFSET. OFFSET must be a two-element vector of 
integers. 

Origin

1   1    1    1    1    1    1    1    1

LEN=9  DEG=0

0     0     1

     0     1     0

     1     0     0

Origin

LEN
 = 

3
DEG = 45

SE=

0     0     1     1     1     0     0

     0     1     1     1     1     1     0

     1     1     1     1     1     1     1

     1     1     1     1     1     1     1

     1     1     1     1     1     1     1

     0     1     1     1     1     1     0

     0     0     1     1     1     0     0

R=3

OriginSE=

0     0     0     0     0

     0     0     0     0     0

     0     0     1     0     0

     0     0     0     0     0

     0     0     0     0     1

OriginSE=

OFFSET= [2 2]
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SE = strel('periodicline',P,V) creates a flat structuring element 
containing 2*P+1 members. V is a two-element vector containing integer-valued 
row and column offsets. One structuring element member is located at the 
origin. The other members are located at 1*V, -1*V, 2*V, -2*V, ..., P*V, -P*V. 

SE = strel('rectangle',MN) creates a flat, rectangle-shaped structuring 
element, where MN specifies the size. MN must be a two-element vector of 
nonnegative integers. The first element of MN is the number of rows in the 
structuring element neighborhood; the second element is the number of 
columns. 

SE = strel('square',W) creates a square structuring element whose width is 
W pixels. W must be a nonnegative integer scalar. 

Notes For all shapes except 'arbitrary', structuring elements are constructed using 
a family of techniques known collectively as structuring element decomposition. 
The principle is that dilation by some large structuring elements can be 
computed faster by dilation with a sequence of smaller structuring elements. 
For example, dilation by an 11-by-11 square structuring element can be 
accomplished by dilating first with a 1-by-11 structuring element and then 

0     0     0     0     0     0     0     0     1

     0     0     0     0     0     0     1     0     0

     0     0     0     0     1     0     0     0     0

     0     0     1     0     0     0     0     0     0

     1     0     0     0     0     0     0     0     0

OriginSE=

V= [1 -2]

P=2

1     1     1     1     1

     1     1     1     1     1

     1     1     1     1     1

OriginSE=

MN=[3 5]

1     1     1

     1     1     1

     1     1     1

OriginSE=

W=3
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with an 11-by-1 structuring element. This results in a theoretical performance 
improvement of a factor of 5.5, although in practice the actual performance 
improvement is somewhat less. Structuring element decompositions used for 
the 'disk' and 'ball' shapes are approximations; all other decompositions 
are exact.

Methods This table lists the methods supported by the STREL object.

Example se1 = strel('square',11)      % 11-by-11 square
se2 = strel('line',10,45)     % line, length 10, angle 45 degrees
se3 = strel('disk',15)        % disk, radius 15
se4 = strel('ball',15,5)      % ball, radius 15, height 5

Algorithm The method used to decompose diamond-shaped structuring elements is 
known as “logarithmic decomposition” [1].

The method used to decompose disk structuring elements is based on the 
technique called “radial decomposition using periodic lines” [2], [3]. For details, 
see the MakeDiskStrel subfunction in 
toolbox/images/images/@strel/strel.m.

The method used to decompose ball structuring elements is the technique 
called “radial decomposition of sphere” [2].

See Also imdilate, imerode

getheight Get height of structuring element

getneighbors Get structuring element neighbor locations and 
heights

getnhood Get structuring element neighborhood

getsequence Extract sequence of decomposed structuring 
elements

isflat Return true for flat structuring element

reflect Reflect structuring element

translate Translate structuring element
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14stretchlimPurpose Find limits to contrast stretch an image

Syntax LOW_HIGH = stretchlim(I,TOL)
LOW_HIGH = stretchlim(RGB,TOL)

Description LOW_HIGH = stretchlim(I,TOL) returns a pair of intensities that can be used 
by imadjust to increase the contrast of an image.

TOL = [LOW_FRACT HIGH_FRACT] specifies the fraction of the image to saturate 
at low and high intensities. 

If TOL is a scalar, TOL = LOW_FRACT, and HIGH_FRACT = 1 - LOW_FRACT, which 
saturates equal fractions at low and high intensities.

If you omit the argument, TOL defaults to [0.01 0.99], saturating 2%.

If TOL = 0, LOW_HIGH = [min(I(:)) max(I(:))].

LOW_HIGH = stretchlim(RGB,TOL) returns a 2-by-3 matrix of intensity pairs 
to saturate each plane of the RGB image. TOL specifies the same fractions of 
saturation for each plane.

Class Support The input image can be of class uint8, uint16, or double. The output 
intensities returned, LOW_HIGH, are of class double and have values between 0 
and 1.

Example I = imread('pout.tif');
J = imadjust(I,stretchlim(I),[]);
imshow(I), figure, imshow(J)
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See Also brighten, histeq, imadjust
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14subimagePurpose Display multiple images in the same figure

Syntax subimage(X,map)
subimage(I)
subimage(BW)
subimage(RGB)
subimage(x,y,...)
h = subimage(...)

Description You can use subimage in conjunction with subplot to create figures with 
multiple images, even if the images have different colormaps. subimage works 
by converting images to true color for display purposes, thus avoiding colormap 
conflicts.

subimage(X,map) displays the indexed image X with colormap map in the 
current axes.

subimage(I) displays the intensity image I in the current axes.

subimage(BW) displays the binary image BW in the current axes.

subimage(RGB) displays the true-color image RGB in the current axes.

subimage(x,y...) displays an image using a nondefault spatial coordinate 
system.

h = subimage(...) returns a handle to an image object.

Class Support The input image can be of class logical, uint8, uint16, or double.

Example load trees
[X2,map2] = imread('forest.tif');
subplot(1,2,1), subimage(X,map)
subplot(1,2,2), subimage(X2,map2)
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See Also imshow

subplot in the MATLAB Function Reference
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14tformarrayPurpose Spatial transformation of a multidimensional array

Syntax B = tformarray(A,T,R,TDIMS_A,TDIMS_B,TSIZE_B,TMAP_B,F)

Description B = tformarray(A,T,R,TDIMS_A,TDIMS_B,TSIZE_B,TMAP_B,F) applies a 
spatial transformation to array A to produce array B. The tformarray function 
is like imtransform, but is intended for problems involving higher-dimensioned 
arrays or mixed input/output dimensionality, or requiring greater user control 
or customization. (Anything that can be accomplished with imtransform can be 
accomplished with a combination of maketform, makeresampler, findbounds, 
and tformarray; but for many tasks involving 2-D images, imtransform is 
simpler.)

This table provides a brief description of all the input arguments. See the 
following section for more detail about each argument. (Click an argument in 
the table to move to the appropriate section.)

A can be any nonsparse numeric array, and can be real or complex.

Argument Description

A Input array or image

T Spatial transformation structure, called a TFORM, 
typically created with maketform

R Resampler structure, typically created with 
makeresampler

TDIMS_A Row vector listing the input transform dimensions

TDIMS_B Row vector listing the output transform dimensions

TSIZE_B Output array size in the transform dimensions

TMAP_B Array of point locations in output space; can be used as 
an alternative way to specify a spatial transformation

F Array of fill values
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T is a TFORM structure that defines a particular spatial transformation. For each 
location in the output transform subscript space (as defined by TDIMS_B and 
TSIZE_B), tformarray uses T and the function tforminv to compute the 
corresponding location in the input transform subscript space (as defined by 
TDIMS_A and size(A)).

If T is empty, tformarray operates as a direct resampling function, applying 
the resampler defined in R to compute values at each transform space location 
defined in TMAP_B (if TMAP_B is nonempty), or at each location in the output 
transform subscript grid.

R is a structure that defines how to interpolate values of the input array at 
specified locations. R is usually created with makeresampler, which allows fine 
control over how to interpolate along each dimension, as well as what input 
array values to use when interpolating close to the edge of the array.

TDIMS_A and TDIMS_B indicate which dimensions of the input and output arrays 
are involved in the spatial transformation. Each element must be unique, and 
must be a positive integer. The entries need not be listed in increasing order, 
but the order matters. It specifies the precise correspondence between 
dimensions of arrays A and B and the input and output spaces of the 
transformer T. length(TDIMS_A) must equal T.ndims_in, and 
LENGTH(TDIMS_B) must equal T.ndims_out. 

For example, if T is a 2-D transformation, TDIMS_A = [2 1], and TDIMS_B = [1 
2], then the column dimension and row dimension of A correspond to the first 
and second transformation input-space dimensions, respectively. The row and 
column dimensions of B correspond to the first and second output-space 
dimensions, respectively.

TSIZE_B specifies the size of the array B along the output-space transform 
dimensions. Note that the size of B along nontransform dimensions is taken 
directly from the size of A along those dimensions. If, for example, T is a 2-D 
transformation, size(A) = [480 640 3 10], TDIMS_B is [2 1], and TSIZE_B is 
[300 200], then size(B) is [200 300 3].

TMAP_B is an optional array that provides an alternative way of specifying the 
correspondence between the position of elements of B and the location in output 
transform space. TMAP_B can be used, for example, to compute the result of an 
image warp at a set of arbitrary locations in output space. If TMAP_B is not 
empty, then the size of TMAP_B takes the form
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 [D1 D2 D3 ... DN L]

where N equals length(TDIMS_B). The vector [D1 D2 ... DN] is used in place 
of TSIZE_B. If TMAP_B is not empty, then TSIZE_B should be [].

The value of L depends on whether or not T is empty. If T is not empty, then L 
is T.ndims_out, and each L-dimension point in TMAP_B is transformed to an 
input-space location using T. If T is empty, then L is length(TDIMS_A), and each 
L-dimensional point in TMAP_B is used directly as a location in input space.

F is a double-precision array containing fill values. The fill values in F can be 
used in three situations:

• When a separable resampler is created with makeresampler and its 
padmethod is set to either 'fill' or 'bound'.

• When a custom resampler is used that supports the 'fill' or 'bound' pad 
methods (with behavior that is specific to the customization).

• When the map from the transform dimensions of B to the transform 
dimensions of A is deliberately undefined for some points. Such points are 
encoded in the input transform space by NaNs in either TMAP_B or in the 
output of TFORMINV.

In the first two cases, fill values are used to compute values for output locations 
that map outside or near the edges of the input array. Fill values are copied 
into B when output locations map well outside the input array. See 
makeresampler for more information about 'fill' and 'bound'. 

F can be a scalar (including NaN), in which case its value is replicated across all 
the nontransform dimensions. F can also be a nonscalar, whose size depends on 
size(A) in the nontransform dimensions. Specifically, if K is the Jth 
nontransform dimension of A, then size(F,J) must be either size(A,K) or 1. 
As a convenience to the user, tformarray replicates F across any dimensions 
with unit size such that after the replication size(F,J) equals size(A,K).

For example, suppose A represents 10 RGB images and has size 
200-by-200-by-3-by-10, T is a 2-D transformation, and TDIMS_A and TDIMS_B 
are both [1 2]. In other words, tformarray will apply the same 2-D transform 
to each color plane of each of the 10 RGB images. In this situation you have 
several options for F:
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• F can be a scalar, in which case the same fill value is used for each color plane 
of all 10 images.

• F can be a 3-by-1 vector, [R G B]'. Then R, G, and B are used as the fill values 
for the corresponding color planes of each of the 10 images. This can be 
interpreted as specifying an RGB fill color, with the same color used for all 
10 images.

• F can be a 1-by-10 vector. This can be interpreted as specifying a different fill 
value for each of 10 images, with that fill value being used for all three color 
planes.

• F can be a 3-by-10 matrix, which can be interpreted as supplying a different 
RGB fill color for each of the 10 images.

Class Support A can be any nonsparse numeric array, and can be real or complex. It can also 
be of class logical.

Example Create a 2-by-2 checkerboard image where each square is 20 pixels wide, then 
transform it with a projective transformation. Use a pad method of 'circular' 
when creating a resampler, so that the output appears to be a perspective view 
of an infinite checkerboard. Swap the output dimensions. Specify a 100-by-100 
output image. Leave TMAP_B empty, since TSIZE_B is specified. Leave the fill 
value empty, since it won't be needed.

I = checkerboard(20,1,1);
figure; imshow(I)
T = maketform('projective',[1 1; 41 1; 41 41;   1 41],...
                           [5 5; 40 5; 35 30; -10 30]);
R = makeresampler('cubic','circular');
J = tformarray(I,T,R,[1 2],[2 1],[100 100],[],[]);
figure; imshow(J)

See Also findbounds, imtransform, makeresampler, maketform
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14tformfwdPurpose Apply forward spatial transformation

Syntax [X,Y] = tformfwd(T,U,V)
[X1,X2,X3,...] = tformfwd(T,U1,U2,U3,...)
X = tformfwd(T,U)
[X1,X2,X3,...] = tformfwd(T,U)
X = tformfwd(T,U1,U2,U3,...)

Description [X,Y] = tformfwd(T,U,V) applies the 2D-to-2D spatial transformation 
defined in T to coordinate arrays U and V, mapping the point [U(k) V(k)] to the 
point [X(k) Y(k)]. 

T is a TFORM struct created with maketform, fliptform, or cp2tform. Both 
T.ndims_in and T.ndims_out must equal 2. U and V are typically column 
vectors matching in length. In general, U and V can have any dimensionality, 
but must have the same size. In any case, X and Y will have the same size as U 
and V.

[X1,X2,X3,...] = tformfwd(T,U1,U2,U3,...) applies the 
ndims_in-to-ndims_out spatial transformation defined in TFORM structure T 
to the coordinate arrays U1,U2,...,UNDIMS_IN (where NDIMS_IN = 
T.ndims_in and NDIMS_OUT = T.ndims_out). The number of output arguments 
must equal NDIMS_OUT. The transformation maps the point

[U1(k) U2(k) ... UNDIMS_IN(k)]

to the point

[X1(k) X2(k) ... XNDIMS_OUT(k)].

U1,U2,U3,... can have any dimensionality, but must be the same size.

X1,X2,X3,... must have this size also.

X = tformfwd(T,U) applies the ndims_in-to-ndims_out spatial 
transformation defined in TFORM structure T to each row of U, where U is an 
M-by-NDIMS_IN matrix. It maps the point U(k,:) to the point X(k,:). X is an 
M-by-NDIMS_OUT matrix.

X = tformfwd(T,U) , where U is an (N+1)-dimensional array, maps the point 
U(k1,k2,...,kN,:) to the point X(k1,k2,...,kN,:). size(U,N+1) must equal 
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NDIMS_IN. X is an (N+1)-dimensional array, with size(X,I) equal to size(U,I) 
for I = 1,...,N and size(X,N+1) equal to NDIMS_OUT.

[X1,X2,X3,...] = tformfwd(T,U) maps an (N+1)-dimensional array to 
NDIMS_OUT equally sized N-dimensional arrays.

X = tformfwd(T,U1,U2,U3,...) maps NDIMS_IN N-dimensional arrays to one 
(N+1)-dimensional array.

Note X = tformfwd(U,T) is an older form of the two-argument syntax that remains 
supported for backward compatibility.

Example Create an affine transformation that maps the triangle with vertices (0,0), 
(6,3), (-2,5) to the triangle with vertices (-1,-1), (0,-10), (4,4).

u = [ 0   6  -2]';
v = [ 0   3   5]';
x = [-1   0   4]';
y = [-1 -10   4]';
tform = maketform('affine',[u v],[x y]);

Validate the mapping by applying tformfwd. Results should equal [x, y]

[xm, ym] = tformfwd(tform, u, v) 

See Also cp2tform, fliptform, maketform, tforminv
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14tforminvPurpose Apply inverse spatial transformation 

Syntax U = tforminv(X,T)

Description [U,V] = tforminv(T,X,Y) applies the 2D-to-2D inverse transformation 
defined in TFORM structure T to coordinate arrays X and Y, mapping the point 
[X(k) Y(k)] to the point [U(k) V(k)]. Both T.ndims_in and T.ndims_out 
must equal 2. X and Y are typically column vectors matching in length. In 
general, X and Y can have any dimensionality, but must have the same size. In 
any case, U and V will have the same size as X and Y.

[U1,U2,U3,...] = tforminv(T,X1,X2,X3,...) applies the 
NDIMS_OUT-to-NDIMS_IN inverse transformation defined in TFORM structure 
T to the coordinate arrays X1,X2,...,XNDIMS_OUT (where NDIMS_IN = 
T.ndims_in and NDIMS_OUT = T.ndims_out). The number of output arguments 
must equal NDIMS_IN. The transformation maps the point

[X1(k) X2(k) ... XNDIMS_OUT(k)]

to the point

[U1(k) U2(k) ... UNDIMS_IN(k)].

X1,X2,X3,... can have any dimensionality, but must be the same size.

U1,U2,U3,... have this size also.

U = tforminv(T,X) applies the NDIMS_OUT-to-NDIMS_IN inverse 
transformation defined in TFORM structure T to each row of X, where X is an 
M-by-NDIMS_OUT matrix. It maps the point X(k,:) to the point U(k,:). U is an 
M-by-NDIMS_IN matrix.

U = tforminv(T,X), where X is an (N+1)-dimensional array, maps the point 
X(k1,k2,...,kN,:) to the point U(k1,k2,...,kN,:). size(X,N+1) must equal 
NDIMS_OUT. U is an (N+1)-dimensional array, with size(U,I) equal to 
size(X,I) for I = 1,...,N and size(U,N+1) equal to NDIMS_IN.

[U1,U2,U3,...] = tforminv(T,X) maps an (N+1)-dimensional array to 
NDIMS_IN equally-sized N-dimensional arrays.
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U = tforminv(T,X1,X2,X3,...) maps NDIMS_OUT N-dimensional arrays to 
one (N+1)-dimensional array.

Note U = tforminv(X,T) is an older form of the two-argument syntax that remains 
supported for backward compatibility.

Example Create an affine transformation that maps the triangle with vertices (0,0), 
(6,3), (-2,5) to the triangle with vertices (-1,-1), (0,-10), (4,4).

u = [ 0   6  -2]';
v = [ 0   3   5]';
x = [-1   0   4]';
y = [-1 -10   4]';
tform = maketform('affine',[u v],[x y]);

Validate the mapping by applying tforminv. Results should equal [u, v].

[um, vm] = tforminv(tform, x, y) 

See Also cp2tform, tforminv, maketform, fliptform 
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14translatePurpose Translate structuring element

Syntax SE2 = translate(SE,V)

Description SE2 = reflect(SE,V) translates a structuring element SE in N-D space. V is 
an N-element vector containing the offsets of the desired translation in each 
dimension.

Class Support SE and SE2 are STREL objects; V is a vector of double-precision values.

Example Dilating with a translated version of strel(1) is a way to translate the input 
image in space. This example translates the cameraman.tif image down and 
to the right by 25 pixels.

I = imread('cameraman.tif');
se = translate(strel(1), [25 25]);
J = imdilate(I,se);
imshow(I), title('Original')
figure, imshow(J), title('Translated');

See Also strel, reflect
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14truesizePurpose Adjust display size of an image

Syntax truesize(fig,[mrows mcols])
truesize(fig)

Description truesize(fig,[mrows ncols]) adjusts the display size of an image. fig 
is a figure containing a single image or a single image with a colorbar. 
[mrows ncols] is a 1-by-2 vector that specifies the requested screen area in 
pixels that the image should occupy.

truesize(fig) uses the image height and width for [mrows ncols]. This 
results in the display’s having one screen pixel for each image pixel.

If you omit the figure argument, truesize works on the current figure.

Remarks If the'TruesizeWarning' toolbox preference is 'on', truesize displays a 
warning if the image is too large to fit on the screen. (The entire image is still 
displayed, but at less than true size.) If 'TruesizeWarning' is 'off', truesize 
does not display the warning. Note that this preference applies even when you 
call truesize indirectly, such as through imshow.

See Also imshow, iptsetpref, iptgetpref



uint16

14-410

14uint16Purpose Convert data to unsigned 16-bit integers

uint16 is a MATLAB built-in function. To get help for this function, select 
MATLAB Help from the Help menu and view the online function reference 
page.
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14uint8Purpose Convert data to unsigned 8-bit integers

uint8 is a MATLAB built-in function. To get help for this function, select 
MATLAB Help from the Help menu and view the online function reference 
page.
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14uintlutPurpose Compute new values of A based on lookup table LUT

Syntax B = uintlut(A,LUT)

Purpose uintlut(A,LUT) creates an array containing new values of A based on the 
lookup table LUT. For example, if A is a vector whose kth element is equal to 
alpha, then B(k) is equal to the LUT value corresponding to alpha, that is, 
LUT(alpha+1).

Class Support A must be uint8 or uint16. If A is uint8, then LUT must be a uint8 vector with 
256 elements. If A is uint16, then LUT must be a uint16 vector with 65536 
elements. B has the same size and class as A.

Example A = uint8([1 2 3 4; 5 6 7 8;9 10 11 12]);
LUT = repmat(uint8([0 150 200 255]),1,64);
B = uintlut(A,LUT);
imview(A),imview(B);

See Also impixel, improfile
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14warpPurpose Display an image as a texture-mapped surface

Syntax warp(X,map)
warp(I,n)
warp(BW)
warp(RGB)
warp(z,...)
warp(x,y,z,...)
h = warp(...)

Description warp(X,map) displays the indexed image X with colormap map as a texture map 
on a simple rectangular surface.

warp(I,n) displays the intensity image I with grayscale colormap of length n 
as a texture map on a simple rectangular surface.

warp(BW) displays the binary image BW as a texture map on a simple 
rectangular surface.

warp(RGB) displays the RGB image in the array RGB as a texture map on a 
simple rectangular surface.

warp(z,...) displays the image on the surface z.

warp(x,y,z...) displays the image on the surface (x,y,z).

h = warp(...) returns a handle to a texture-mapped surface.

Class Support The input image can be of class logical, uint8, uint16, or double.

Remarks Texture-mapped surfaces are generally rendered more slowly than images.

Example This example texture maps an image of a test pattern onto a cylinder.

[x,y,z] = cylinder;
I = imread('testpat1.png');
warp(x,y,z,I);



warp

14-414

See Also imshow

image, imagesc, surf in the MATLAB Function Reference
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14watershedPurpose Find image watershed regions

Syntax L = watershed(A)
L = watershed(A,CONN)

Description L = watershed(A) computes a label matrix identifying the watershed regions 
of the input matrix A, which can have any dimension. The elements of L are 
integer values greater than or equal to 0. The elements labeled 0 do not belong 
to a unique watershed region. These are called watershed pixels. The elements 
labeled 1 belong to the first watershed region, the elements labeled 2 belong to 
the second watershed region, and so on.

By default, watershed uses 8-connected neighborhoods for 2-D inputs and 
26-connected neighborhoods for 3-D inputs. For higher dimensions, watershed 
uses the connectivity given by conndef(ndims(A),'maximal').

L = watershed(A,CONN) specifies the connectivity to be used in the watershed 
computation. CONN can have any of the following scalar values. 

Connectivity can be defined in a more general way for any dimension by using 
for CONN a 3-by-3-by- ...-by-3 matrix of 0’s and 1’s. The 1-valued elements define 
neighborhood locations relative to the center element of CONN. Note that CONN 
must be symmetric about its center element.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood
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Class Support A can be a numeric or logical array of any dimension, and it must be nonsparse. 
The output array L is of class double. 

Example 2-D Example

1 Make a binary image containing two overlapping circular objects.
center1 = -10;
center2 = -center1;
dist = sqrt(2*(2*center1)^2);
radius = dist/2 * 1.4;
lims = [floor(center1-1.2*radius) ceil(center2+1.2*radius)];
[x,y] = meshgrid(lims(1):lims(2));
bw1 = sqrt((x-center1).^2 + (y-center1).^2) <= radius;
bw2 = sqrt((x-center2).^2 + (y-center2).^2) <= radius;
bw = bw1 | bw2;
figure, imshow(bw,'n'), title('BW')

2 Compute the distance transform of the complement of the binary image.
D = bwdist(~bw);
figure, imshow(D,[],'n'), title('Distance transform of ~bw')

3 Complement the distance transform, and force pixels that don’t belong to 
the objects to be at -Inf.
D = -D;
D(~bw) = -Inf;

4 Compute the watershed transform and display it as an indexed image.
L = watershed(D);
rgb = label2rgb(L,'jet',[.5 .5 .5]);
figure, imshow(rgb,'n'), title('Watershed transform of D');

3-D Example

1 Make a 3-D binary image containing two overlapping spheres.
center1 = -10;
center2 = -center1;
dist = sqrt(3*(2*center1)^2);
radius = dist/2 * 1.4;
lims = [floor(center1-1.2*radius) ceil(center2+1.2*radius)];
[x,y,z] = meshgrid(lims(1):lims(2));
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bw1 = sqrt((x-center1).^2 + (y-center1).^2 + ...
     (z-center1).^2) <= radius;
bw2 = sqrt((x-center2).^2 + (y-center2).^2 + ...
     (z-center2).^2) <= radius;
bw = bw1 | bw2;
figure, isosurface(x,y,z,bw,0.5), axis equal, title('BW')
xlabel x, ylabel y, zlabel z
xlim(lims), ylim(lims), zlim(lims)
view(3), camlight, lighting gouraud

2 Compute the distance transform.
D = bwdist(~bw);
figure, isosurface(x,y,z,D,radius/2), axis equal
title('Isosurface of distance transform')
xlabel x, ylabel y, zlabel z
xlim(lims), ylim(lims), zlim(lims)
view(3), camlight, lighting gouraud

3 Complement the distance transform, force nonobject pixels to be -Inf, and 
then compute the watershed transform.
D = -D;
D(~bw) = -Inf;
L = watershed(D);
figure, isosurface(x,y,z,L==2,0.5), axis equal
title('Segmented object')
xlabel x, ylabel y, zlabel z
xlim(lims), ylim(lims), zlim(lims)
view(3), camlight, lighting gouraud
figure, isosurface(x,y,z,L==3,0.5), axis equal
title('Segmented object')
xlabel x, ylabel y, zlabel z
xlim(lims), ylim(lims), zlim(lims)
view(3), camlight, lighting gouraud

Algorithm watershed uses a variation of the Vincent and Soille algorithm [1]. For details 
of the variation, see toolbox/images/images/private/watershed_vs.h.

See Also bwlabel, bwlabeln, bwdist, regionprops
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Reference [1] Vincent, Luc, and Pierre Soille, “Watersheds in Digital Spaces: An Efficient 
Algorithm Based on Immersion Simulations,” IEEE Transactions of Pattern 
Analysis and Machine Intelligence, Vol. 13, No. 6, June 1991, pp. 583-598.
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14whitepointPurpose Return  color space representation of various standard white points

Syntax xyz = whitepoint
xyz = whitepoint(string)

Description xyz = whitepoint returns xyz, a three-element row vector of  values 
scaled so that Y = 1.

xyz = whitepoint(string) returns xyz, a three-element row vector of XYZ 
values, where string specifies the white reference illuminant. The following 
table lists all the possible values for string. The default value is enclosed in 
braces ({}). 

Class Support string is a character array. xyz is of class double.

Example This example returns the XYZ color space representation of the default white 
reference illuminant 'icc'. 

wp_icc = whitepoint

wp_icc =

    0.9642    1.0000    0.8249

XYZ

Value Description

'a' CIE standard illuminant A

'c' CIE standard illuminant C

'd50' CIE standard illuminant D50

'd55' CIE standard illuminant D55

{'icc'} ICC standard profile connection space illuminant; a 
16-bit fractional approximation of D50

XYZ
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14wiener2Purpose Perform two-dimensional adaptive noise-removal filtering

Syntax J = wiener2(I,[m n],noise)
[J,noise] = wiener2(I,[m n])

Description wiener2 lowpass-filters an intensity image that has been degraded by constant 
power additive noise. wiener2 uses a pixelwise adaptive Wiener method based 
on statistics estimated from a local neighborhood of each pixel.

J = wiener2(I,[m n],noise) filters the image I using pixelwise adaptive 
Wiener filtering, using neighborhoods of size m-by-n to estimate the local image 
mean and standard deviation. If you omit the [m n] argument, m and n default 
to 3. The additive noise (Gaussian white noise) power is assumed to be noise.

[J,noise] = wiener2(I,[m n]) also estimates the additive noise power before 
doing the filtering. wiener2 returns this estimate in noise.

Class Support The input image I is a two-dimensional image of class uint8, uint16, or 
double. The output image J is of the same size and class as I.

Example For an example, see “Using Adaptive Filtering” on page 10-37.

Algorithm wiener2 estimates the local mean and variance around each pixel,

where η is the N-by-M local neighborhood of each pixel in the image A. wiener2 
then creates a pixelwise Wiener filter using these estimates,

where ν2 is the noise variance. If the noise variance is not given, wiener2 uses 
the average of all the local estimated variances.

µ 1
NM
---------- a n1 n2,( )

n1 n2 η∈,
∑=

σ2 1
NM
---------- a2 n1 n2,( ) µ2

–

n1 n2 η∈,
∑=

b n1 n2,( ) µ σ2 ν2
–

σ2
------------------ a n1 n2,( ) µ–( )+=
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See Also filter2, medfilt2

Reference [1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood 
Cliffs, NJ, Prentice Hall, 1990, pp. 536-540.
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14xyz2doublePurpose Convert color data from  representation to double

Syntax xyzd = xyz2double(XYZ)

Description xyxd = xyz2double(XYZ) converts an M-by-3 or M-by-N-by-3 array of XYZ 
color values to double. xyzd has the same size as XYZ.

The Image Processing Toolbox follows the convention that double-precision 
XYZ arrays contain 1931 CIE XYZ values. XYZ arrays that are uint16 follow 
the convention in the ICC profile specification (ICC.1:2001-4, www.color.org) 
for representing XYZ values as unsigned 16-bit integers. There is no standard 
representation of XYZ values as unsigned 8-bit integers. The ICC encoding 
convention is illustrated by this table.

Class Support xyz is a uint16 or double array that must be real and nonsparse. xyzd is of 
class double. 

See Also applycform, lab2double, lab2uint16, lab2uint8, makecform, whitepoint, 
xyz2uint16

XYZ

Value (X, Y, or Z) uint16 Value

0.0 0

1.0 32768

1.0 + (32767/32768) 65535
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14xyz2uint16Purpose Convert color data from  representation to uint16

Syntax xyz16 = xyz2uint16(xyz)

Description xyz16 = xyz2uint16(xyz) converts an M-by-3 or M-by-N-by-3 array of XYZ 
color values to uint16. xyz16 has the same size as xyz.

The Image Processing Toolbox follows the convention that double-precision 
XYZ arrays contain 1931 CIE XYZ values. XYZ arrays that are uint16 follow 
the convention in the ICC profile specification (ICC.1:2001-4, www.color.org) 
for representing XYZ values as unsigned 16-bit integers. There is no standard 
representation of XYZ values as unsigned 8-bit integers. The ICC encoding 
convention is illustrated by this table.

Class Support xyz is a uint16 or double array that must be real and nonsparse. xyz16 is 
uint8. 

See Also applycform, lab2double, lab2uint16, lab2uint8, makecform, whitepoint, 
xyz2double

XYZ

Value (X, Y, or Z) uint16 Value

0.0 0

1.0 32768

1.0 + (32767/32768) 65535
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14ycbcr2rgbPurpose Convert YCbCr values to RGB color space

Syntax rgbmap = ycbcr2rgb(ycbcrmap)
RGB = ycbcr2rgb(YCBCR)

Description rgbmap = ycbcr2rgb(ycbcrmap) converts the YCbCr values in the colormap 
ycbcrmap to the RGB color space. If ycbcrmap is m-by-3 and contains the YCbCr 
luminance (Y) and chrominance (Cb and Cr) color values as columns, then 
rgbmap is returned as an m-by-3 matrix that contains the red, green, and blue 
values equivalent to those colors.

RGB = ycbcr2rgb(YCBCR) converts the YCbCr image YCBCR to the equivalent 
true-color image RGB.

Class Support If the input is a YCbCr image, it can be of class uint8, uint16, or double; the 
output image is of the same class as the input image. If the input is a colormap, 
the input and output colormaps are both of class double.

See Also ntsc2rgb, rgb2ntsc, rgb2ycbcr
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14zoomPurpose Zoom in and out on an image

zoom is a MATLAB function. To get help for this function, select MATLAB Help 
from the Help menu and view the online function reference page.



zoom

14-426



I-1

Index

A
adapthisteq 10-28, 14-16
adaptive filtering 14-420
adaptive filters 10-37

definition 10-2
addition

of images 2-31
affine transformations

definition 5-13
using imtransform 4-11

aliasing 4-7
definition 4-2

alpha channel 13-4
analyzing images

edge detection 14-121
histograms 14-238
intensity profiles 14-262
pixel values 14-259
quadtree decomposition 14-355

antialiasing 4-7
definition 4-2

applycform 14-19
applylut 14-20
applylut 9-44

example 9-45
approximation

definition 13-2
of an image background 1-9

area
of binary images 9-42, 14-27
of image regions 10-11

arrays
storing images 2-4

averaging filter 7-7, 14-145

B
background

of a binary image 9-2
of an intensity image 1-9

bestblk 14-22
bicubic interpolation 4-3

definition 4-2
bilinear interpolation 4-3

definition 4-2
binary image operations

connected-components labeling 14-45
lookup-table operations 14-20, 14-319
morphological operations 14-51
neighborhoods 14-20

binary images 2-9, 14-303
changing the display colors of 3-27
connected-components labeling 9-40
converting from other types 14-186
definition 2-2
displaying 3-27
Euler number 9-43, 14-41
feature measurement 9-40
flood fill operation 9-26
image area 9-42, 14-27
lookup table operations 9-44
morphological operations 9-4
object selection 14-59
packing 9-3
perimeter determination 9-17, 14-57
selecting objects in 9-42

binary masks
creating 11-3
definition 11-2

bit depth
1-bit images 2-18
screen bit depth 13-3



Index

I-2

blind deconvolution algorithm
used for deblurring 12-16

blkproc 14-23
blkproc 6-8

specifying overlap 6-10
using 6-9

block operations
definition 6-2

block processing 6-2
block size 14-22
column processing 6-11
distinct blocks 6-8, 14-23
padding borders 6-5
sliding neighborhoods 6-4, 14-334

border padding 6-5
definition 6-2

border replication
in image processing 7-12

boundary padding
See border padding

boundary ringing
in image deblurring 12-23

boundary tracing 10-13
bounding box

finding for a region 10-11
brightness adjustment 10-23
bwarea 14-27
bwarea 9-42
bwareaopen 14-29
bwboundaries 14-31
bwdist 14-35
bwdist 9-37
bweuler 14-41
bwhitmiss 14-43
bwlabel 14-45
bwlabeln 14-48
bwmorph 14-51

bwmorph

skeletonization example 9-17
bwpack 14-55
bwperim 14-57
bwselect 14-59
bwtraceboundary 14-61
bwtraceboundary

using 10-15
bwulterode 14-64
bwunpack 14-66

C
camera read-out noise 12-12
Canny edge detector 10-12, 14-122
center of mass

calculating for region 10-11
center pixel

calculating 6-4
definition 6-2

checkerboard 14-67
chrominance

in CIE color spaces 13-16
in NTSC color space 13-22
in YCbCr color space 13-22

CIE color spaces 13-15
CIELAB color space 13-15
class support 2-13

See also data types
closing 14-51

morphology 9-14
cmpermute 14-69
cmunique 14-70
col2im 14-71
colfilt 14-72
colfilt 6-11

example 6-12, 6-14
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color
approximation 13-7, 14-119, 14-202, 14-376
dithering 13-13, 14-119
quantization 13-7, 14-376
reducing number of colors 13-6

color approximation
definition 3-2

color cube
a description of 13-7
quantization of 13-8

color planes 13-9, 13-24
of an HSV image 13-24
of an RGB image 2-10

color reduction 13-6–13-14
color spaces

converting among 13-15
converting between 13-15, 14-337, 14-378, 

14-379, 14-424
data encodings 13-18
device-independent color spaces 13-16
HSV 13-23
NTSC 13-21, 14-337, 14-378
RGB 13-15
YCbCr 13-22, 14-379, 14-424
YIQ 13-21

colorbar 3-31
colorcube 13-12
colormap mapping 13-11
colormaps

brightening 14-26
creating a colormap using colorcube 13-12
darkening 14-26
rearranging colors in 14-69
removing duplicate entries in 14-70

column processing 14-72
definition 6-2
in neighborhood operations 6-11

reshaping blocks into columns 14-188
reshaping columns into blocks 14-71

composite transformations 4-11
conformal transformations 5-13
conndef 14-75
connected component

definition 9-2
connected-components labeling 9-40, 14-45
connectivity

definition 9-2
overview 9-23
specifying custom 9-25

constant component
See zero-frequency component

contour plots 10-8, 14-212
text labels 10-9

contours
definition 10-2

contrast adjustment
decreasing contrast 10-23
increasing contrast 10-21
specifying limits automatically 10-24

contrast stretching
with decorrelation stretching 10-32
See also contrast adjustment

contrast-limited adaptive histogram equalization 
(CLAHE) 10-28

Control Point Selection Tool
appearance of control point symbols 5-27
changing view of images 5-18
saving a session 5-31
saving control points 5-30
specifying control points 5-23
starting 5-16
using 5-15
using point prediction 5-25

control points
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appearance of 5-27
prediction 5-25
saving 5-30
selecting 5-15
specifying 5-23

conv2 2-4
compared to imfilter 7-14

conversions between image types 2-13
convmtx2 14-78
convn

compared to imfilter 7-14
used with images 2-4

convolution
convolution matrix 14-78
definition 7-4
Fourier transform and 8-12
two-dimensional 7-4
with imfilter 7-9

convolution kernel
definition 7-4

coordinate systems
pixel coordinates 2-37
spatial coordinates 2-38

corr2 14-80
corr2 10-11
correlation

definition 7-6
Fourier transform 8-13
with imfilter 7-9

correlation coefficient 14-80
correlation kernel

definition 7-6
cp2tform 14-81

using 5-13
cpcorr 14-90

example 5-32
cpselect 14-92

using 5-8
cpstruct2pairs 14-94
cropping an image 4-10, 14-214
cross-correlation

improving control point selection 5-32

D
damping

for noise reduction 12-12
data types

8-bit integers (uint8) 2-5
converting between 14-120, 14-195, 14-197, 

14-221, 14-252
double-precision (double) 14-120, 14-195, 

14-197, 14-221, 14-252
double-precision (double) 2-5
in image filtering 7-7
summary of image types and numeric classes 

2-13
DC component

See zero-frequency component
dconvreg 14-105
dct2 14-95
dct2 8-17
dctmtx 14-98
dctmtx 8-18
deblurring

avoiding boundary ringing 12-23
conceptual model 12-3
overview 12-3
overview of functions 12-6
use of frequency domain 12-22
using the blind deconvolution algorithm 12-16
using the Lucy-Richardson algorithm 12-11
with regularized filter 12-9
with the Wiener filter 12-7



Index

I-5

decomposition of structuring elements
example 9-9
getting sequence 14-169

deconvblind 14-99
deconvblind

example 12-16
deconvlucy 14-102
deconvlucy

example 12-11
deconvreg

example 12-9
deconvwnr 14-107
deconvwnr

example 12-7
decorrelation stretching 10-29

See also contrast adjustment
decorrstretch 14-109
demos 1-20
detail rectangle

in Control Point Selection Tool 5-17
DICOM

reading and writing files 2-22
DICOM unique identifier

generating 2-28
dicominfo 14-110
dicomread 14-111
dicomuid 14-114
dicomwrite 14-115
Digital Imaging and Communications in Medicine 

(DICOM)
reading and writing files 2-22

dilation 9-4, 14-52
grayscale 14-338

discrete cosine transform 8-17, 14-95
image compression 8-19
inverse 14-180
transform matrix 8-18, 14-98

discrete Fourier transform 8-8
discrete transform

definition 8-2
display depth 13-3

See screen color resolution
display techniques 14-276

displaying at true size 14-409
multiple images 14-398
texture mapping 14-413

displaying images
adding a colorbar 3-31
at true size 3-19
binary 3-27
binary images with different colors 3-27
comparison of functions 3-3
directly from disk 3-18
indexed images 3-24
initial size 3-19
intensity images 3-25
multiple images in the same figure window 

3-20
texture mapping 3-35
toolbox preferences for 3-37
unconventional ranges of data 3-25
using imshow 3-18
using the Image Viewer 3-5

distance
between pixels 10-3
Euclidean 10-3

distance transform 9-37
distinct block operations 6-8

definition 6-2
overlap 6-9, 14-23
zero padding 6-8

dither 14-119
dithering 13-13, 14-119, 14-376

example 13-13
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division
of images 2-35

double 14-197, 14-210, 14-221, 14-248, 14-252, 
14-278

E
edge 14-121
edge 10-12

example 10-13
See also edgedemo

edge detection 10-12
Canny method 10-12
example 10-13
methods 14-121
Sobel method 10-12

edges
definition 10-2

edgetaper 14-126
edgetaper

avoiding boundary ringing 12-23
8-bit image files

creating 2-19
reading 2-16

enhancing images
decorrelation stretching 10-29
intensity adjustment 10-22, 14-199
noise removal 10-34

erosion 9-4, 14-52
grayscale 14-338

Euclidean distance 10-3, 14-351
Euler number 9-43, 14-41

F
fan2para 14-127
fanbeam 14-131

fanbeam

using 8-35
fan-beam projection data

arc geometry 8-36
computing 8-35
line geometry 8-37
reconstructing image from 8-38

fast Fourier transform 8-8
higher-dimensional 14-134
higher-dimensional inverse 14-185
two-dimensional 14-133
zero padding 8-10
See also Fourier transform

feature measurement
area 10-11
binary images 9-40
bounding box 10-11
center of mass 10-11

feature measurements 1-17
fft 8-8
fft2 14-133
fft2 2-4, 8-8

example 8-9
using 8-11

fftn 2-4, 8-8
fftshift

example 7-18
using 8-11

files
displaying images from disk 3-18

filling a region 11-9
definition 11-2

filling holes in images 9-28
filter design 7-17

frequency sampling method 7-19, 14-142
frequency transformation method 7-18, 

14-150
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windowing method 7-20, 14-153, 14-157
filter2

compared to imfilter 7-14
example 3-26, 10-36

filtering
a region 11-6
masked filtering 11-6
regions 11-2

filters
adaptive 10-37, 14-420
averaging 14-145
binary masks 11-6
computing frequency response 8-11
designing 7-17
finite impulse response (FIR) 7-17
frequency response 7-22
imfilter 7-7
Infinite Impulse Response (IIR) 7-18
Laplacian of Gaussian 14-145
linear 7-4
median 10-34, 14-330
multidimensional 7-13
order-statistic 14-338
predefined types 14-145
Prewitt 14-145
Sobel 14-145
unsharp 14-145
unsharp masking 7-15

FIR filters 7-17
transforming from one-dimensional to 

two-dimensional 7-18
flat-field correction 12-12
flood-fill operation 9-26
foreground

of a binary image 9-2
4-bit image files 2-18
Fourier transform 8-3

applications of the Fourier transform 8-11
centering the zero-frequency coefficient 8-11
computing frequency response 8-11
convolution and 8-12
correlation 8-13
DFT coefficients 8-9
examples of transform on simple shapes 8-7
fast convolution with 8-12
for performing correlation 8-13
frequency domain 8-3
higher-dimensional 14-134
higher-dimensional inverse 14-185
increasing resolution 8-10
padding before computation 8-10
two-dimensional 8-3, 14-133
zero-frequency component 8-3

freqspace 7-21
example 7-19

frequency domain 8-3
definition 8-2

frequency response
computing 7-22, 8-11, 14-140
desired response matrix 7-21

frequency sampling method (filter design) 7-19, 
14-142

frequency transformation method (filter design) 
7-18, 14-150

freqz

example 7-18
freqz2 14-140
freqz2 7-22, 8-11

example 7-19
See also firdemo

fsamp2 14-142
fsamp2 7-19

example 7-19
See also firdemo
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fspecial 14-145
fspecial

creating predefined filters 7-15
ftrans2 14-150

See also firdemo
ftrans2

example 7-18
function functions

using 6-9
fwind1 14-153
fwind1 7-20

example 7-21
See also firdemo

fwind2 14-157
fwind2 7-20

See also firdemo

G
gamma correction 10-24
Gaussian convolution kernel

frequency response of 8-11
Gaussian filter 14-145
Gaussian noise 10-37
geocoded images 5-7
geometric operations

cropping 4-10, 14-214
definition 4-2
interpolation 4-3
resizing 4-5
rotation 14-274

georegistered images 5-7
getheight 14-161
getimage 14-162
getimage

example 3-18
getline 14-164

getneighbors 14-165
getnhood 14-166
getpts 14-167
getrect 14-168
getsequence 14-169
graphics card 13-4
graphics file formats

converting from one format to another 2-21
writing data 2-17

gray2ind 14-170
grayscale images

See intensity images
grayscale morphological operations 14-338
grayslice 14-171
graythresh 14-172
graythresh

thresholding image values 1-13

H
histeq 14-173
histeq

example 10-27
increase contrast example 10-26, 10-29
See also imadjdemo and roidemo

histogram equalization 10-26, 14-173
histograms 10-9, 14-238

definition 10-2
holes

filling 9-26
tracing boundaries 10-13

HSV color space 13-23
color planes of 13-24

hsv2rgb 13-23
hue

in HSV color space 13-23
in NTSC color space 13-22
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I
ICC profiles

processing 13-19
iccread 14-177
idct2 14-177, 14-180

See also dctdemo
ifanbeam 14-181
ifanbeam

using 8-38
ifft 8-8
ifft2 8-8
ifftn 8-8
IIR filters 7-18
im2bw 14-186
im2bw 2-14
im2col 14-188

See also dctdemo
im2double 14-190
im2double

example 6-14
im2java2d 14-192
im2uint16 14-193, 14-193
im2uint8 14-194
imabsdiff 14-195
imadjust 14-199
imadjust 10-22

brightening example 10-23
gamma correction and 10-24
gamma correction example 10-25
increase contrast example 10-22
setting limits automatically 10-24
See also imadjdemo, landsatdemo, roidemo, and 

ipss003

image analysis
contour plots 10-8
edge detection 10-12
histograms 10-9

intensity profiles 10-5
overview 10-12
pixel values 10-3
quadtree decomposition 10-18
summary statistics 10-11

image area (binary images) 14-27
image arithmetic

combining functions 2-36
overview 2-29
truncation rules 2-30

image editing 11-9
image filtering

data types 7-7
unsharp masking 7-15
with imfilter 7-7

Image Information tool
using 3-16

Image Information window
in Image Viewer 3-7

image processing
demos 1-20

image profiles
definition 10-2

image properties
definition 10-2
set by imshow 3-22

image registration
fine-tuning point placement 5-32
overview 5-4
procedure 5-4
selecting control points 5-15
specifying control point pairs 5-23
types of transformations 5-13
using control point prediction 5-25

image rotation 4-8
image transformations

affine 5-13
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custom 4-11
local weighted mean 5-14
piecewise linear 5-14
polynomial 5-14
projective 5-14
supported by cp2tform 5-13
types of 5-13
using imtransform 4-11

image types 2-6
binary 2-9
converting between 2-13
indexed 2-6
intensity 2-8
interpolation and 4-4
multiframe images 2-12
overview 2-2
RGB 2-9
supported by the toolbox 2-6
See also indexed, intensity, binary, RGB, 

multiframe
Image Viewer

closing 3-4
compared to imshow 3-3
controlling initial magnification 3-5
exploring images 3-9
extended example 1-8
managing memory usage 3-16
opening 3-4
overview of tools 3-6
panning images 3-11
specifying image magnification 3-12
starting 3-4
using the Pixel Region tool 3-13
viewing multiple images 3-5
zoom tools 3-11

images
adding 2-31

analyzing 10-3
arithmetic operations 2-29
causes of blurring 12-3
converting to binary 14-186
data types 2-5, 14-120, 14-195, 14-197, 14-221, 

14-252
displaying 14-276
displaying multiple images 3-19, 14-398
displaying multiple images in the same figure 

window 3-20
dividing 2-35
feature measurement 1-17
filling holes in 9-28
finding image minima and maxima 9-29
getting data from axes 14-162
how MATLAB stores 2-4
image types 2-6
improving contrast 1-12
multiplication 2-34
reducing number of colors 13-6, 14-202
registering 5-4
restoring blurred images 12-3
returning information about 2-20
statistical analysis of 1-18
storage classes of 2-5
subtraction 2-33
using imshow 3-18
viewing as a surface plot 1-10

imapprox 14-202
imapprox 13-12

example 13-12
imbothat 14-203
imclearborder 14-205
imclose 14-208
imclose

using 9-14
imcontour 14-212
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imcontour 10-8
example 10-9

imcrop 14-214
imcrop 4-10

example 4-10
imdilate 14-217
imerode 14-223
imerode

closure example 9-15
imextendedmax 14-226
imextendedmax

example 9-31
imextendedmin 14-228
imfill 14-230
imfill

example 9-28
imfilter 14-234
imfilter

compared to other filtering functions 7-14
convolution option 7-9
correlation option 7-9
padding options 7-10
using 7-7

imfinfo 2-20
example 2-18

imhist 14-238
imhist 10-9

example 10-10, 10-21, 10-22
imhmax 14-240
imhmin 14-242
imimposemin 14-244
imlincomb

example 2-36
immovie 14-251
immovie

example 3-34
imnoise 14-254

imnoise 10-34
example 10-37
salt & pepper example 10-35

imopen

using 9-14
impixel 14-259
impixel 10-3

example 10-4
improfile 14-262
improfile 10-5

example 10-7
grayscale example 10-5

imread 2-16
example for multiframe image 2-17

imreconstruct 14-266
imreconstruct

example 9-20
imregionalmax 14-268
imregmin 14-270
imresize 14-272
imresize 4-5
imrotate 14-274
imrotate

example 4-5, 4-8
using 4-8

imshow 14-276
imshow

compared to Image Viewer 3-3
displaying images 3-18
displaying unconventional range data 3-26
example for binary images 3-27
example for intensity images 3-25
example for RGB images 3-29
preferences for 3-37
specifying number of gray levels 3-25
truesize option 3-19
used with indexed images 3-24
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imtophat 14-280
imtransform 14-257, 14-282
imtransform

using 4-11
imview 14-288
imview

compared to imshow 3-3
displaying unconventional range data 3-26
used with indexed images 3-24

imwrite

example 2-18
ind2gray 14-293
ind2rgb 14-294
ind2rgb 2-14
indexed images 2-6, 14-306

converting from intensity 14-170
converting from RGB 14-376
definition 2-2
reducing number of colors in 13-6, 13-12

infinite impulse response (IIR) filter 7-18
inline 6-9
Intel Performance Primitives Library 14-295
intensity adjustment 10-22, 14-199

gamma correction 10-24
histogram equalization 10-26
specifying limits automatically 10-24
See also contrast adjustment

intensity images 2-8, 14-305
converting from matrices 14-328
converting from RGB 14-374
converting to indexed 14-170
definition 2-2
displaying 3-25
flood-fill operation 9-26
number of gray levels displayed 3-25

intensity profiles 10-5, 14-262
interpolation 4-3

bicubic 4-3
definition 4-2

bilinear 4-3
definition 4-2

default 4-4
definition 4-2
intensity profiles 10-5
nearest-neighbor 4-3

definition 4-2
of binary images 4-4
of indexed images 4-4
of RGB images 4-4
tradeoffs between methods 4-3
within a region of interest 11-9

inverse Radon transform 8-28
example 8-33
filtered backprojection algorithm 8-30

inverse transform
definition 8-2

ippl 14-295
iptdemos 14-296
iptgetpref 14-297
iptgetpref 3-38
iptsetpref 14-298
iradon 14-300
iradon 8-28

example 8-28
isbw 14-303
isflat 14-304
isgray 14-305
isind 14-306
isrgb 14-307

J
java.opts file

managing memory usage 3-16
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JPEG compression
discrete cosine transform and 8-19

L
lab2double 14-308
lab2uint16 14-309
lab2uint8 14-310
label matrix

creating 9-40
viewing as pseudocolor image 1-16, 9-41

label2rgb 14-311
labeling

connected-components 9-40
levels of contours 10-9

Laplacian of Gaussian edge detector 14-122
Laplacian of Gaussian filter 14-145
line detection 8-26
line segment

pixel values along 10-5
linear conformal transformations 5-13
linear filtering 6-5, 7-4

convolution 7-4
filter design 7-17
FIR filters 7-17
IIR filters 7-18
noise removal and 10-34

local weighted mean transformations 5-14
lookup table operations 9-44
lookup-table operations 14-319
Lucy-Richardson algorithm

used for deblurring 12-11
luminance

in NTSC color space 13-22
in YCbCr color space 13-22

M
magnification

specifying in Image Viewer 3-5
magnifying

See resizing images
makecform 14-177, 14-313
makelut 14-319
makelut 9-44

example 9-44
marker image

creating 9-34
definition 9-19

mask image
definition 9-19

masked filtering 11-6, 14-384
definition 11-2

mat2gray 14-328
mat2gray 2-14
matrices

converting to intensity images 14-328
storing images in 2-4

maxima
finding in images 9-29
imposing 9-33
suppressing 9-31

McClellan transform 14-150
mean2 14-329
mean2 10-11
medfilt2 14-330
medfilt2

example 10-36
using 10-35

median filtering 10-34, 14-330
minima

finding in images 9-29
imposing 9-33
suppressing 9-31
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minimum variance quantization
See quantization

moiré patterns 4-7
montage 14-332
montage

example 3-32, 3-33
morphological operations 9-4, 14-51

closing 14-51
diagonal fill 14-52
dilation 9-4, 14-52
erosion 9-4, 14-52
grayscale 14-338
opening 14-52
predefined operations 9-16
removing spur pixels 14-52
shrinking objects 14-52
skeletonization 9-17, 14-52
thickening objects 14-53
thinning objects 14-53

morphological reconstruction
finding peaks and valleys 9-29
overview 9-19

morphology
closing 9-14
definition 9-2
opening 9-14
overview 9-1
See also morphological reconstruction

mouse
filling region of interest in intensity image 

11-9
getting an intensity profile with 10-3
returning pixel values with 10-3
selecting a polygonal region of interest 11-3

movies
creating from images 3-34, 14-251
playing 3-34

multidimensional filters 7-13
multiframe images

about 2-12
definition 2-2
displaying 14-332
limitations 2-12

multilevel thresholding 14-171
multiplication

of images 2-34

N
nearest-neighbor interpolation 4-3

definition 4-2
neighborhood operations

definition 6-2
neighborhoods

binary image operations 14-20
definition 9-2
neighborhood operations 6-2

nlfilter 14-334
nlfilter 6-6

example 6-6
noise

definition 10-2
noise amplification

reducing 12-12
noise removal 10-34

adaptive filtering (Weiner) and 10-37
adding noise 14-254
Gaussian noise 10-37, 14-254
grain noise 10-34
linear filtering and 10-34
localvar noise 14-254
median filter and 10-35
poisson noise 14-254
salt and pepper noise 10-35, 14-254
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speckle noise 14-254
nonlinear filtering 6-5
normalized cross-correlation 5-32
normxcorr2 14-335
NTSC color space 13-21, 14-337, 14-378
ntsc2rgb 14-337
ntsc2rgb 13-22

O
object selection 14-59
objects

tracing boundaries 10-13
observed image

in image registration 5-15
1-bit image files 2-18
opening 14-52

morphology 9-14
optical transfer function (OTF)

definition 12-2
order-statistic filtering 14-338
ordfilt2 14-338
orthonormal matrix 8-19
orthophoto

defined 5-7
orthorectified image 5-7
OTF

See optical transfer function
otf2psf 14-340

use of 12-22
outliers 10-35
overlap

in block operations 6-2
in distinct block operations 6-8

Overview window
in Image Viewer 3-6
using 3-9

P
packed binary image

definition 9-3
padarray 14-341
padding borders

block processing 6-5
options with imfilter 7-10

panning images
using the Image Viewer 3-11

para2fan 14-344
parallel beam projections 8-29
perimeter determination 14-57

in binary images 9-17
phantom 14-348
phantom 8-31
piecewise linear transformations 5-14
Pixel Region tool

in Image Viewer 3-6
specifying region size 3-15
using 3-13

pixel values 14-259, 14-351
along a line segment 10-5
returning using a mouse 10-3
using the Pixel Region tool 3-13

pixels
correcting for bad pixels 12-12
defining connectivity 9-23
definition 2-4
displaying coordinates of 10-3
Euclidean distance between 10-3
returning coordinates of 10-4
selecting 10-3

pixval 14-351
pixval

using 10-3
PNG

writing as 16-bit 2-18
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point mapping
for image registration 5-4

point spread function
importance of in deblurring 12-4

point spread function (PSF)
definition 12-2

poly2mask 14-353
polygon

pixels inside 11-3
selecting a polygonal region of interest 11-3

polynomial transformations 5-14
predicting control point locations

in image registration 5-25
preferences

getting values 14-298
Image Processing Toolbox display preferences 

3-37
ImshowAxesVisible 3-37
ImshowBorder 3-37
ImshowTruesize 3-37
TrueSizeWarning 3-38

Prewitt edge detector 14-122
Prewitt filter 14-145
profiles

reading ICC color profiles 13-19
projections

parallel beam 8-29
projective transformations 4-11, 5-14
PSF

See point spread function
psf2otf 14-354

use of 12-22

Q
qtdecomp 14-355
qtdecomp 10-19

example 10-19
qtgetblk 14-359

See also qtdemo
qtsetblk 14-361

See also qtdemo
quadtree decomposition 10-18, 14-355

definition 10-2
getting block values 14-359
setting block values 14-361

quantization 13-7
minimum variance quantization 14-376
tradeoffs between using minimum variance and 

uniform quantization methods 13-11
uniform quantization 14-376

R
radon 14-362
radon 8-28

example 8-24
Radon transform 8-21, 14-362

center pixel 8-23
example 8-31
inverse 14-300
inverse Radon transform 8-28
line detection example 8-26
of the Shepp-Logan Head phantom 8-32
relationship to Hough transform 8-26

rank filtering 10-35
See also order-statistic filtering

ratioing 2-36
read-out noise

correcting 12-12
real orthonormal matrix 8-19
reconstruction

morphological 9-19
reference image



Index

I-17

in image registration 5-15
reflect 14-364
regcorr 14-137, 14-138, 14-321
region labeling 9-40
region of interest

based on color or intensity 11-5
binary masks 11-3
definition 11-2
filling 11-9, 14-382
filtering 11-6, 14-384
polygonal 11-3
selecting 11-3, 11-4, 14-381, 14-386

region property measurement 10-11
regional maxima

definition 9-3, 9-29
imposing 9-33
suppressing 9-31

regional minima
definition 9-3, 9-29
imposing 9-33
suppressing 9-31

regionprops 14-365
regionprops 10-11

using 1-17
registering an image 5-4
regularized filter

used for deblurring 12-9
replication

to avoid border effect 7-12
resizing images 4-5

antialiasing 4-7
resolution

screen color resolution 13-3
See also bit depth 13-3

RGB color cube
description of 13-7
quantization of 13-8

RGB images 2-9, 14-307
converting to indexed 14-376
converting to intensity 14-374
definition 2-3
displaying 3-29
measuring the intensities of each color plane 

10-6
reducing number of colors 13-6

rgb2gray 14-374
rgb2gray 2-14
rgb2hsv 13-23

example 13-24
rgb2ind 14-376
rgb2ind 2-14, 13-7

colormap mapping example 13-12
example 13-9, 13-10, 13-12, 13-13, 13-14
minimum variance quantization example 

13-10
specifying a colormap to use 13-11
uniform quantization example 13-9

rgb2ntsc 14-378
rgb2ntsc 13-22

example 13-22
rgb2ycbcr 13-23

example 13-23
Richardson-Lucy algorithm

See Lucy-Richardson
ringing

in image deblurring 12-23
Roberts edge detector 14-122
roicolor 14-381
roicolor 11-5
roifill 14-382
roifill 11-9

example 11-9
roifilt2 14-384
roifilt2 11-6



Index

I-18

contrast example 11-6
inline example 11-7

roipoly 14-386
roipoly 11-3

example 11-3
rotating an image 14-274
rotation

of images 4-8

S
salt and pepper noise 10-35
sampling

handling undersampled images 12-13
saturation

in HSV color space 13-23
in NTSC color space 13-22

screen bit depth 13-3
definition 13-2

screen color resolution 13-3
definition 13-2

ScreenDepth 13-3
Shepp-Logan head phantom 8-31
shrinking

See resizing images
Signal Processing Toolbox

hamming function 7-21
16-bit image files

creating 2-19
reading 2-16

skeletonization 9-17
sliding neighborhood operations 6-4, 14-334

center pixel in 6-4
padding in 6-5

Sobel edge detector 14-121
Sobel filter 14-145
spatial coordinates 2-38

spatial domain
definition 8-2

statistical properties
mean 14-329
of image objects 1-18
standard deviation 14-388

std2 14-388
std2 10-11
storage classes

converting between 2-20
of images 2-3

strel 14-389
stretchlim 14-396
stretchlim

adjusting image contrast 1-12
using 10-24

structuring elements 9-7
creating 9-8
decomposition of 9-9
decomposition sequence 14-169
definition 9-3
determining composition 14-219

subimage 14-398
subimage 3-21
subplot 3-21
subtraction

of images 2-33
of one image from another 1-11

sum 2-4
surf

viewing images 1-10

T
template matching 8-13
texture mapping 3-35, 14-413
tform 14-325
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tformarray 14-400
tformfwd 14-404
tforminv 14-406
thresholding

to create a binary image 1-13, 14-186
to create indexed image from intensity image 

14-171
tomography 8-28
tracing boundaries 10-13
transformation matrix 7-18
transforms 8-1

definition 8-2
discrete cosine 8-17, 14-95
discrete Fourier transform 8-8
Fourier 8-3, 14-133, 14-134
inverse discrete cosine 14-180
inverse Fourier 14-185
inverse Radon 8-28, 14-300
Radon 8-21, 14-362
two-dimensional Fourier transform 8-3

translate 14-408
transparency 13-4
truesize 14-409
truesize function

used with imshow 3-19
truncation rules

for image arithmetic operators 2-30
24-bit image files 2-9

U
uint16

storing images in 2-5, 2-16
uint8

storing images in 2-5, 2-16
uintlut 14-412
undersampling

correcting 12-13
uniform quantization

See quantization
unsharp filter 14-145
unsharp masking 7-15

W
warp 14-413

example 14-413
warp 3-35

example 3-35
watershed 14-415
weight array

in deblurring 12-12
whitepoint 14-419
Wiener filter

deblurring with 12-7
wiener2 14-420
wiener2

adaptive filtering 10-37
using 10-37

windowing method (filter design) 7-20, 14-153, 
14-157

X
X-ray absorption tomography 8-28
XYZ color space 13-15
xyz2double 14-422
xyz2uint16 14-423

Y
YCbCr color space 13-22, 14-379, 14-424
ycbcr2rgb 13-23
YIQ color space 13-22
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Z
zero padding 8-13

and the fast Fourier transform 8-10
image boundaries 7-10

zero-cross edge detector 14-122
zero-frequency component 8-3
zooming

Control Point Selection Tool 5-20
with Image Viewer 3-11
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