
For Use with MATLAB®

Image Processing
Toolbox

User’s Guide
Version 4

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Image Processing Toolbox User’s Guide
 COPYRIGHT 1993 - 2003 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: August 1993 First printing Version 1
May 1997 Second printing Version 2
April 2001 Third printing Revised for Version 3.0
June 2001 Online only Revised for Version 3.1 (Release 12.1)
July 2002 Online only Revised for Version 3.2 (Release 13)
May 2003 Fourth printing Revised for Version 4.0 (Release 13.0.1)
September 2003 Online only Revised for Version 4.1 (Release 13SP1)

iii

Contents

Preface

What Is the Image Processing Toolbox? xiv

Related Products . xv

Configuration Notes . xvi

About the Documentation . xvii
Structure of the Documentation . xvii
Image Credits . xviii
Terminology . xix
MATLAB Newsgroup . xx

Typographical Conventions . xxi

Image Processing Demos . xxii

1
Getting Started

Example 1 — Some Basic Topics . 1-2
1. Read and Display an Image . 1-2
2. Check How the Image Appears in the Workspace 1-3
3. Perform Histogram Equalization on the Image 1-4
4. Write the Image to a Disk File . 1-6
5. Check the Contents of the Newly Written File 1-6

Example 2 — Advanced Topics . 1-8
1. Read and Display an Image . 1-8
2. Estimate the Value of Background Pixels 1-9
3. View the Background Approximation as a Surface 1-10

iv Contents

4. Create an Image with a Uniform Background 1-11
5. Adjust the Contrast in the Processed Image 1-12
6. Create a Binary Version of the Image 1-13
7. Determine the Number of Objects in the Image 1-15
8. Examine the Label Matrix . 1-15
9. Display the Label Matrix as a Pseudocolor Indexed Image 1-16
10. Measure Object Properties in the Image 1-17
11. Compute Statistical Properties of Objects in the Image . . 1-18

Where to Go from Here . 1-20
Online Help . 1-20
Toolbox Demos . 1-20

2
Introduction

Terminology . 2-2

Images in MATLAB and the Image Processing Toolbox . . . 2-4
Working with Images in MATLAB . 2-4
Storage Classes in the Toolbox . 2-5

Image Types in the Toolbox . 2-6
Indexed Images . 2-6
Intensity Images . 2-8
Binary Images . 2-9
RGB Images . 2-9
Multiframe Image Arrays . 2-12
Summary of Image Types and Numeric Classes 2-13
Converting Image Types . 2-13

Reading and Writing Image Data . 2-16
Reading a Graphics Image . 2-16
Writing a Graphics Image . 2-17
Querying a Graphics File . 2-20
Converting Image Storage Classes . 2-20
Converting Graphics File Formats . 2-21

v Contents

Reading and Writing DICOM Files . 2-22

Image Arithmetic . 2-29
Summary of Image Arithmetic Functions 2-30
Image Arithmetic Truncation Rules . 2-30
Adding Images . 2-31
Subtracting Images . 2-33
Multiplying Images . 2-34
Dividing Images . 2-35
Nesting Calls to Image Arithmetic Functions 2-36

Coordinate Systems . 2-37
Pixel Coordinates . 2-37
Spatial Coordinates . 2-38

3
Displaying and Printing Images

Terminology . 3-2

Overview . 3-3

Using the Image Viewer to Display Images 3-4
Opening and Closing the Image Viewer 3-4
Understanding Image Viewer Tools . 3-6
Using Image Viewer Navigation Aids . 3-9
Using the Pixel Region Tool . 3-13
Using the Image Information Tool . 3-16
Managing Image Viewer Memory Usage 3-16

Using imshow to Display Images . 3-18
Opening Images . 3-18
Specifying the Initial Image Size . 3-19
Viewing Multiple Images . 3-19
Understanding Handle Graphics Object Property Settings . . 3-22

Displaying Different Image Types . 3-24

vi Contents

Displaying Indexed Images . 3-24
Displaying Intensity Images . 3-25
Displaying Binary Images . 3-27
Displaying RGB Images . 3-29

Special Display Techniques . 3-31
Adding a Colorbar . 3-31
Displaying All Frames of a Multiframe Image at Once 3-32
Converting a Multiframe Image to a Movie 3-34
Texture Mapping . 3-35

Printing Images . 3-36

Setting Toolbox Display Preferences 3-37
Toolbox Preferences . 3-37
Retrieving the Value of Toolbox Preferences 3-38
Setting the Value of Toolbox Preferences 3-38

4
Spatial Transformations

Terminology . 4-2

Interpolation . 4-3
Image Types . 4-4

Image Resizing . 4-5
Specifying the Size of the Output Image 4-5
Specifying the Interpolation Method . 4-6
Using Filters to Prevent Aliasing . 4-7

Image Rotation . 4-8
Specifying the Interpolation Method . 4-8
Specifying the Size of the Output Image 4-9

Image Cropping . 4-10

vii Contents

Performing General Spatial Transformations 4-11
Specifying the Transformation Type . 4-11
Performing the Transformation . 4-13
Advanced Spatial Transformation Techniques 4-13

5
Image Registration

Terminology . 5-2

Registering an Image . 5-4
Point Mapping . 5-4
Example: Registering to a Digital Orthophoto 5-6

Types of Supported Transformations 5-13

Selecting Control Points . 5-15
Using the Control Point Selection Tool 5-15
Starting the Control Point Selection Tool 5-16
Viewing the Images . 5-18
Specifying Matching Control Point Pairs 5-23
Saving Control Points . 5-30

Using Correlation to Improve Control Points 5-32

6
Neighborhood and Block Operations

Terminology . 6-2

Block Processing Operations . 6-3
Types of Block Processing Operations . 6-3

Sliding Neighborhood Operations . 6-4

viii Contents

Padding Borders . 6-5
Linear and Nonlinear Filtering . 6-5

Distinct Block Operations . 6-8
Overlap . 6-9

Column Processing . 6-11
Sliding Neighborhoods . 6-11
Distinct Blocks . 6-12

7
Linear Filtering and Filter Design

Terminology . 7-2

Linear Filtering . 7-4
Convolution . 7-4
Correlation . 7-6
Filtering Using imfilter . 7-7
Using Predefined Filter Types . 7-15

Filter Design . 7-17
FIR Filters . 7-17
Frequency Transformation Method . 7-18
Frequency Sampling Method . 7-19
Windowing Method . 7-20
Creating the Desired Frequency Response Matrix 7-21
Computing the Frequency Response of a Filter 7-22

8
Transforms

Terminology . 8-2

ix Contents

Fourier Transform . 8-3
Definition of Fourier Transform . 8-3
Discrete Fourier Transform . 8-8
Applications of the Fourier Transform 8-11

Discrete Cosine Transform . 8-17
The DCT Transform Matrix . 8-18
DCT and Image Compression . 8-19

Radon Transform . 8-21
Using the Radon Transform to Detect Lines 8-26
Inverse Radon Transform . 8-28
Example: Reconstructing an Image from Parallel Projection Data 8-31

Fan-Beam Projection Data . 8-35
Computing Fan-Beam Projection Data 8-36
Reconstructing an Image from Fan-Beam Projection Data . . . 8-38
Working with Fan-Beam Projection Data 8-39

9
Morphological Operations

Terminology . 9-2

Dilation and Erosion . 9-4
Understanding Dilation and Erosion . 9-4
Structuring Elements . 9-7
Dilating an Image . 9-11
Eroding an Image . 9-12
Combining Dilation and Erosion . 9-14
Dilation- and Erosion-Based Functions 9-16

Morphological Reconstruction . 9-19
Marker and Mask . 9-19
Pixel Connectivity . 9-23
Flood-Fill Operations . 9-26
Finding Peaks and Valleys . 9-29

x Contents

Distance Transform . 9-37

Objects, Regions, and Feature Measurement 9-40
Connected-Component Labeling . 9-40
Selecting Objects in a Binary Image . 9-42
Finding the Area of the Foreground of a Binary Image 9-42
Finding the Euler Number of a Binary Image 9-43

Lookup Table Operations . 9-44

10
Analyzing and Enhancing Images

Terminology . 10-2

Pixel Values and Statistics . 10-3
Pixel Selection . 10-3
Intensity Profile . 10-5
Image Contours . 10-8
Image Histogram . 10-9
Summary Statistics . 10-11
Region Property Measurement . 10-11

Image Analysis . 10-12
Edge Detection . 10-12
Boundary Tracing . 10-13
Quadtree Decomposition . 10-18

Intensity Adjustment . 10-21
Adjusting Intensity Values to a Specified Range 10-22
Histogram Equalization . 10-26
Contrast-Limited Adaptive Histogram Equalization 10-28
Decorrelation Stretching . 10-29

Noise Removal . 10-34
Using Linear Filtering . 10-34
Using Median Filtering . 10-34

xi

Using Adaptive Filtering . 10-37

11
Region-Based Processing

Terminology . 11-2

Specifying a Region of Interest . 11-3
Selecting a Polygon . 11-3
Other Selection Methods . 11-4

Filtering a Region . 11-6
Example: Filtering a Region in an Image 11-6
Specifying the Filtering Operation . 11-7

Filling a Region . 11-9

12
Image Deblurring

Terminology . 12-2

Understanding Deblurring . 12-3
Causes of Blurring . 12-3
Deblurring Model . 12-3

Using the Deblurring Functions . 12-6
Deblurring with the Wiener Filter . 12-7
Deblurring with a Regularized Filter . 12-9
Deblurring with the Lucy-Richardson Algorithm 12-11
Deblurring with the Blind Deconvolution Algorithm 12-16
Creating Your Own Deblurring Functions 12-22

Avoiding Ringing in Deblurred Images 12-23

xii Contents

13
Color

Terminology . 13-2

Working with Different Screen Bit Depths 13-3
Determining Screen Bit Depth . 13-3
Choosing a Screen Bit Depth . 13-4

Reducing the Number of Colors in an Image 13-6
Using rgb2ind . 13-7
Reducing Colors in an Indexed Image 13-12
Dithering . 13-13

Converting Color Data Between Color Spaces 13-15
Converting Between Device-Independent Color Spaces 13-15
Performing Profile-Based Conversions 13-19
Converting Between Device-Dependent Color Spaces 13-21

14
Function Reference

Functions – By Category . 14-2
Image Input, Output, and Display . 14-2
Spatial Transformation and Registration 14-4
Image Analysis and Statistics . 14-5
Image Enhancement and Restoration 14-6
Linear Filtering and Transforms . 14-7
Morphological Operations . 14-9
Region-Based, Neighborhood, and Block Processing 14-11
Colormap and Color Space Functions 14-12
Miscellaneous Functions . 14-13

Functions – Alphabetical List . 14-15

Preface

This chapter introduces you to the Image Processing Toolbox and describes conventions used by the
documentation.

What Is the Image Processing Toolbox?
(p. xiv)

Introduces the Image Processing Toolbox and its
capabilities

Related Products (p. xv) Highlights other MathWorks products that are related to
image processing

Configuration Notes (p. xvi) Provides some information about installing and
configuring the image processing toolbox

About the Documentation (p. xvii) Describes the structure of the Image Processing Toolbox
documentation and credits the sources of the images used
in the documentation

Typographical Conventions (p. xxi) Lists typographical conventions used in the
documentation

Image Processing Demos (p. xxii) Describes the demos included with the Image Processing
Toolbox

 Preface

xiv

What Is the Image Processing Toolbox?
The Image Processing Toolbox is a collection of functions that extend the
capability of the MATLAB® numeric computing environment. The toolbox
supports a wide range of image processing operations, including

• Spatial image transformations

• Morphological operations

• Neighborhood and block operations

• Linear filtering and filter design

• Transforms

• Image analysis and enhancement

• Image registration

• Deblurring

• Region of interest operations

Many of the toolbox functions are MATLAB M-files, a series of MATLAB
statements that implement specialized image processing algorithms. You can
view the MATLAB code for these functions using the statement

type function_name

You can extend the capabilities of the Image Processing Toolbox by writing
your own M-files, or by using the toolbox in combination with other toolboxes,
such as the Signal Processing Toolbox and the Wavelet Toolbox.

For a list of the new features in this version, see the Release Notes
documentation.

Related Products

xv

Related Products
The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with Image Processing Toolbox.

For more information about any of these products, see either

• The online documentation for that product if it is installed or if you are
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com; see the “products”
section

The toolboxes listed below all include functions that extend MATLAB. The
blocksets all include blocks that extend Simulink..

Product Description

DSP Blockset Design and simulate DSP systems

Image Acquisition
Toolbox

Connect to image acquisition hardware and
bring frames of image data into the MATLAB
workspace

Mapping Toolbox Analyze and visualize geographically based
information

MATLAB The Language of Technical Computing

Signal Processing
Toolbox

Perform signal processing, analysis, and
algorithm development

Wavelet Toolbox Analyze, compress, and denoise signals and
images using wavelet techniques

 Preface

xvi

Configuration Notes
To determine if the Image Processing Toolbox is installed on your system, type
this command at the MATLAB prompt.

ver

When you enter this command, MATLAB displays information about the
version of MATLAB you are running, including a list of all toolboxes installed
on your system and their version numbers.

For information about installing the toolbox, see the MATLAB Installation
Guide for your platform.

For the most up-to-date information about system requirements, see the
system requirements page, available in the products area at The MathWorks
Web site (www.mathworks.com).

About the Documentation

xvii

About the Documentation
This section

• Describes the structure of the Image Processing Toolbox documentation

• Credits the sources of images used in the documentation

• Explains the use of glossaries at the beginning of each major section of the
documentation

• Provides pointers to other sources of information

Structure of the Documentation
The documentation is organized into these major sections:

• Chapter 1, “Getting Started,” contains two step-by-step examples that will
help you get started with using the Image Processing Toolbox.

• Chapter 2, “Introduction,” introduces the Image Processing Toolbox and its
capabilities.

• Chapter 3, “Displaying and Printing Images,” describes how to display and
print images in MATLAB.

• Chapter 4, “Spatial Transformations,” describes image cropping, resizing,
rotating, and other geometric transformations you can perform with the
Image Processing Toolbox.

• Chapter 5, “Image Registration,” describes how to align two images of the
same scene using the Control Point Selection Tool.

• Chapter 6, “Neighborhood and Block Operations,” describes how to perform
block operations on images.

• Chapter 7, “Linear Filtering and Filter Design,” describes how to create
filters.

• Chapter 8, “Transforms,” discusses several important image transforms.

• Chapter 9, “Morphological Operations,” describes the functions in the
toolbox that you can use to implement morphological image processing
operations.

• Chapter 10, “Analyzing and Enhancing Images,” discusses working with
image data and displaying images in MATLAB and the Image Processing
Toolbox.

 Preface

xviii

• Chapter 11, “Region-Based Processing,” describes how to perform image
processing on specific regions of an image.

• Chapter 12, “Image Deblurring,” describes the toolbox deblurring functions.

• Chapter 13, “Color,” describes how to handle color images.

For detailed reference descriptions of each toolbox function, go to the MATLAB
Help browser. Many reference descriptions also include examples, a
description of the function’s algorithm, and references to additional reading
material.

Image Credits
This table lists the copyright owners of the images used in the Image
Processing Toolbox documentation.

Image Source

cameraman Copyright Massachusetts Institute of
Technology. Used with permission.

cell Cancer cell from a rat’s prostate, courtesy of
Alan W. Partin, M.D., Ph.D., Johns Hopkins
University School of Medicine.

circuit Micrograph of 16-bit A/D converter circuit,
courtesy of Steve Decker and Shujaat
Nadeem, MIT, 1993.

concordaerial and
westconcordaerial

Visible color aerial photographs courtesy of
mPower3/Emerge.

concordorthophoto and
westconcordorthophoto

Orthoregistered photographs courtesy of
Massachusetts Executive Office of
Environmental Affairs, MassGIS.

forest Photograph of Carmanah Ancient Forest,
British Columbia, Canada, courtesy of Susan
Cohen.

About the Documentation

xix

Terminology
At the beginning of each chapter are glossaries of words you need to know to
understand the information in the chapter. These tables clarify how we use
terms that may be used in several different ways in image processing
literature. For example:

• In the field of image processing, one word is sometimes used to describe more
than one concept. For example the resolution of an image can describe the
height and width of an image as a quantity of pixels in each direction, or it
can describe the number of pixels per linear measure, such as 100 dots per
inch.

LAN files Permission to use Landsat™ data sets
provided by Space Imaging, LLC, Denver,
Colorado.

liftingbody Picture of M2-F1 lifting body in tow, courtesy
of NASA (Image number E-10962).

m83 M83 spiral galaxy astronomical image
courtesy of Anglo-Australian Observatory,
photography by David Malin.

moon Copyright Michael Myers. Used with
permission.

saturn Voyager 2 image, 1981-08-24, NASA catalog
#PIA01364.

solarspectra Courtesy of Ann Walker. Used with
permission.

tissue Courtesy of Alan W. Partin, M.D., PhD.,
Johns Hopkins University School of Medicine.

trees Trees with a View, watercolor and ink on
paper, copyright Susan Cohen. Used with
permission.

Image Source

 Preface

xx

• In the field of image processing, the same concepts are sometimes described
by different terminology. For example, a grayscale image can also be called
an intensity image.

MATLAB Newsgroup
If you read newsgroups on the Internet, you might be interested in the
MATLAB newsgroup (comp.soft-sys.matlab). This newsgroup gives you
access to an active MATLAB user community. It is an excellent way to seek
advice and to share algorithms, sample code, and M-files with other MATLAB
users.

Typographical Conventions

xxi

Typographical Conventions

Item Convention Example

Example code Monospace font To assign the value 5 to A,
enter

A = 5

Function names, syntax,
filenames, directory/folder
names, user input, items in
drop-down lists

Monospace font The cos function finds the
cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Buttons and keys Boldface with book title caps Press the Enter key.

Literal strings (in syntax
descriptions in reference
chapters)

Monospace bold for literals f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables
Standard text font for
functions, operators, and
constants

This vector represents the
polynomial p = x2 + 2x + 3.

MATLAB output Monospace font MATLAB responds with
A =

5

Menu and dialog box titles Boldface with book title caps Choose the File Options
menu.

New terms and for
emphasis

Italics An array is an ordered
collection of information.

Omitted input arguments (...) ellipsis denotes all of the
input/output arguments from
preceding syntaxes.

[c,ia,ib] = union(...)

String variables (from a
finite list)

Monospace italics sysc = d2c(sysd,'method')

 Preface

xxii

Image Processing Demos
The Image Processing Toolbox is supported by a full complement of demo
applications. These are very useful as templates for your own end-user
applications, or for seeing how to use and combine your toolbox functions for
powerful image analysis and enhancement.

To view all the Image Processing Toolbox demos, call the iptdemos function.
This displays an HTML page in the MATLAB Help browser that lists all the
Image Processing Toolbox demos.

You can also view this page by starting the MATLAB Help browser and clicking
the Demos tab in the Help Navigator pane. From the list of products with
demos, select the Image Processing Toolbox.

The toolbox demos are located under the subdirectory

matlabroot\toolbox\images\imdemos

where matlabroot represents your MATLAB installation directory.

1

Getting Started

This chapter contains two examples to get you started doing image processing using MATLAB and
the Image Processing Toolbox. The examples contain cross-references to other sections in the
documentation manual that have in-depth discussions on the concepts presented in the examples.

Example 1 — Some Basic Topics
(p. 1-2)

Guides you through an example of some of the basic
image processing capabilities of the toolbox, including
reading, writing, and displaying images

Example 2 — Advanced Topics (p. 1-8) Guides you through some advanced image processing
topics, including components labeling, object property
measurement, image arithmetic, morphological image
processing, and contrast enhancement

Where to Go from Here (p. 1-20) Provides pointers to additional sources of information

1 Getting Started

1-2

Example 1 — Some Basic Topics
This example introduces some basic image processing concepts, including
reading and writing images, performing histogram equalization on an image,
and getting information about an image. The example breaks this process into
the following steps:

Before beginning with this example, you should already have installed the
Image Processing Toolbox and have started MATLAB. If you are new to
MATLAB, read the MATLAB Getting Started documentation to learn about
basic MATLAB concepts.

1. Read and Display an Image
Clear the MATLAB workspace of any variables and close open figure windows.

clear, close all

To read an image, use the imread command. The example reads an image from
a file named pout.tif and stores it in an array named I. pout.tif is one of the
sample images that is supplied with the Image Processing Toolbox.

I = imread('pout.tif');

imread infers from the file that the graphics file format is TIFF. For the list of
supported graphics file formats, see the imread function reference
documentation.

Now display the image. The toolbox includes two image display functions:
imshow and imview. You can use either one to display an image.

imshow(I)

Step 1: Read and display an image

Step 2: Check how the image appears in the workspace

Step 3: Perform histogram equalization on the image

Step 4: Write the image to a disk file

Step 5: Get information about a graphics file

Example 1 — Some Basic Topics

1-3

Intensity Image pout.tif

Your choice of which display function to use depends on what you want to do.
For example, because it displays the image in a MATLAB figure window,
imshow provides access to figure annotation and printing capabilities. The
imview function displays an image in a separate Java-based window called the
Image Viewer, which provides access to additional tools that aid in navigating
around an image, especially large images, and enable the inspection of pixels
in an image.

“Example 2 — Advanced Topics” on page 1-8 uses imview. For more detailed
information about these display functions, see Chapter 3, “Displaying and
Printing Images.”

2. Check How the Image Appears in the Workspace
To see how the imread function stored the image data in the workspace, check
the Workspace browser in the MATLAB desktop. The Workspace browser
displays information about all the variables you create during a MATLAB
session. In the call to imread, you created the variable I, which is a 291-by-240
element array of uint8 data. MATLAB can store images as uint8, uint16, or
double arrays.

You can also get information about variables in the workspace by calling the
whos command.

whos
Name Size Bytes Class

1 Getting Started

1-4

 I 291x240 69840 uint8 array

Grand total is 69840 elements using 69840 bytes

For more information about image storage classes, see “Reading a Graphics
Image” on page 2-16.

3. Perform Histogram Equalization on the Image
As you can see, pout.tif is a somewhat low contrast image. To see the
distribution of intensities in pout.tif, you can create a histogram by calling
the imhist function. (Precede the call to imhist with the figure command so
that the histogram does not overwrite the display of the image I in the current
figure window.)

figure, imhist(I)

Notice how the intensity range is rather narrow. It does not cover the potential
range of [0, 255], and is missing the high and low values that would result in
good contrast.

0 50 100 150 200 250

0

200

400

600

800

1000

1200

1400

1600

Example 1 — Some Basic Topics

1-5

The toolbox provides several ways to improve the contrast in an image. One
way is to call the histeq function to spread the intensity values over the full
range of the image, a process called histogram equalization. (For more
information about this topic, see “Intensity Adjustment” on page 10-21, which
describes how to use the histeq, imadjust, and adapthisteq functions.)

I2 = histeq(I);

Display the new equalized image, I2, in a new figure window.

figure, imshow(I2)

Equalized Version of pout.tif

Call imhist again to create a histogram of the equalized image I2. If you
compare the two histograms, the histogram of I2 is more spread out than the
histogram of I1.

figure, imhist(I2)

1 Getting Started

1-6

4. Write the Image to a Disk File
To write the newly adjusted image I2 to a disk file, use the imwrite function.
If you include the filename extension '.png', the imwrite function writes the
image to a file in Portable Network Graphics (PNG) format, but you can specify
other formats.

imwrite (I2, 'pout2.png');

See the imwrite function reference page for a list of file formats it supports. See
also “Writing a Graphics Image” on page 2-17 for a tutorial discussion on
writing images using the Image Processing Toolbox.

5. Check the Contents of the Newly Written File
To see what imwrite wrote to the disk file, use the imfinfo function. This
function returns information about the image in the file, such as its format,
size, width, and height.

imfinfo('pout2.png')

MATLAB responds with

0 50 100 150 200 250

0

200

400

600

800

1000

1200

1400

1600

Example 1 — Some Basic Topics

1-7

ans =

. . .

This example shows only a subset of all the fields returned by imfinfo. See
“Querying a Graphics File” on page 2-20 for more information about using
imfinfo.

Filename:'pout2.png'
FileModDate:'03-Jun-1999 15:50:25'

FileSize:36938
Format:'png'

FormatVersion:[]
Width:240
Height:291

BitDepth:8
ColorType:'grayscale'

1 Getting Started

1-8

Example 2 — Advanced Topics
This example introduces some advanced image processing concepts. The
example calculates statistics about objects in the image but, before it performs
these calculations, it preprocesses the image to achieve better results. The
preprocessing involves creating a uniform background in the image and
converting the image into a binary image. The example breaks this process into
the following steps:

1. Read and Display an Image
Clear the MATLAB workspace of any variables, close open figure windows, and
close all open Image Viewers.

clear, close all, imview close all

Read and display the intensity image rice.png.

I = imread('rice.png');
imview(I)

Step 1: Read and display an image

Step 2: Estimate the approximate value of background pixels

Step 3: View the background approximation as a surface

Step 4: Create an image with a uniform background

Step 5: Adjust the contrast in the uniform image

Step 6: Create a binary version of the image

Step 7: Determine the number of objects in the image

Step 8: Examine the label matrix

Step 9: Display the label matrix as a pseudocolor indexed image

Step 10: Measure properties of objects in the image

Step 11: Compute statistics of objects in the image

Example 2 — Advanced Topics

1-9

Intensity Image rice.png

2. Estimate the Value of Background Pixels
In the sample image, the background illumination is brighter in the center of
the image than at the bottom. In this step, the example uses a morphological
opening operation to estimate the background illumination. An opening is an
erosion followed by a dilation, using the same structuring element for both
operations. The morphological opening has the effect of removing objects that
cannot completely contain the structuring element. For more information
about morphological image processing, see Chapter 9, “Morphological
Operations.”

The example calls the imopen function to perform the morphological opening
operation. Note the call to the strel function, which creates a disk-shaped
structuring element with a radius of 15. To remove the rice grains from the
image, the structuring element must be large enough so that it cannot fit
entirely inside a single grain of rice.

background = imopen(I,strel('disk',15));

To see the estimated background image, type

imview(background)

1 Getting Started

1-10

3. View the Background Approximation as a
Surface
Use the surf command to create a surface display of the background
approximation background. The surf command creates colored parametric
surfaces that enable you to view mathematical functions over a rectangular
region. The surf function requires data of class double, however, so you first
need to convert background using the double command.

figure, surf(double(background(1:8:end,1:8:end))),zlim([0 255]);
set(gca,'ydir','reverse');

The example uses MATLAB indexing syntax to view only 1 out of 8 pixels in
each direction; otherwise the surface plot would be too dense. The example also
sets the scale of the plot to better match the range of the uint8 data and
reverses the y-axis of the display to provide a better view of the data (the pixels
at the bottom of the image appear at the front of the surface plot).

In the surface display, [0, 0] represents the origin, or upper left corner of the
image. The highest part of the curve indicates that the highest pixel values of
background (and consequently rice.png) occur near the middle rows of the
image. The lowest pixel values occur at the bottom of the image and are
represented in the surface plot by the lowest part of the curve.

The surface plot is a Handle Graphics® object. You can use object properties to
fine-tune its appearance. For information on working with MATLAB graphics,
see the MATLAB graphics documentation.

Example 2 — Advanced Topics

1-11

4. Create an Image with a Uniform Background
To create a more uniform background, subtract the background image,
background, from the original image, I.

I2 = imsubtract(I,background);

Because subtraction, like many MATLAB mathematical operations, is only
supported for data of class double, you must use the Image Processing Toolbox
image arithmetic imsubtract function.

Display the image with its more uniform background.

imview(I2)

1 Getting Started

1-12

Image with Uniform Background

5. Adjust the Contrast in the Processed Image
After subtraction, the image has a uniform background but is now a bit too
dark. Use imadjust to adjust the contrast of the image.

I3 = imadjust(I2);

imadjust increases the contrast of the image by saturating 1% of the data at
both low and high intensities of I2 and by stretching the intensity values to fill
the uint8 dynamic range. See the reference page for imadjust for more
information.

Display the adjusted image I3.

imview(I3);

Example 2 — Advanced Topics

1-13

Image After Intensity Adjustment

6. Create a Binary Version of the Image
Create a binary version of the image by using thresholding. The function
graythresh automatically computes an appropriate threshold to use to convert
the intensity image to binary. The im2bw function performs the conversion.

level = graythresh(I3);
bw = im2bw(I3,level);
imview(bw)

1 Getting Started

1-14

Binary Version of the Image

The binary image bw returned by im2bw is of class logical, as can be seen in
this call to whos. The Image Processing Toolbox uses logical arrays to represent
binary images. For more information, see “Binary Images” on page 2-9.

whos

MATLAB responds with

Name Size Bytes Class

I 256x256 65536 uint8 array
I2 256x256 65536 uint8 array
I3 256x256 65536 uint8 array
background 256x256 65536 uint8 array
bw 256x256 65536 logical array
level 1x1 8 double array

Grand total is 327681 elements using 327688 bytes

Example 2 — Advanced Topics

1-15

7. Determine the Number of Objects in the Image
After converting the image to a binary image, you can use the bwlabel function
to determine the number of grains of rice in the image. The bwlabel function
labels all the components in the binary image bw and returns the number of
components it finds in the image in the output value, numObjects.

[labeled,numObjects] = bwlabel(bw,4);

numObjects
ans =

 101

The accuracy of the results depends on a number of factors, including

• The size of the objects

• Whether or not any objects are touching (in which case they might be labeled
as one object)

• The accuracy of the approximated background

• The connectivity selected. The parameter 4, passed to the bwlabel function,
means that pixels must touch along an edge to be considered connected. For
more information about the connectivity of objects, see “Pixel Connectivity”
on page 9-23.

8. Examine the Label Matrix
To better understand the label matrix returned by the bwlabel function, this
step explores the pixel values in the image. There are several ways to get a
closeup view of pixel values. For example, you can use imcrop to select a small
portion of the image. Another way is to use imview to display the label matrix
and use features of the Image Viewer to examine pixel values.

imview(labeled);

The Image Viewer displays the value of the pixel under the mouse pointer as
you move it over the image. If you move the pointer over the label matrix in a
columnwise direction, you can see the order in which bwlabel numbered the
grains of rice.

You can also use the Pixel Region tool to get a close look at the values of pixels
in the label matrix. When you click the Pixel Region button in the Image

1 Getting Started

1-16

Viewer toolbar, the Image Viewer opens the Pixel Region tool window and
places a rectangular cursor, called the pixel region rectangle, in the center of
the visible part of the image. This rectangle defines which pixels are displayed
in the Pixel Region tool window. As you move the rectangle, the Pixel Region
Tool updates the pixel values displayed in the window. For more information
about all the capabilities of the Image Viewer, see “Using the Image Viewer to
Display Images” on page 3-4.

The following figure shows the Image Viewer with the Pixel Region rectangle
positioned over the edges of two rice grains. Note how all the pixels in the rice
grains have the values assigned by the bwlabel function and the background
pixels have the value 0 (zero).
.

Examining the Label Matrix with the Pixel Region Tool

9. Display the Label Matrix as a Pseudocolor
Indexed Image
A good way to view a label matrix is to display it as a pseudocolor indexed
image. In the pseudocolor image, the number that identifies each object in the
label matrix maps to a different color in the associated colormap matrix. The
colors in the image make objects easier to distinguish.

Pixel Region rectangle Region displayed in Pixel Region Tool

Example 2 — Advanced Topics

1-17

To view a label matrix in this way, use the label2rgb function. Using this
function, you can specify the colormap, the background color, and how objects
in the label matrix map to colors in the colormap.

pseudo_color = label2rgb(labeled, @spring, 'c', 'shuffle');
imview(pseudo_color);

Label Matrix Displayed as Pseudocolor Image

10. Measure Object Properties in the Image
The regionprops command measures object or region properties in an image
and returns them in a structure array. When applied to an image with labeled
components, it creates one structure element for each component.

This example uses regionprops to create a structure array containing some
basic properties for labeled. When you set the properties parameter to
'basic', the regionprops function returns three commonly used
measurements: area, centroid (or center of mass), and bounding box. The
bounding box represents the smallest rectangle that can contain a region, or in
this case, a grain of rice.

graindata = regionprops(labeled,'basic')

MATLAB responds with

graindata =

101x1 struct array with fields:
 Area
 Centroid

1 Getting Started

1-18

 BoundingBox

To find the area of the 51st labeled component, access the Area field in the 51st
element in the graindata structure array. Note that structure field names are
case sensitive.

graindata(51).Area

returns the following results

ans =

140

To find the smallest possible bounding box and the centroid (center of mass) for
the same component, use this code:

graindata(51).BoundingBox, graindata(51).Centroid

ans =

 107.5000 4.5000 13.0000 20.0000

ans =

 114.5000 15.4500

11. Compute Statistical Properties of Objects in the
Image
Now use MATLAB functions to calculate some statistical properties of the
thresholded objects. First use max to find the size of the largest grain. (In this
example, the largest grain is actually two grains of rice that are touching.)

max([graindata.Area])

returns

ans =

404

Use the find command to return the component label of the grain of rice with
this area.

Example 2 — Advanced Topics

1-19

biggrain = find([graindata.Area]==404)

returns

biggrain =

59

Find the mean of all the rice grain sizes.

mean([graindata.Area])

returns

ans =

175.0396

Make a histogram containing 20 bins that show the distribution of rice grain
sizes. The histogram shows that the most common sizes for rice grains in this
image are in the range of 150 to 250 pixels.

hist([graindata.Area],20)

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25

30

35

1 Getting Started

1-20

Where to Go from Here
For more information about the topics covered in these exercises, read the
tutorial chapters that make up the remainder of this documentation. For
reference information about any of the Image Processing Toolbox functions, see
the online “Function Reference”, which complements the M-file help that is
displayed in the MATLAB command window when you type

help functionname

For example,

help imview

Online Help
The Image Processing Toolbox User’s Guide documentation is available online
in both HTML and PDF formats. To access the HTML help, select Help from
the menu bar of the MATLAB desktop. In the Help Navigator pane, click the
Contents tab and expand the Image Processing Toolbox topic in the list.

To access the PDF help, click Image Processing Toolbox in the Contents tab
of the Help browser and go to the link under “Printable Documentation (PDF).”
(Note that to view the PDF help, you must have Adobe's Acrobat Reader
installed.)

Toolbox Demos
The Image Processing Toolbox includes many demo applications. The demos
are useful for seeing the toolbox features put into action and for borrowing code
for your own applications. To view an HTML page that lists all the Image
Processing Toolbox demos, call the iptdemos function. You can also access the
demos by clicking the Demos tab in the Help Navigator pane of the MATLAB
Help browser.

2

Introduction

This chapter introduces you to the fundamentals of image processing using MATLAB and the Image
Processing Toolbox.

Terminology (p. 2-2) Provides definitions of image processing terms used in
this section

Images in MATLAB and the Image
Processing Toolbox (p. 2-4)

Describes how images are represented in MATLAB and
the Image Processing Toolbox

Image Types in the Toolbox (p. 2-6) Describes the fundamental image types supported by the
Image Processing Toolbox

Reading and Writing Image Data
(p. 2-16)

Describes how to read and write images, and get
information about image files

Image Arithmetic (p. 2-29) Describes how to add, subtract, multiply, and divide
images

Coordinate Systems (p. 2-37) Explains image coordinate systems

2 Introduction

2-2

Terminology
An understanding of the following terms will help you to use this chapter.

Term Definition

binary image Image containing only black and white pixels. In MATLAB, a binary
image is represented as a logical array of 0’s and 1’s (which usually
represent black and white, respectively). This documentation uses the
variable name BW to represent a binary image in the workspace.

image type Defined relationship between array values and pixel colors. The toolbox
supports binary, indexed, intensity, and RGB image types.

indexed image Image whose pixel values are direct indices into an RGB colormap. In
MATLAB, an indexed image is represented by an array of class uint8,
uint16, or double. The colormap is always an m-by-3 array of class
double. This documentation uses the variable name X to represent an
indexed image in the workspace, and map to represent the colormap.

intensity image Image consisting of intensity (grayscale) values. In MATLAB, intensity
images are represented by an array of class uint8, uint16, or double.
While intensity images are not stored with colormaps, MATLAB uses a
system colormap to display them. This documentation uses the variable
name I to represent an intensity image in the workspace.

multiframe image Image array that contains more than one image, related by time or view.
Each image in the array is referred to as a frame. Multiframe images
are represented in the workspace as a 4-D array where the fourth
dimension specifies the frame number.

Terminology

2-3

RGB image Image in which each pixel is specified by three values — one each for
the red, green, and blue components of the pixel’s color. In MATLAB, an
RGB image is represented by an m-by-n-by-3 array of class uint8,
uint16, or double. This documentation uses the variable name RGB to
represent an RGB image in the workspace. This type of image is also
known as a true-color image.

storage class The numeric storage class used to store an image in MATLAB. The
storage classes used in MATLAB are uint8, uint16, and double. The
reference documentation for some functions includes a section called
“Class Support” that specifies which image classes the function can
operate on. When this section is absent, the function can operate on all
supported storage classes.

Term Definition

2 Introduction

2-4

Images in MATLAB and the Image Processing Toolbox
The basic data structure in MATLAB is the array, an ordered set of real or
complex elements. This object is naturally suited to the representation of
images, real-valued ordered sets of color or intensity data.

MATLAB stores most images as two-dimensional arrays (i.e., matrices), in
which each element of the matrix corresponds to a single pixel in the displayed
image. (Pixel is derived from picture element and usually denotes a single dot
on a computer display.) For example, an image composed of 200 rows and 300
columns of different colored dots would be stored in MATLAB as a 200-by-300
matrix. Some images, such as RGB, require a three-dimensional array, where
the first plane in the third dimension represents the red pixel intensities, the
second plane represents the green pixel intensities, and the third plane
represents the blue pixel intensities.

This convention makes working with images in MATLAB similar to working
with any other type of matrix data, and makes the full power of MATLAB
available for image processing applications. For example, you can select a
single pixel from an image matrix using normal matrix subscripting.

I(2,15)

This command returns the value of the pixel at row 2, column 15 of the image I.

Working with Images in MATLAB
Images are most commonly stored in MATLAB using the logical, uint8,
uint16 and double data types. You can perform many standard MATLAB
array manipulations on uint8 and uint16 image data, including

• Indexing, including logical indexing

• Reshaping, reordering, and concatenating

• Reading from and writing to MAT-files

• Using relational operators

Certain MATLAB functions, including the find, all, any, conv2, convn, fft2,
fftn, and sum functions, accept uint8 or uint16 data but return data in
double-precision format.

Images in MATLAB and the Image Processing Toolbox

2-5

The basic MATLAB arithmetic operators, however, do not accept uint8 or
uint16 data. For example, if you attempt to add two uint8 images, A and B, you
get an error, such as

C = A + B
??? Function '+' not defined for variables of class 'uint8'.

Because these arithmetic operations are an important part of many
image-processing operations, the Image Processing Toolbox includes functions
that support these operations on uint8 and uint16 data, as well as the other
numeric data types. See “Image Arithmetic” on page 2-29 for more information.

Storage Classes in the Toolbox
By default, MATLAB stores most data in arrays of class double. The data in
these arrays is stored as double-precision (64-bit) floating-point numbers. All
MATLAB functions work with these arrays.

For image processing, however, this data representation is not always ideal.
The number of pixels in an image can be very large; for example, a
1000-by-1000 image has a million pixels. Since each pixel is represented by at
least one array element, this image would require about 8 megabytes of
memory.

To reduce memory requirements, MATLAB supports storing image data in
arrays as 8-bit or 16-bit unsigned integers, class uint8 and uint16. These
arrays require one eighth or one fourth as much memory as double arrays.

2 Introduction

2-6

Image Types in the Toolbox
The Image Processing Toolbox supports four basic types of images:

• Indexed images

• Intensity images

• Binary images

• RGB images

This section discusses how MATLAB and the Image Processing Toolbox
represent each of these image types.

Indexed Images
An indexed image consists of a data matrix, X, and a colormap matrix, map. The
data matrix can be of class uint8, uint16, or double. The colormap matrix is
an m-by-3 array of class double containing floating-point values in the range
[0,1]. Each row of map specifies the red, green, and blue components of a single
color. An indexed image uses direct mapping of pixel values to colormap values.
The color of each image pixel is determined by using the corresponding value
of X as an index into map. The value 1 points to the first row in map, the value 2
points to the second row, and so on.

A colormap is often stored with an indexed image and is automatically loaded
with the image when you use the imread function. However, you are not limited
to using the default colormap—you can use any colormap that you choose. The
figure below illustrates the structure of an indexed image. The pixels in the
image are represented by integers, which are pointers (indices) to color values
stored in the colormap. The following figure depicts an indexed image.

Image Types in the Toolbox

2-7

Relationship of Pixel Values to Colormap in Indexed Images

Class and Colormap Offsets
The relationship between the values in the image matrix and the colormap
depends on the class of the image matrix. If the image matrix is of class double,
the value 1 points to the first row in the colormap, the value 2 points to the
second row, and so on. If the image matrix is of class uint8 or uint16, there is
an offset—the value 0 points to the first row in the colormap, the value 1 points
to the second row, and so on.

The offset is also used in graphics file formats to maximize the number of colors
that can be supported. In the preceding figure, the image matrix is of class
double. Because there is no offset, the value 5 points to the fifth row of the
colormap.

Limitations to uint16 Support
Note that the toolbox provides limited support for indexed images of class
uint16. You can read these images into MATLAB and display them, but before
you can process a uint16 indexed image you must first convert it to either a
double or a uint8. To convert to a double, call im2double; to reduce the image

 0 0 0
 0.0627 0.0627 0.0314
 0.2902 0.0314 0
 0 0 1.0000
 0.2902 0.0627 0.0627
 0.3882 0.0314 0.0941
 0.4510 0.0627 0
 0.2588 0.1608 0.0627

 75 10 12 21 40 53 53

 75 14 17 21 21 53 53

 75 8 5 8 10 30 15

 51 15 18 31 31 18 16

 56 31 18 31 31 31 31

...

Image Courtesy of Susan Cohen

2 Introduction

2-8

to 256 colors or fewer (uint8), call imapprox. For more information, see the
reference pages for im2double and imapprox.

Intensity Images
An intensity image is a data matrix, I, whose values represent intensities
within some range. MATLAB stores an intensity image as a single matrix, with
each element of the matrix corresponding to one image pixel. The matrix can
be of class double, uint8, or uint16.While intensity images are rarely saved
with a colormap, MATLAB uses a colormap to display them.

The elements in the intensity matrix represent various intensities, or gray
levels, where the intensity 0 usually represents black and the intensity 1, 255,
or 65535 usually represents full intensity, or white.

The figure below depicts an intensity image of class double.

Pixel Values in an Intensity Image Define Gray Levels

 0.5342 0.2051 0.2157 0.2826 0.3822 0.4391 0.4391
 .2251 0.2563 0.2826 0.2826 0.4

 0.4308 0.2483 0.2624 0.3344 0.3344 0.2624 0.2549
 0.5342 0.1789 0.1307 0.1789 0.2051 0.3256 0.2483

 3344 0.2624 0.3344 0.3344 0.33

Image Types in the Toolbox

2-9

Binary Images
In a binary image, each pixel assumes one of only two discrete values.
Essentially, these two values correspond to on and off. A binary image is
stored as a logical array of 0’s (off pixels) and 1’s (on pixels).

The figure below depicts a binary image.

Pixels in a Binary Image Have Two Possible Values: 0 or 1

RGB Images
An RGB image, sometimes referred to as a true-color image, is stored in
MATLAB as an m-by-n-by-3 data array that defines red, green, and blue color
components for each individual pixel. RGB images do not use a palette. The
color of each pixel is determined by the combination of the red, green, and blue
intensities stored in each color plane at the pixel’s location. Graphics file
formats store RGB images as 24-bit images, where the red, green, and blue
components are 8 bits each. This yields a potential of 16 million colors. The
precision with which a real-life image can be replicated has led to the
commonly used term true-color image.

An RGB array can be of class double, uint8, or uint16. In an RGB array of
class double, each color component is a value between 0 and 1. A pixel whose
color components are (0,0,0) is displayed as black, and a pixel whose color
components are (1,1,1) is displayed as white. The three color components for

 1 0 0 0 0 0 1 0

 1 0 0 0 0 0 1 0

 1 0 0 0 0 0 1 0

 0 0 1 0 0 1 0 0

 0 0 0 1 0 1 0 0

 0 0 0 0 1 1 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

2 Introduction

2-10

each pixel are stored along the third dimension of the data array. For example,
the red, green, and blue color components of the pixel (10,5) are stored in
RGB(10,5,1), RGB(10,5,2), and RGB(10,5,3), respectively.

The following figure depicts an RGB image of class double.

The Color Planes of an RGB Image

To determine the color of the pixel at (2,3), you would look at the RGB triplet
stored in (2,3,1:3). Suppose (2,3,1) contains the value 0.5176, (2,3,2) contains
0.1608, and (2,3,3) contains 0.0627. The color for the pixel at (2,3) is

0.5176 0.1608 0.0627

To further illustrate the concept of the three separate color planes used in an
RGB image, the code sample below creates a simple RGB image containing
uninterrupted areas of red, green, and blue, and then creates one image for
each of its separate color planes (red, green, and blue). It displays each color
plane image separately, and also displays the original image.

 0.5804 0.2235 0.1294 0.2902 0.4196 0.4824 0.4824
 0.5804 0.2902 0.0627 0.2902 0.2902 0.4824 0.4824
 0.5804 0.0627 0.0627 0.0627 0.2235 0.2588 0.2588
 0.5176 0.2588 0.0627 0.0941 0.0941 0.0627 0.0627
 0.4510 0.0941 0.0627 0.0941 0.0941 0.0941 0.0941

 0.5176 0.1922 0.0627 0.1294 0.1922 0.2588 0.2588
 0.5176 0.1294 0.1608 0.1294 0.1294 0.2588 0.2588
 0.5176 0.1608 0.0627 0.1608 0.1922 0.2588 0.2588
 0.4196 0.2588 0.3529 0.4196 0.4196 0.3529 0.2902
 0.4510 0.4196 0.3529 0.4196 0.4196 0.4196 0.4196

 0.5490 0.2235 0.5490 0.5804 0.7412 0.7765 0.7765
 0.5490 0.3882 0.5176 0.5804 0.5804 0.7765 0.7765
 0.5490 0.2588 0.2902 0.2588 0.2235 0.4824 0.2235
 0.4196 0.2235 0.1608 0.2588 0.2588 0.1608 0.2588
 0.4510 0.2588 0.1608 0.2588 0.2588 0.2588 0.2588

Red

Green

Blue

Image Types in the Toolbox

2-11

RGB=reshape(ones(64,1)*reshape(jet(64),1,192),[64,64,3]);
R=RGB(:,:,1);
G=RGB(:,:,2);
B=RGB(:,:,3);
imshow(R)
figure, imshow(G)
figure, imshow(B)
figure, imshow(RGB)

The Separated Color Planes of an RGB Image

Notice that each separated color plane in the figure contains an area of white.
The white corresponds to the highest values (purest shades) of each separate
color. For example, in the Red Plane image, the white represents the highest
concentration of pure red values. As red becomes mixed with green or blue,
gray pixels appear. The black region in the image shows pixel values that
contain no red values, i.e., R == 0.

2 Introduction

2-12

Multiframe Image Arrays
For some applications, you might need to work with collections of images
related by time or view, such as magnetic resonance imaging (MRI) slices or
movie frames.

The Image Processing Toolbox provides support for storing multiple images in
the same array. Each separate image is called a frame. If an array holds
multiple frames, they are concatenated along the fourth dimension. For
example, an array with five 400-by-300 RGB images would be
400-by-300-by-3-by-5. A similar multiframe intensity or indexed image would
be 400-by-300-by-1-by-5.

Use the cat command to store separate images in one multiframe array. For
example, if you have a group of images A1, A2, A3, A4, and A5, you can store them
in a single array using

A = cat(4,A1,A2,A3,A4,A5)

You can also extract frames from a multiframe image. For example, if you have
a multiframe image MULTI, this command extracts the third frame.

FRM3 = MULTI(:,:,:,3)

Note that, in a multiframe image array, each image must be the same size and
have the same number of planes. In a multiframe indexed image, each image
must also use the same colormap.

Multiframe Support Limitations
Many of the functions in the toolbox operate only on the first two or first three
dimensions. You can still use four-dimensional arrays with these functions, but
you must process each frame individually. For example, this call displays the
seventh frame in the array MULTI.

imshow(MULTI(:,:,:,7))

If you pass an array to a function and the array has more dimensions than the
function is designed to operate on, your results can be unpredictable. In some
cases, the function simply processes the first frame of the array, but in other
cases the operation does not produce meaningful results.

See the reference pages for information about how individual functions work
with the dimensions of an image array.

Image Types in the Toolbox

2-13

Summary of Image Types and Numeric Classes
This table summarizes the way MATLAB interprets data matrix elements as
pixel colors, depending on the image type and storage class.

1. The associated colormap is a p-by-3 array of floating-point values in the
range [0, 1]. For intensity images the colormap is typically grayscale.

Converting Image Types
For certain operations, it is helpful to convert an image to a different image
type. For example, if you want to filter a color image that is stored as an
indexed image, you should first convert it to RGB format. When you apply the
filter to the RGB image, MATLAB filters the intensity values in the image, as
is appropriate. If you attempt to filter the indexed image, MATLAB simply

Image
Type

Storage Class Interpretation

Binary logical Array of zeros (0) and ones (1)

Indexed1 double Array of integers in the range [1, p]

uint8 or uint16 Array of integers in the range [0, p-1]

Intensity1 double Array of floating-point values. The
typical range of values is [0, 1].

uint8 or uint16 Array of integers. The typical range of
values is [0, 255] or [0, 65535].

RGB
(true-color)

double m-by-n-by-3 array of floating-point
values in the range [0, 1]

uint8 or uint16 m-by-n-by-3 array of integers in the
range [0, 255] or [0, 65535]

2 Introduction

2-14

applies the filter to the indices in the indexed image matrix, and the results
might not be meaningful.

Note When you convert an image from one format to another, the resulting
image might look different from the original. For example, if you convert a
color indexed image to an intensity image, the resulting image is grayscale,
not color.

The following table lists all the image conversion functions in the Image
Processing Toolbox.

Function Description

dither Create a binary image from a grayscale intensity image
by dithering; create an indexed image from an RGB
image by dithering

gray2ind Create an indexed image from a grayscale intensity
image

grayslice Create an indexed image from a grayscale intensity
image by thresholding

im2bw Create a binary image from an intensity image,
indexed image, or RGB image, based on a luminance
threshold

ind2gray Create a grayscale intensity image from an indexed
image

ind2rgb Create an RGB image from an indexed image

mat2gray Create a grayscale intensity image from data in a
matrix, by scaling the data

rgb2gray Create a grayscale intensity image from an RGB image

rgb2ind Create an indexed image from an RGB image

Image Types in the Toolbox

2-15

You can also perform certain conversions just using MATLAB syntax. For
example, you can convert an intensity image to RGB format by concatenating
three copies of the original matrix along the third dimension.

RGB = cat(3,I,I,I);

The resulting RGB image has identical matrices for the red, green, and blue
planes, so the image displays as shades of gray.

In addition to these standard conversion tools, there are some functions that
return a different image type as part of the operation they perform. For
example, the region-of-interest routines each return a binary image that you
can use to mask an indexed or intensity image for filtering or for other
operations.

Color Space Conversions
The Image Processing Toolbox represents colors as RGB values, either directly
(in an RGB image) or indirectly (in an indexed image). However, there are
other methods for representing colors. For example, a color can be represented
by its hue, saturation, and value components (HSV). Different methods for
representing colors are called color spaces.

The toolbox provides a set of routines for converting between color spaces. The
image processing functions themselves assume all color data is RGB, but you
can process an image that uses a different color space by first converting it to
RGB, and then converting the processed image back to the original color space.
For more information about color space conversion routines, see Chapter 13,
“Color.”

2 Introduction

2-16

Reading and Writing Image Data
This section describes how to read and write image data. Topics include

• Reading data stored in many standard graphics file formats

• Writing data to files in many standard graphics file formats

• Querying graphics image files for information stored in header fields

• Converting images between image storage classes

• Converting images between graphics file formats

• Reading and writing data in Digital Imaging and Communications in
Medicine (DICOM) file format

Reading a Graphics Image
The imread function reads an image from any supported graphics image file
format, in any of the supported bit depths. Most image file formats use 8 bits
to store pixel values. When these are read into memory, MATLAB stores them
as class uint8. For file formats that support 16-bit data, PNG and TIFF,
MATLAB stores the images as class uint16.

Note For indexed images, imread always reads the colormap into an array of
class double, even though the image array itself may be of class uint8 or
uint16.

For example, this code reads an RGB image into the MATLAB workspace as
the variable RGB.

RGB = imread('football.jpg');

In this example, imread infers the file format to use from the contents of the
file. You can also specify the file format as an argument to imread. MATLAB
supports many common graphics file formats, such as Microsoft Windows
Bitmap (BMP), Graphics Interchange Format (GIF), Joint Photographic
Experts Group (JPEG), Portable Network Graphics (PNG), and Tagged Image
File Format (TIFF) formats. For the latest information concerning the bit
depths and/or image formats supported, see the reference page for the imread
function.

Reading and Writing Image Data

2-17

Reading Multiple Images from a Graphics File
MATLAB supports several graphics file formats, such as HDF and TIFF, that
can contain multiple images. By default, imread imports only the first image
from a file. To import additional images from the file, use the syntax supported
by the file format.

For example, when used with TIFF files, you can use an index value with
imread that identifies the image in the file you want to import. This example
reads a series of 27 images from a TIFF file and stores the images in a
four-dimensional array. You can use imfinfo to determine how many images
are stored in the file.

mri = uint8(zeros(128,128,1,27)); % preallocate 4-D array

for frame=1:27
[mri(:,:,:,frame),map] = imread('mri.tif',frame);

end

When a file contains multiple images that are related in some way, such as a
time sequence, you can store the images in MATLAB as a 4-D array. All the
images must be the same size. For more information, see “Multiframe Image
Arrays” on page 2-12.

Writing a Graphics Image
The function imwrite writes an image to a graphics file in one of the supported
formats. The most basic syntax for imwrite takes the image variable name and
a filename. If you include an extension in the filename, MATLAB infers the
desired file format from it. (For more information, see the reference entry for
the imwrite function.)

This example loads the indexed image X from a MAT-file, with its associated
colormap map, and then writes the image to a file as a bitmap.

load clown
whos
 Name Size Bytes Class

 X 200x320 512000 double array
 caption 2x1 4 char array
 map 81x3 1944 double array

2 Introduction

2-18

Grand total is 64245 elements using 513948 bytes

imwrite(X,map,'clown.bmp')

Specifying Additional Format-Specific Parameters
When using imwrite with some graphics formats, you can specify additional
parameters. For example, with PNG files, you can specify the bit depth as an
additional parameter. This example writes an intensity image I to a 4-bit PNG
file.

imwrite(I,'clown.png','BitDepth',4);

This example writes an image A to a JPEG file, using an additional parameter
to specify the compression quality parameter.

imwrite(A, 'myfile.jpg', 'Quality', 100);

For more information about the additional parameters associated with certain
graphics formats, see the reference pages for imwrite.

Reading and Writing Binary Images in 1-Bit Format
In certain file formats, a binary image can be stored in a 1-bit format. If the file
format supports it, MATLAB writes binary images as 1-bit images by default.
When you read in a binary image in 1-bit format, MATLAB represents it in the
workspace as a logical array.

This example reads in a binary image and writes it as a TIFF file. Because the
TIFF format supports 1-bit images, the file is written to disk in 1-bit format.

BW = imread('text.png');
imwrite(BW,'test.tif');

To verify the bit depth of test.tif, call imfinfo and check the BitDepth field.

info = imfinfo('test.tif');

Reading and Writing Image Data

2-19

info.BitDepth
ans =

 1

Note When writing binary files, MATLAB sets the ColorType field to
'grayscale'.

Determining the Storage Class of the Output File
imwrite uses the following rules to determine the storage class used in the
output image.

Storage Class
of Image

Storage Class of Output Image File

logical If the output image file format specified supports
1-bit images, imwrite creates a 1-bit image file.

If the output image file format specified does not
support 1-bit images, such as JPEG, imwrite
converts the image to a class uint8 intensity image.

uint8 If the output image file format specified supports
8-bit images, imwrite creates an 8-bit image file.

uint16 If the output image file format specified supports
16-bit images (PNG or TIFF), imwrite creates a
16-bit image file.

If the output image file format specified does not
support 16-bit images, imwrite scales the image
data to class uint8 and creates an 8-bit image file.

double MATLAB scales the image data to uint8 and creates
an 8-bit image file, because most image file formats
use 8 bits.

2 Introduction

2-20

Querying a Graphics File
The imfinfo function enables you to obtain information about graphics files
that are in any of the formats supported by the toolbox. The information you
obtain depends on the type of file, but it always includes at least the following:

• Name of the file

• File format

• Version number of the file format

• File modification date

• File size in bytes

• Image width in pixels

• Image height in pixels

• Number of bits per pixel

• Image type: RGB (true-color), intensity (grayscale), or indexed

See the reference entry for imfinfo for more information.

Converting Image Storage Classes
You can convert uint8 and uint16 data to double precision using the MATLAB
double function. However, converting between storage classes changes the way
MATLAB and the toolbox interpret the image data. If you want the resulting
array to be interpreted properly as image data, you need to rescale or offset the
data when you convert it.

For easier conversion of storage classes, use one of these toolbox functions:
im2double, im2uint8, or im2uint16. These functions automatically handle the
rescaling and offsetting of the original data. For example, this command
converts a double-precision RGB image with data in the range [0,1] to a uint8
RGB image with data in the range [0,255].

RGB2 = im2uint8(RGB1);

Losing Information in Conversions
When you convert to a class that uses fewer bits to represent numbers, you
generally lose some of the information in your image. For example, a uint16
intensity image is capable of storing up to 65,536 distinct shades of gray, but a
uint8 intensity image can store only 256 distinct shades of gray. When you

Reading and Writing Image Data

2-21

convert a uint16 intensity image to a uint8 intensity image, im2uint8
quantizes the gray shades in the original image. In other words, all values from
0 to 127 in the original image become 0 in the uint8 image, values from 128 to
385 all become 1, and so on. This loss of information is often not a problem,
however, since 256 still exceeds the number of shades of gray that your eye is
likely to discern.

Converting Indexed Images
It is not always possible to convert an indexed image from one storage class to
another. In an indexed image, the image matrix contains only indices into a
colormap, rather than the color data itself, so no quantization of the color data
is possible during the conversion.

For example, a uint16 or double indexed image with 300 colors cannot be
converted to uint8, because uint8 arrays have only 256 distinct values. If you
want to perform this conversion, you must first reduce the number of the colors
in the image using the imapprox function. This function performs the
quantization on the colors in the colormap, to reduce the number of distinct
colors in the image. See “Reducing Colors in an Indexed Image” on page 13-12
for more information.

Converting Graphics File Formats
To change the graphics format of an image, use imread to read in the image and
then save the. image with imwrite, specifying the appropriate format.

To illustrate, this example uses the imread function to read an image in bitmap
(BMP) format into the workspace. The example then writes the bitmap image
to a file using Portable Network Graphics (PNG) format.

bitmap = imread('mybitmap.bmp','bmp');
imwrite(bitmap,'mybitmap.png','png');

For the specifics of which bit depths are supported for the different graphics
formats, and for how to specify the format type when writing an image to file,
see the reference entries for imread and imwrite.

2 Introduction

2-22

Reading and Writing DICOM Files
The Image Processing Toolbox includes support for working with image data in
Digital Imaging and Communications in Medicine (DICOM) format. The
following sections describe how to

• Read image data from a DICOM file

• Read metadata from a DICOM file

• Write image data to a DICOM file

• Write metadata to a DICOM file

To see an example that reads both the image data and metadata from a DICOM
file, modifies the image data, and writes the modified data to a new DICOM
file, see “Example: Creating a New Series” on page 2-25. The example shows
how to use the dicomuid function to generate a DICOM unique identifier,
which you need to create a new series.

Reading Image Data from a DICOM File
To read image data from a DICOM file, use the dicomread function. The
dicomread function reads files that comply with the DICOM specification but
can also read certain common noncomplying files.

This example reads an image from a sample DICOM file included with the
toolbox.

I = dicomread('CT-MONO2-16-ankle.dcm');

To view the image data, use one of the toolbox image display functions, imshow
or imview. (Because the image data is signed 16-bit data, you must use the
autoscaling syntax with either display function.)

imview(I,[])

Reading and Writing Image Data

2-23

Reading Metadata from a DICOM File
DICOM files include information, called metadata, that describes
characteristics of the image data it contains, such as size, dimensions, and bit
depth. In addition, the DICOM specification defines numerous other metadata
fields that describe many other characteristics of the data, such as the modality
used to create the data, the equipment settings used to capture the image, and
information about the study. The dicomread function can process almost all the
metadata fields defined by the DICOM specification.

To read metadata from a DICOM file, use the dicominfo function. This
function returns the metadata as a structure, where every field in the structure
is a specific piece of DICOM metadata.

info = dicominfo('CT-MONO2-16-ankle.dcm');

info =

 Filename: [1x47 char]
 FileModDate: '24-Dec-2000 19:54:47'
 FileSize: 525436
 Format: 'DICOM'
 FormatVersion: 3
 Width: 512
 Height: 512

2 Introduction

2-24

 BitDepth: 16
 ColorType: 'grayscale'
 SelectedFrames: []
 FileStruct: [1x1 struct]
 StartOfPixelData: 1140
 MetaElementGroupLength: 192
 FileMetaInformationVersion: [2x1 double]
 MediaStorageSOPClassUID: '1.2.840.10008.5.1.4.1.1.7'
 MediaStorageSOPInstanceUID: [1x50 char]
 TransferSyntaxUID: '1.2.840.10008.1.2'
 ImplementationClassUID: '1.2.840.113619.6.5'
 .
 .
 .

You can use the metadata structure returned by dicominfo to specify the
DICOM file you want to read using dicomread. For example, you can use this
code to read metadata from the sample DICOM file and then pass the metadata
to dicomread to read the image from the file.

info = dicominfo('CT-MONO2-16-ankle.dcm');
I = dicomread(info);

Writing Data to a DICOM File
To write image data to a file in DICOM format, use the dicomwrite function.

This example writes the image I to the DICOM file ankle.dcm.

dicomwrite(I,'h:\matlab\tmp\ankle.dcm')

Writing Metadata to a DICOM File
When you write image data to a DICOM file, dicomwrite includes the
minimum set of metadata fields required by the type of DICOM information
object (IOD) you are creating. dicomwrite supports three types of DICOM
IODs:

• Secondary capture (default)

• Magnetic resonance

• Computed tomography

Reading and Writing Image Data

2-25

You can also specify the metadata you want to write to the file by passing to
dicomwrite an existing DICOM metadata structure that you retrieved using
dicominfo.

info = dicominfo('CT-MONO2-16-ankle.dcm');
I = dicomread(info);
dicomwrite(I,'h:\matlab\tmp\ankle.dcm',info)

In this case, the dicomwrite function writes the information in the metadata
structure info to the new DICOM file. When writing metadata to a file, there
are certain fields that dicomwrite must update. For example, dicomwrite
must update the file modification date in the new file. To illustrate, compare
the file modification date in the original metadata with the file modification
date in the new file.

info.FileModDate

ans =

24-Dec-2000 19:54:47

Using dicominfo, read the metadata from the newly written file and check the
file modification date.

info2 = dicominfo('h:\matlab\tmp\ankle.dcm');

info2.FileModDate

ans =

16-Mar-2003 15:32:43

Example: Creating a New Series
When writing a modified image to a DICOM file, you might want to make the
modified image the start of a new series. In the DICOM standard, images can
be organized into series. When you write an image with metadata to a DICOM
file, dicomwrite puts the image in the same series by default. To create a new
series, you must assign a new DICOM unique identifier to the
SeriesInstanceUID metadata field. This example illustrates this process:

1 Read an image from a DICOM file into the MATLAB workspace.

2 Introduction

2-26

I = dicomread('CT-MONO2-16-ankle.dcm');

To view the image, use either of the toolbox display functions, imshow or
imview. Because the DICOM image data is signed 16-bit data, you must use
the autoscaling syntax.

imview(I,[])

2 Read the metadata from the same DICOM file.

info = dicominfo('CT-MONO2-16-ankle.dcm');

To identify which series an image belongs to, view the value of the
SeriesInstanceUID field.

info.SeriesInstanceUID

ans =

1.2.840.113619.2.1.2411.1031152382.365.736169244

Reading and Writing Image Data

2-27

3 Because you typically only start a new DICOM series when you modify the
image in some way, this example removes all the text from the image.

The example finds the maximum and minimum values of all pixels in the
image. The pixels that form the white text characters are set to the
maximum pixel value.

max(I(:))
ans =

4080

min(I(:))

ans =

 32

To remove them, the example sets all pixels with the maximum value to the
minimum value.

Imodified = I;
Imodified(Imodified == 4080) = 32;

View the processed image.

imshow(Imodified)

2 Introduction

2-28

4 Generate a new DICOM unique identifier (UID) using the dicomuid
function. You need a new UID to write the modified image as a new series.

uid = dicomuid

uid =

1.3.6.1.4.1.9590.100.1.1.56461980611264497732341403390561061497

dicomuid is guaranteed to generate a unique UID.

5 Set the value of the SeriesInstanceUID field in the metadata associated
with the original DICOM file to the generated value.

info.SeriesInstanceUID = uid;

6 Write the modified image to a new DICOM file, specifying the modified
metadata structure, info, as an argument. Because you set the
SeriesInstanceUID value, the image you write is part of a new series.

dicomwrite(Imodified,'ankle_newseries.dcm',info);

To verify this operation, view the image and the SeriesInstanceUID
metadata field in the new file.

Image Arithmetic

2-29

Image Arithmetic
Image arithmetic is the implementation of standard arithmetic operations,
such as addition, subtraction, multiplication, and division, on images. Image
arithmetic has many uses in image processing both as a preliminary step in
more complex operations and by itself. For example, image subtraction can be
used to detect differences between two or more images of the same scene or
object.

You can do image arithmetic using the MATLAB arithmetic operators;
however, you must convert the images to class double to use these operators.
To make working with images more convenient, the Image Processing Toolbox
includes a set of functions that implement arithmetic operations for all
numeric, nonsparse data types. The advantages to using these functions
include

• No conversion to the double data type is necessary. The functions accept any
numeric data type, including uint8, uint16, and double, and return the
result image in the same format. Note that the functions perform the
operations in double precision, on an element-by-element basis, but do not
convert images to double-precision values in the MATLAB workspace.

• Overflow is handled automatically. The functions truncate return values to
fit the data type. For details about this truncation, see “Image Arithmetic
Truncation Rules” on page 2-30.

Note On Intel architecture processors, the image arithmetic functions can
take advantage of the Intel Performance Primitives Library (IPPL), thus
accelerating their execution time. IPPL is only activated, however, when the
data passed to these functions is of specific classes. See the reference pages for
the individual arithmetic functions for more information.

See “Summary of Image Arithmetic Functions” on page 2-30 for a complete list.
For more information about using these functions to perform arithmetic
operations, see these sections:

• “Adding Images” on page 2-31

• “Subtracting Images” on page 2-33

2 Introduction

2-30

• “Multiplying Images” on page 2-34

• “Dividing Images” on page 2-35

• “Nesting Calls to Image Arithmetic Functions” on page 2-36

Summary of Image Arithmetic Functions
The following table lists the image arithmetic functions. For more complete
descriptions, see their reference pages.

Image Arithmetic Truncation Rules
The results of integer arithmetic can easily overflow the data type allotted for
storage. For example, the maximum value you can store in uint8 data is 255.
Arithmetic operations can also result in fractional values, which cannot be
represented using integer arrays.

The image arithmetic functions use these rules for integer arithmetic:

• Values that exceed the range of the integer type are truncated to that range.

• Fractional values are rounded.

Function Description

imabsdiff Absolute difference of two images

imadd Add two images

imcomplement Complement an image

imdivide Divide two images

imlincomb Compute linear combination of two images

immultiply Multiply two images

imsubtract Subtract two images

Image Arithmetic

2-31

For example, if the data type is uint8, results greater than 255 (including Inf)
are set to 255. The following table lists some additional examples.

Adding Images
To add two images or add a constant value to an image, use the imadd function.
imadd adds the value of each pixel in one of the input images with the
corresponding pixel in the other input image and returns the sum in the
corresponding pixel of the output image.

Image addition has many uses in image processing. For example, the following
code fragment uses addition to superimpose one image on top of another. The
images must be the same size and class.

I = imread('rice.png');
J = imread('cameraman.tif');
K = imadd(I,J);
imshow(K)

You can also use addition to brighten an image by adding a constant value to
each pixel. For example, the following code brightens an RGB image.

Result Class Truncated Value

300 uint8 255

-45 uint8 0

10.5 uint8 11

2 Introduction

2-32

RGB = imread('peppers.png');
imshow(RGB);

RGB2 = imadd(RGB, 50);
figure, imshow(RGB2);

Handling Overflow
When you add the pixel values of two images, the result can easily overflow the
maximum value supported by the data type, especially for uint8 data. When
overflow occurs, imadd truncates the value to the maximum value supported by

Image Arithmetic

2-33

the data type. This is an effect known as saturation. For example, imadd
truncates uint8 data at 255. To avoid saturation, convert the image to a larger
data type, such as uint16, before performing the addition.

Subtracting Images
To subtract one image from another, or subtract a constant value from an
image, use the imsubtract function. imsubtract subtracts each pixel value in
one of the input images from the corresponding pixel in the other input image
and returns the result in the corresponding pixel in an output image.

Image subtraction can be used as a preliminary step in more complex image
processing or by itself. For example, you can use image subtraction to detect
changes in a series of images of the same scene. This code fragment subtracts
the background from an image of rice grains. The images must be the same size
and class.

rice= imread('rice.png');
background = imopen(rice, strel('disk',15));
rice2 = imsubtract(rice,background);
imshow(rice),figure,imshow(rice2);

To subtract a constant from each pixel in I, replace Y with a constant, as in the
following example.

Z = imsubtract(I,50);

Original Image Difference Image

2 Introduction

2-34

Handling Negative Values
Subtraction can result in negative values for certain pixels. When this occurs
with unsigned data types, such as uint8 or uint16, the imsubtract function
truncates the negative value to zero (0), which is displayed as black. To avoid
negative values but preserve the value differentiation of these pixels, use the
imabsdiff function. The imabsdiff function calculates the absolute difference
between corresponding pixels in the two images so the result is always
nonnegative.

Multiplying Images
To multiply two images, use the immultiply function. immultiply does an
element-by-element multiplication (.*) of corresponding pixels in a pair of
input images and returns the product of these multiplications in the
corresponding pixel in an output image.

Multiplying an image by a constant, referred to as scaling, is a common image
processing operation. When used with a scaling factor greater than 1, scaling
brightens an image; a factor less than 1 darkens an image. Scaling generally
produces a much more natural brightening/darkening effect than simply
adding an offset to the pixels, since it preserves the relative contrast of the
image better. For example, this code scales an image by a constant factor.

I = imread('moon.tif');
J = immultiply(I,1.2);
imshow(I);
figure, imshow(J)

Image Arithmetic

2-35

Handling Overflow
Multiplication of uint8 images very often results in overflow. The immultiply
function truncates values that overflow the data type to the maximum value.
To avoid truncation, convert uint8 images to a larger data type, such as
uint16, before performing multiplication.

Dividing Images
To divide two images, use the imdivide function. The imdivide function does
an element-by-element division (./) of corresponding pixels in a pair of input
images. The immultiply function returns the result in the corresponding pixel
in an output image.

Original Image Image After Multiplication
Image Courtesy of Michael Myers

2 Introduction

2-36

Image division, like image subtraction, can be used to detect changes in two
images. However, instead of giving the absolute change for each pixel, division
gives the fractional change or ratio between corresponding pixel values. Image
division is also called ratioing.

For example, the following code divides the rice grain image by a
morphologically opened version of the image itself. (For information about
morphological image processing, see Chapter 9, “Morphological Operations.”)
The images must be the same size and class.

I = imread('rice.png');
background = imopen(I, strel('disk',15));
Ip = imdivide(I,background);
imshow(Ip,[])

Nesting Calls to Image Arithmetic Functions
You can use the image arithmetic functions in combination to perform a series
of operations. For example, to calculate the average of two images,

You could enter

I = imread('rice.png');
I2 = imread('cameraman.tif');
K = imdivide(imadd(I,I2), 2); % not recommended

When used with uint8 or uint16 data, each arithmetic function truncates its
result before passing it on to the next operation. This truncation can
significantly reduce the amount of information in the output image. A better
way to perform this series of calculations is to use the imlincomb function.
imlincomb performs all the arithmetic operations in the linear combination in
double precision and only truncates the final result.

K = imlincomb(.5,I,.5,I2); % recommended

C A B+
2

--------------=

Coordinate Systems

2-37

Coordinate Systems
Locations in an image can be expressed in various coordinate systems,
depending on context. This section discusses the two main coordinate systems
used in the Image Processing Toolbox and the relationship between them.
These two coordinate systems are described in

• “Pixel Coordinates”

• “Spatial Coordinates” on page 2-38

Pixel Coordinates
Generally, the most convenient method for expressing locations in an image is
to use pixel coordinates. In this coordinate system, the image is treated as a
grid of discrete elements, ordered from top to bottom and left to right, as
illustrated by the following figure.

The Pixel Coordinate System

For pixel coordinates, the first component r (the row) increases downward,
while the second component c (the column) increases to the right. Pixel
coordinates are integer values and range between 1 and the length of the row
or column.

There is a one-to-one correspondence between pixel coordinates and the
coordinates MATLAB uses for matrix subscripting. This correspondence makes
the relationship between an image’s data matrix and the way the image is

r

c

1

2

3

1 2 3

2 Introduction

2-38

displayed easy to understand. For example, the data for the pixel in the fifth
row, second column is stored in the matrix element (5,2).

Spatial Coordinates
In the pixel coordinate system, a pixel is treated as a discrete unit, uniquely
identified by a single coordinate pair, such as (5,2). From this perspective, a
location such as (5.3,2.2) is not meaningful.

At times, however, it is useful to think of a pixel as a square patch. From this
perspective, a location such as (5.3,2.2) is meaningful, and is distinct from (5,2).
In this spatial coordinate system, locations in an image are positions on a
plane, and they are described in terms of x and y (not r and c as in the pixel
coordinate system).

The following figure illustrates the spatial coordinate system used for images.
Notice that y increases downward.

The Spatial Coordinate System

This spatial coordinate system corresponds closely to the pixel coordinate
system in many ways. For example, the spatial coordinates of the center point
of any pixel are identical to the pixel coordinates for that pixel.

There are some important differences, however. In pixel coordinates, the upper
left corner of an image is (1,1), while in spatial coordinates, this location by
default is (0.5,0.5). This difference is due to the pixel coordinate system’s being
discrete, while the spatial coordinate system is continuous. Also, the upper left
corner is always (1,1) in pixel coordinates, but you can specify a nondefault

y

x

1

2

3

1 2 3
0.5

1.5

2.5

3.5

1.5 2.50.5 3.5

Coordinate Systems

2-39

origin for the spatial coordinate system. See “Using a Nondefault Spatial
Coordinate System” on page 2-39 for more information.

Another potentially confusing difference is largely a matter of convention: the
order of the horizontal and vertical components is reversed in the notation for
these two systems. As mentioned earlier, pixel coordinates are expressed as
(r,c), while spatial coordinates are expressed as (x,y). In the reference pages,
when the syntax for a function uses r and c, it refers to the pixel coordinate
system. When the syntax uses x and y, it refers to the spatial coordinate
system.

Using a Nondefault Spatial Coordinate System
By default, the spatial coordinates of an image correspond with the pixel
coordinates. For example, the center point of the pixel in row 5, column 3 has
spatial coordinates x=3, y=5. (Remember, the order of the coordinates is
reversed.) This correspondence simplifies many of the toolbox functions
considerably. Several functions primarily work with spatial coordinates rather
than pixel coordinates, but as long as you are using the default spatial
coordinate system, you can specify locations in pixel coordinates.

In some situations, however, you might want to use a nondefault spatial
coordinate system. For example, you could specify that the upper left corner of
an image is the point (19.0,7.5), rather than (0.5,0.5). If you call a function that
returns coordinates for this image, the coordinates returned will be values in
this nondefault spatial coordinate system.

To establish a nondefault spatial coordinate system, you can specify the XData
and YData image properties when you display the image. These properties are
two-element vectors that control the range of coordinates spanned by the
image. By default, for an image A, XData is [1 size(A,2)], and YData is
[1 size(A,1)].

For example, if A is a 100 row by 200 column image, the default XData is
[1 200], and the default YData is [1 100]. The values in these vectors are
actually the coordinates for the center points of the first and last pixels (not the
pixel edges), so the actual coordinate range spanned is slightly larger; for
instance, if XData is [1 200], the x-axis range spanned by the image is
[0.5 200.5].

2 Introduction

2-40

These commands display an image using nondefault XData and YData.

A = magic(5);
x = [19.5 23.5];
y = [8.0 12.0];
image(A,'XData',x,'YData',y), axis image, colormap(jet(25))

For information about the syntax variations that specify nondefault spatial
coordinates, see the reference page for imshow.

3
Displaying and Printing
Images

This chapter introduces the image display techniques supported by the Image Processing Toolbox for
each image type supported by the toolbox, binary, indexed, intensity, and RGB.

Terminology (p. 3-2) Provides definitions of image processing terms used in
this section

Overview (p. 3-3) Describes the toolbox displays functions and compares
their use

Using the Image Viewer to Display
Images (p. 3-4)

Describes how to use the Image Viewer to display images

Using imshow to Display Images
(p. 3-18)

Describes how to use the imshow function to display
images

Displaying Different Image Types
(p. 3-24)

Describes how to use the display functions with each type
of image

Special Display Techniques (p. 3-31) Describes how to use the colorbar, montage, and warp
functions

Printing Images (p. 3-36) Describes how to print images

Setting Toolbox Display Preferences
(p. 3-37)

Describes how to view and set toolbox preferences

3 Displaying and Printing Images

3-2

Terminology
An understanding of the following terms will help you to use this chapter.

Term Definition

color approximation There are two ways in which this term is used in MATLAB:

• The method by which MATLAB chooses the best colors for
an image whose number of colors you are decreasing

• The automatic choice of screen colors MATLAB makes when
displaying on a system with limited color display capability

screen bit depth Number of bits per screen pixel

screen color resolution Number of distinct colors that can be produced on the screen
by your graphics hardware

Overview

3-3

Overview
MATLAB includes two image display functions: image and imagesc. Both
functions create a Handle Graphics® image object and include syntax for
setting the various properties of the object. The imagesc function automatically
scales the input data.

The Image Processing Toolbox includes two display functions, imview and
imshow. In general, using these functions is preferable to using image and
imagesc because they are easier to use and are optimized for displaying
images. The following table shows an example of each function and gives a brief
description comparing the tools.

Display Function Description

imview('moon.tif') The imview function displays the image in a separate,
Java-based window called the Image Viewer. The Image
Viewer provides tools for flexible navigation, especially
for large images, and for pixel value inspection. Use
imview when you want to explore an image and get
information about pixel values. For more information,
see “Using the Image Viewer to Display Images” on
page 3-4.

imshow('moon.tif') The imshow function, like image and imagesc, creates a
Handle Graphics image object and displays the image in
a MATLAB figure window. imshow automatically sets the
values of certain figure, axes, and image object
properties to control how image data is interpreted. Use
imshow when you want to take advantage of figure
annotation and printing capabilities. See “Using imshow
to Display Images” on page 3-18 for more information.

3 Displaying and Printing Images

3-4

Using the Image Viewer to Display Images
This section describes how to use the Image Viewer to display images. Topics
covered include

• “Opening and Closing the Image Viewer”

• “Understanding Image Viewer Tools” on page 3-6

• “Using Image Viewer Navigation Aids” on page 3-9

• “Using the Pixel Region Tool” on page 3-13

• “Using the Image Information Tool” on page 3-16

• “Managing Image Viewer Memory Usage” on page 3-16

For information about using imview with various image types, see “Displaying
Different Image Types” on page 3-24.

Opening and Closing the Image Viewer
This section describes how to open an image in the Image Viewer. Topics
covered include

• “Starting the Image Viewer”

• “Viewing Multiple Images” on page 3-5

• “Specifying the Initial Image Size” on page 3-5

• “Closing the Image Viewer” on page 3-6

Starting the Image Viewer
To start the Image Viewer, call the imview function, specifying the image you
want to view. You can use imview to display an image that has already been
imported into the MATLAB workspace.

moonfig = imread('moon.tif');
imview(moonfig);

You can also specify the name of the file containing the image, as in the
following example.

imview('moon.tif');

Using the Image Viewer to Display Images

3-5

The file must be in the current directory or on the MATLAB path. This syntax
can be useful for scanning through images. Note, however, that when you use
this syntax, the image data is not stored in the MATLAB workspace.

If you call imview without specifying any arguments, it displays a file chooser
dialog box. For more detailed information about other syntax options, see the
imview function reference page.

Viewing Multiple Images
If you specify a file that contains multiple images, imview only displays the first
image in the file. To view all the images in the file, use imread to import each
image into the MATLAB workspace, and then call imview multiple times to
display each image individually.

You can open up multiple Image Viewer windows at the same time. You are
limited by the amount of memory available to the Java Virtual Machine that
MATLAB uses. For information about increasing the amount of memory
available to the Image Viewer, see “Managing Image Viewer Memory Usage”
on page 3-16.

Some applications create collections of images related by time or view, such as
magnetic resonance imaging (MRI) slices or frames of data acquired from a
video stream. The Image Processing Toolbox supports these collections of
images as four-dimensional arrays, where each separate image is called a
frame and the frames are concatenated along the fourth dimension. All the
frames in a multiframe image must be the same size. The Image Viewer can
only display one image frame at a time. Use standard MATLAB indexing
syntax to specify the frame to display.

imview(multiframe_array(:,:,:,1));

To view all the frames in a multiframe image at once, use the montage function.
See “Displaying All Frames of a Multiframe Image at Once” on page 3-32 for
more information.

Specifying the Initial Image Size
By default, the imview function displays images at 100% magnification. In this
context, 100% means that imview maps each image pixel to one screen pixel.
This is generally the preferred way to display an image. In some cases,
however, especially if you are working with small images, you might want
imview to scale the image to fit the minimum size of the Image Viewer.

3 Displaying and Printing Images

3-6

To control the initial magnification of the images displayed using imview, you
can use either of these methods:

• Set the ImviewInitialMagnification preference to 'fit' for the current
MATLAB session. The default value is 100, specifying 100% magnification.
To learn how to change the value of toolbox preferences, see “Setting the
Value of Toolbox Preferences” on page 3-38.

• Use the optional 'InitialMagnification' parameter to the imview
function, specifying the value 'fit'. This overrides the setting of the
ImviewInitialMagnification preference for the call to imview.

imshow(X, map,'InitialMagnification','fit')

For more information, see the imview function reference page.

Closing the Image Viewer
To close the Image Viewer window, use the Close button in the window title
bar. If you have multiple Image Viewer windows open you can close them all
by using the syntax

imview close all

You can also use the imview function to return a handle to the Image Viewer
and use the handle to close the Image Viewer. For more detailed information
about these syntax options, see the imview function reference page.

Understanding Image Viewer Tools
The Image Viewer displays an image in a separate window and provides
information about the size of the image, the display range of pixel values, and
the value of the pixel under the current location of the mouse pointer. In
addition, the Image Viewer provides access to three other tools:

• Overview window — The Overview window displays the entire image in a
small, separate window. In the Overview window, the portion of the image
being displayed in the Image Viewer is outlined in a rectangle, called the
detail rectangle. By moving this rectangle, you can change which part of the
image appears in the main Image Viewer window. For more information, see
“Using Image Viewer Navigation Aids” on page 3-9.

• Pixel Region tool — This tool lets you examine the values of pixels in specific
regions of the image. You select the region by dragging the pixel region

Using the Image Viewer to Display Images

3-7

rectangle over the image. The Pixel Region tool displays the values of the
pixels in the region in a separate window. This tool can make it easier to
identify specific visual elements in the image. For more information, see
“Using the Pixel Region Tool” on page 3-13.

• Image Information window — This tool lets you display information about
the image in a separate window. For more information, see “Using the Image
Information Tool” on page 3-16.

The following figure shows the Image Viewer and the tools it makes available.

3 Displaying and Printing Images

3-8

Image Viewer and Related Tools

Image Viewer

Overview
window

Pixel Region tool

Image
Information
window

Using the Image Viewer to Display Images

3-9

Using Image Viewer Navigation Aids
The Image Viewer provides several navigational tools that make it easy to
explore an image, especially large images. These navigational tools include

• Overview window

• Pan tool

• Zoom in and Zoom out tools

• Image magnification edit box

Using the Overview Window for Navigation
If an image is large or viewed at a large magnification, the Image Viewer
displays only a portion of the entire image. When this occurs, the Image Viewer
includes scroll bars to allow navigation around the image but in some cases
scroll bars might not be sufficient. Sometimes, especially for large images, you
need a view of the entire image to understand which portion of the image is
currently displayed in the Image Viewer.

To provide this view of an image, the Image Viewer includes an Overview
window. In this window, the Image Viewer displays a view of the entire image
with a rectangle superimposed over it, called the detail rectangle. The detail
rectangle shows which part of the image is currently being displayed in the
Image Viewer window.

To activate the Overview window, click the Overview Window button in
the Image Viewer toolbar. The Image Viewer opens a new window containing
the entire image, scaled to fit. The following figure shows the Image Viewer
and the Overview window.

Note If the entire image is displayed in the Image Viewer, the detail
rectangle is not visible in the Overview window.

3 Displaying and Printing Images

3-10

Image Viewer Overview Window

To use the detail rectangle to view any part of the image displayed in the Image
Viewer, follow this procedure:

1 Click the Overview Window button in the Image Viewer toolbar. The
Image Viewer opens a new window containing the entire image, scaled to fit.

2 Using the mouse, move the cursor into the detail rectangle. The cursor
changes to the fleur shape, .

3 Press and hold the mouse button to drag the detail rectangle anywhere on
the image.

Overview window

Overview Window
button

Detail rectangle

Using the Image Viewer to Display Images

3-11

Note As you drag the detail rectangle over the image in the Overview
window, the view of the image displayed in the Image Viewer changes.

Panning the Image Displayed in the Image Viewer
To change the portion of the image displayed in the Image Viewer, you can use
the Drag Image to Pan button to move the image in the window. This is called
panning the image.

To pan an image displayed in the Image Viewer,

1 Click the Drag Image to Pan button in the toolbar.

2 Using the mouse, move the cursor over the image in the Image Viewer. The
cursor changes to a fleur shape, .

3 Press and hold the mouse button and drag the image in the Image Viewer.

Note As you pan the image in the Image Viewer, the Overview window
updates the position of the detail rectangle.

Zooming In and Out on an Image
To enlarge an image to get a closer look or shrink an image to see the whole
image in context, use the Zoom buttons on the toolbar. (You can also zoom in or
out on an image by changing the magnification. See “Specifying the
Magnification of the Image” on page 3-12 for more information.)

To zoom in or zoom out on an image,

1 Click the appropriate magnifying glass button.

Zoom in Zoom out

3 Displaying and Printing Images

3-12

2 Move the pointer over the image you want to zoom in or out on. The cursor
changes to crosshairs, .

You can use the zoom tool in two ways:

- Position the cursor over a location in the image and click the mouse. With
each click, imview changes the magnification of the image. imview centers
the new view of the image on the spot where you clicked.

- Alternatively, you can position the cursor over a location in the image and,
while pressing and holding the mouse button, draw a rectangle defining
the area you want to zoom in or out on. imview selects a magnification
value based on the size of the rectangle.

When you zoom in or out on an image, the magnification value displayed in
the magnification edit box changes and the Overview window updates the
position of the detail rectangle.

3 To leave zoom mode, click the Drag Pixel Region Rectangle button in
the Image Viewer toolbar.

Specifying the Magnification of the Image
To enlarge an image to get a closer look or to shrink an image to see the whole
image in context, you can use the magnification edit box, shown in the
following figure. (You can also use the Zoom buttons to enlarge or shrink an
image. See “Zooming In and Out on an Image” on page 3-11 for more
information.)

Magnification edit box Magnification menu

Using the Image Viewer to Display Images

3-13

To change the magnification of an image,

1 Move the cursor into the magnification edit box of the window you want to
change. The cursor changes to the text entry cursor.

2 Type a new value in the magnification edit box and press Enter. The Image
Viewer changes the magnification of the image and displays the new view in
the window.

You can also specify a magnification by clicking the menu associated with the
magnification edit box and selecting from a list of preset magnifications. If you
choose the Fit to Window option, imview scales the image so that it can fit in
the current size of the Image Viewer.

Using the Pixel Region Tool
The Pixel Region tool provides information about specific pixels in an image.
When you click the Pixel Region button in the Image Viewer toolbar, a
rectangular cursor, called the pixel region rectangle, appears in the center of
the visible part of the image and the Pixel Region tool opens in a separate
window.

The pixel region rectangle defines the region of the image you want to examine.
The Pixel Region tool displays a grid of cells where each cell represents a pixel
in the region specified by the rectangle. Each cell contains the numeric value
of the pixel. For RGB images, each cell contains three numeric values, one for
each band of the image. For indexed images, the cell contains the index value
and the associated RGB value. The color of the cell represents the color of the
pixel.

The following figure illustrates the Pixel Region tool. The following sections
describe how to

• Select the region in the pixel region rectangle

• Select the size of the region defined by the pixel region rectangle

• Specify whether to include numeric values in the cells in the Pixel Region
tool

3 Displaying and Printing Images

3-14

Pixel Region Tool

Selecting the Region
To examine specific regions of an image in detail, perform this procedure:

1 Click the Pixel Region button in the Image Viewer toolbar. The Image
Viewer opens the Pixel Region tool and displays the pixel region rectangle

in the center of the visible part of the image.

The pixel region rectangle defines which pixels appear in the Pixel Region
tool.

Note Scrolling the image can move the pixel region rectangle off the visible
part of the image. To bring the pixel region rectangle back to the center, click
the Pixel Region tool button again.

Pixel region
rectangle

Pixel Region
button Pixel Region tool

Using the Image Viewer to Display Images

3-15

2 Click the Drag Pixel Region Rectangle button in the Image Viewer
toolbar. This is an optional step. You only need to do this if you have
previously activated the Zoom In or Zoom Out buttons or the Drag Image to
Pan button.

3 Using the mouse, position the pointer over the pixel region rectangle. The
pointer changes to the fleur shape, .

4 Click the left mouse button and drag the pixel region rectangle to any part
of the image. The pixel values displayed in the Pixel Region tool update as
you move the pixel region rectangle over the image.

Specifying the Region Size
By default, the pixel region rectangle defines a 5-by-5 pixel region. You can
specify a larger region by selecting from the list in the top right corner of the
Pixel Region tool.

Note As you specify larger regions, the size of each element in the Pixel
Region tool might become too small to fit the numeric pixel value. If you want
to see the numeric value, resize the Pixel Region tool by positioning the cursor
on any border of the Pixel Region tool and dragging the cursor.

Suppressing the Display of Numeric Pixel Values
If you only want to see the color of each pixel in the Pixel Region tool and not
its numeric value, clear the Display pixel values check box.

3 Displaying and Printing Images

3-16

Using the Image Information Tool
The Image Information tool provides information about the image being
displayed in the Image Viewer. This is the same information provided by the
imfinfo function.

To view this information, click the Image Information button in the Image
Viewer toolbar. The Image Viewer displays this image information in a
separate window.

The information included varies depending on the image type. However, for all
image types, the Image Information window displays these fields:

If the image is read from a file, the Image Information window displays
additional fields. The exact list of these additional fields varies depending on
the type of image file. For example, for a grayscale image, the Image
Information window includes fields for bit depth, byte order, and format.

Managing Image Viewer Memory Usage
By default, MATLAB sets a limit of 64 MB on the amount of memory the Java
Virtual Machine (JVM) can allocate. The memory used by the Image Viewer to
display an image must fit within this 64 MB limit. If you are having trouble

Field Description

Width Length of the horizontal dimension, measured in
pixels

Height Length of the vertical dimension, measured in
pixels

Class type MATLAB class, such as uint8, uint16, and double

Color type 'grayscale', 'indexed', or 'truecolor'

Minimum intensity
value

Value of the pixel with the lowest value

Maximum intensity
value

Value of the pixel with the highest value

Using the Image Viewer to Display Images

3-17

viewing large images, or displaying multiple images at the same time, you
might need to increase the amount of memory the Image Viewer can allocate.

One way to increase the amount of JVM memory available to the Image
Viewer, is to run MATLAB with the -nodesktop mode enabled.

Alternatively, you can increase the MATLAB JVM memory allocation limit. To
increase the amount of memory MATLAB allows the JVM to allocate, create a
file named java.opts and put it in your MATLAB startup directory. In this
file, include the -Xmx option, specifying the amount of memory you want to give
the JVM.

For example, to increase the JVM memory allocation limit to 128 MB, use this
syntax in the java.opts file.

-Xmx128m

Note To avoid virtual memory thrashing, never set the -Xmx option to more
than 66% of the physical RAM available.

On UNIX systems, create the java.opts file in a directory where you intend to
start MATLAB and move to that directory before starting MATLAB.

On Windows systems,

1 Create the java.opts file in a directory where you intend to start MATLAB.

2 Create a shortcut to MATLAB.

3 Right-click the shortcut and select Properties.

4 In the Properties dialog box, specify the name of the directory in which you
created the java.opts file as the MATLAB startup directory.

3 Displaying and Printing Images

3-18

Using imshow to Display Images
This section describes how to use the imshow function to display images. Topics
covered include

• “Opening Images”

• “Specifying the Initial Image Size” on page 3-19

• “Viewing Multiple Images” on page 3-19

• “Understanding Handle Graphics Object Property Settings” on page 3-22

For information about using imshow with various image types, see “Displaying
Different Image Types” on page 3-24.

Opening Images
To view images, you can use the imshow function. You use imshow to display an
image that has already been imported into the MATLAB workspace, as in the
following example.

moon = imread('moon.tif');
imshow(moon);

You can also simply specify the name of the file containing the image as an
argument to the imshow function, as in the following example. The file must be
in the current directory or on the MATLAB path.

imshow('moon.tif');

This syntax can be useful for scanning through images. Note, however, that
when you use this syntax, the image data is not stored in the MATLAB
workspace. If you want to bring the image into the workspace, you must use
the getimage function, which retrieves the image data from the current Handle
Graphics image object. For example:

moon = getimage;

assigns the image data from moon.tif to the variable moon if the figure window
in which it is displayed is currently active.

Using imshow to Display Images

3-19

Note One of the most common toolbox usage errors is using the wrong syntax
of imshow for your image type. To find out which syntax is appropriate for each
type of image, see “Displaying Different Image Types” on page 3-24.

Specifying the Initial Image Size
In most situations, when the toolbox is operating under default behavior,
imshow assigns a single screen pixel to each image pixel, e.g., a 200-by-300
image is 200 screen pixels in height and 300 screen pixels in width. This is
generally the preferred way to display an image. imshow calls the truesize
command to create this image pixel-to-screen pixel mapping.

In some cases, you might not want imshow to automatically call truesize (for
example, if you are working with a small image). In these cases, the image is
displayed at the default axis size. To use imshow without calling the truesize
function,

• Set the ImshowTruesize preference to 'manual' for the current MATLAB
session. To learn how to change the values of toolbox preferences, see
“Setting the Value of Toolbox Preferences” on page 3-38.

• Set the imshow function display_option parameter to 'notruesize'. This
overrides the setting of the ImshowTruesize preference for the call to imshow.

imshow(X, map,'notruesize')

For more information, see the imshow function reference page.

When imshow does not use the truesize function, it must use interpolation to
determine the values for screen pixels that do not directly correspond to
elements in the image matrix. For more information, see “Interpolation” on
page 4-3.

Viewing Multiple Images
If you specify a file that contains multiple images, imshow only displays the first
image in the file. To view all the images in the file, import the images into the
MATLAB workspace by calling imread. See “Reading Multiple Images from a
Graphics File” on page 2-17 for more information.

3 Displaying and Printing Images

3-20

Some applications create collections of images related by time or view, such as
magnetic resonance imaging (MRI) slices or frames of data acquired from a
video stream. The Image Processing Toolbox supports these collections of
images as four-dimensional arrays, where each separate image is called a
frame and the frames are concatenated along the fourth dimension. All the
frames in a multiframe image must be the same size.

Once the images are in the MATLAB workspace, there are two ways to display
them using imshow:

• Displaying each image in a separate figure window

• Displaying multiple frames in a single figure window

To view all the frames in a multiframe image at once, you can also use the
montage function. See “Displaying All Frames of a Multiframe Image at Once”
on page 3-32 for more information.

Displaying Each Image in a Separate Figure
The simplest way to display multiple images is to display them in separate
figure windows. MATLAB does not place any restrictions on the number of
images you can display simultaneously. However, there are usually system
limitations that are dependent on the computer hardware you are using.

imshow always displays an image in the current figure, so if you display two
images in succession, the second image replaces the first image. To avoid
replacing the image in the current figure, use the figure command to explicitly
create a new empty figure before calling imshow for the next image. For
example, to view the first three frames in an array of intensity images I,

imshow(I(:,:,:,1))
figure, imshow(I(:,:,:,2))
figure, imshow(I(:,:,:,3))

When you use this approach, the figures you create are empty initially.

Displaying Multiple Images in the Same Figure
You can use the imshow function with the MATLAB subplot function or the
MATLAB subimage function to display multiple images in a single figure
window.

Using imshow to Display Images

3-21

Dividing a Figure Window into Multiple Display Regions. subplot divides a figure into
multiple display regions. The syntax of subplot is

subplot(m,n,p)

This syntax divides the figure into an m-by-n matrix of display regions and
makes the pth display region active.

For example, if you want to display two images side by side, use

[X1,map1]=imread('forest.tif');
[X2,map2]=imread('trees.tif');
subplot(1,2,1), imshow(X1,map2)
subplot(1,2,2), imshow(X2,map2)

Two Images in Same Figure Using the Same Colormap

If sharing a colormap (using the subplot function) produces unacceptable
display results, use the subimage function, described below. Or, as another
alternative, you can map all images to the same colormap as you load them.

Using the subimage Function to Display Multiple Images. subimage converts images to
RGB before displaying and therefore circumvents the colormap sharing

3 Displaying and Printing Images

3-22

problem. This example displays the same two images shown with better
results.

[X1,map1]=imread('forest.tif');
[X2,map2]=imread('trees.tif');
subplot(1,2,1), subimage(X1,map1)
subplot(1,2,2), subimage(X2,map2)

Two Images in Same Figure Using Separate Colormaps

Understanding Handle Graphics Object Property
Settings
When you display an indexed, intensity, binary, or RGB image, imshow sets the
Handle Graphics properties that control how the image is displayed. The
following table lists the relevant properties and their settings for each type of
image. The table uses standard toolbox terminology to refer to the various
image types: X represents an indexed image, I represents an intensity image,
BW represents a binary image, and RGB represents an RGB (or true-color) image.

Using imshow to Display Images

3-23

Note When you use the imshow automatic scaling syntax, imshow(I,[]), the
function sets the axes CLim property to [min(J(:)) max(J(:))].
CDataMapping is always scaled for intensity images, so that the value
min(J(:)) is displayed using the first colormap color, and the value
max(J(:)) is displayed using the last colormap color.

Handle Graphics
Property

Indexed
Images

Intensity
(Grayscale) Images

Binary Images RGB (True-color)
Images

CData (Image) Set to the
data in X

Set to the data in I Set to data in BW Set to data in
RGB

CDataMapping
(Image)

Set to
'direct'

Set to 'scaled' Set to 'direct' Ignored when
CData is 3-D

CLim (Axes) Does not
apply

double: [0 1]
uint8: [0 255]
uint16: [0 65535]

Set to [0 1] Ignored when
CData is 3-D

Colormap (Figure) Set to data
in map

Set to grayscale
colormap

Set to a grayscale
colormap whose
values range from
black to white

Ignored when
CData is 3-D

3 Displaying and Printing Images

3-24

Displaying Different Image Types
This section describes how to use imshow and imview with the different types
of images supported by the Image Processing Toolbox.

• Indexed images

• Intensity (grayscale) images

• Binary images

• RGB (true-color) images

If you need help determining what type of image you are working with, see
“Image Types in the Toolbox” on page 2-6.

Displaying Indexed Images
To display an indexed image, using either imshow or imview, specify both the
image matrix and the colormap.

imshow(X,map)

or

imview(X,map)

For each pixel in X, these functions display the color stored in the corresponding
row of map. If the image matrix data is of class double, the value 1 points to the
first row in the colormap, the value 2 points to the second row, and so on.
However, if the image matrix data is of class uint8 or uint16, the value 0 (zero)
points to the first row in the colormap, the value 1 points to the second row, and
so on. This offset is handled automatically by the imview and imshow functions.

If the colormap contains a greater number of colors than the image, the
functions ignore the extra colors in the colormap. If the colormap contains
fewer colors than the image requires, the functions set all image pixels over the
limits of the colormap’s capacity to the last color in the colormap. For example,
if an image of class uint8 contains 256 colors, and you display it with a
colormap that contains only 16 colors, all pixels with a value of 15 or higher are
displayed with the last color in the colormap.

Displaying Different Image Types

3-25

Displaying Intensity Images
To display an intensity (grayscale) image, using either imshow or imview,
specify the image matrix as an argument.

imshow(I)

or

imview(I)

Both functions display the image by scaling the intensity values to serve as
indices into a grayscale colormap.

If I is double, a pixel value of 0.0 is displayed as black, a pixel value of 1.0 is
displayed as white, and pixel values in between are displayed as shades of gray.
If I is uint8, then a pixel value of 255 is displayed as white. If I is uint16, then
a pixel value of 65535 is displayed as white.

Intensity images are similar to indexed images in that each uses an m-by-3
RGB colormap, but normally, you do not specify a colormap for an intensity
image. MATLAB displays intensity images by using a grayscale system
colormap (where R=G=B). By default, the number of levels of gray in the
colormap is 256 on systems with 24-bit color, and 64 or 32 on other systems.
(See “Working with Different Screen Bit Depths” on page 13-3 for a detailed
explanation.)

Specifying the Number of Gray Levels
Using imshow, you can optionally specify the number of gray levels to use for
intensity images. For example, to display an image with 32 gray levels, use this
syntax.

imshow(I,32)

Because MATLAB scales intensity images to fill the colormap range, a
colormap of any size can be used. Larger colormaps enable you to see more
detail, but they also use up more color slots. The availability of color slots is
discussed further in “Working with Different Screen Bit Depths” on page 13-3.

Displaying Intensity Images That Have Unconventional Ranges
In some cases, you might have data you want to display as an intensity image,
even though the data is outside the conventional toolbox range (i.e., [0,1] for
double arrays, [0,255] for uint8 arrays, or [0,65535] for uint16 arrays). For

3 Displaying and Printing Images

3-26

example, if you filter an intensity image, some of the output data might fall
outside the range of the original data.

To display unconventional range data as an image, you can specify the display
range directly, using this syntax for both the imshow and imview functions.

imshow(I,[low high])

or

imview(I,[low high])

If you use an empty matrix ([]) for the display range, these functions scale the
data automatically, setting low and high to the minimum and maximum
values in the array. The next example filters an intensity image, creating
unconventional range data. The example calls imview to display the image,
using the automatic scaling option. If you execute this example, note the
display range specified in the lower right corner of the Image Viewer window.

I = imread('testpat1.png');
J = filter2([1 2;-1 -2],I);
imview(J,[]);

Display range

Displaying Different Image Types

3-27

Displaying Binary Images
In MATLAB, a binary image is of class logical. Binary images contain only 0’s
and 1’s. Pixels with the value 0 are displayed as black; pixels with the value 1
are displayed as white.

Note For the toolbox to interpret the image as binary, it must be of class
logical. Intensity images that happen to contain only 0’s and 1’s are not
binary images.

To display a binary image, using either imshow or imview, specify the image
matrix as an argument. For example, this code reads a binary image into the
MATLAB workspace and then displays the image.

BW = imread('circles.png');
imshow(BW)

or

imview(BW)

Changing the Display Colors of a Binary Image
You might prefer to invert binary images when you display them, so that 0
values are displayed as white and 1 values are displayed as black. To do this,
use the NOT (~) operator in MATLAB. (In this figure, a box is drawn around
the image to show the image boundary.) For example:

imshow(~BW)

3 Displaying and Printing Images

3-28

or

imview(~BW)

You can also display a binary image using the indexed image colormap syntax.
For example, the following command specifies a two-row colormap that
displays 0’s as red and 1’s as blue.

imshow(BW,[1 0 0; 0 0 1])

or

imview(BW,[1 0 0; 0 0 1])

Displaying Different Image Types

3-29

Displaying RGB Images
RGB images, also called true-color images, represent color values directly,
rather than through a colormap. An RGB image is an m-by-n-by-3 array. For
each pixel (r,c) in the image, the color is represented by the triplet (r,c,1:3).

To display an RGB image, using either imshow or imview, specify the image
matrix as an argument. For example, this code reads an RGB image into the
MATLAB workspace and then displays the image.

RGB = imread(peppers.png');
imshow(RGB)

or

imview(RGB)

Systems that use 24 bits per screen pixel can display true-color images directly,
because they allocate 8 bits (256 levels) each to the red, green, and blue color
planes. On systems with fewer colors, imshow displays the image using a
combination of color approximation and dithering. See “Working with Different
Screen Bit Depths” on page 13-3 for more information.

3 Displaying and Printing Images

3-30

Note If you display a color image and it appears in black and white, check if
the image is an indexed image. With indexed images, you must specify the
colormap associated with the image. For more information, see “Displaying
Indexed Images” on page 3-24.

Special Display Techniques

3-31

Special Display Techniques
In addition to imshow and imview, the toolbox includes functions that perform
specialized display operations, or exercise more direct control over the display
format. These functions, together with the MATLAB graphics functions,
provide a range of image display options.

This section includes the following topics:

• “Adding a Colorbar” on page 3-31

• “Displaying All Frames of a Multiframe Image at Once” on page 3-32

• “Converting a Multiframe Image to a Movie” on page 3-34

• “Texture Mapping” on page 3-35

Adding a Colorbar
To display an image with a colorbar that indicates the range of intensity
values, use the imshow function to display the image in a MATLAB figure
window and then call the colorbar function. When you add a colorbar to an
axes object that contains an image object, the colorbar indicates the data values
that the different colors in the image correspond to. You cannot add a colorbar
to an image displayed in the Image Viewer.

Seeing the correspondence between data values and the colors displayed by
using a colorbar is especially useful if you are displaying unconventional range
data as an image, as described under “Displaying Intensity Images That Have
Unconventional Ranges” on page 3-25.

In the example below, a grayscale image of class uint8 is filtered, resulting in
data that is no longer in the range [0,255].

RGB = imread('saturn.png');
I = rgb2gray(RGB);
h = [1 2 1; 0 0 0; -1 -2 -1];
I2 = filter2(h,I);
imshow(I2,[]), colorbar

3 Displaying and Printing Images

3-32

Displaying All Frames of a Multiframe Image at
Once
To view all the frames in a multiframe array at one time, use the montage
function. montage divides a figure window into multiple display regions and
displays each image in a separate region.

The syntax for montage is similar to the imshow syntax. To display a
multiframe intensity image, the syntax is

montage(I)

To display a multiframe indexed image, the syntax is

montage(X,map)

Note All the frames in a multiframe indexed array must use the same
colormap.

Original Image Courtesy of NASA

Special Display Techniques

3-33

This example loads and displays all frames of a multiframe indexed image. The
example initializes an array to hold the 27 frames in the multiframe image file
and then loops, using imread to read a single frame from the image file at each
iteration.

mri = uint8(zeros(128,128,1,27));

for frame=1:27
[mri(:,:,:,frame),map] = imread('mri.tif',frame);

end
montage(mri,map);

All Frames of Multiframe Image Displayed in One Figure

3 Displaying and Printing Images

3-34

montage displays the first frame in the first position of the first row, the next
frame in the second position of the first row, and so on. montage arranges the
frames so that they roughly form a square.

Converting a Multiframe Image to a Movie
To create a MATLAB movie from a multiframe image array, use the immovie
function. This example creates a movie from a multiframe indexed image.

mov = immovie(X,map);

In the example, X is a four-dimensional array of images that you want to use
for the movie.

You can play the movie in MATLAB using the movie function.

movie(mov);

This example loads the multiframe image mri.tif and makes a movie out of it.
It won’t do any good to show the results here, so try it out; it’s fun to watch.

mri = uint8(zeros(128,128,1,27));
for frame=1:27

[mri(:,:,:,frame),map] = imread('mri.tif',frame);
end

mov = immovie(mri,map);
movie(mov);

Note that immovie displays the movie as it is being created, so you actually see
the movie twice. The movie runs much faster the second time (using movie).

Note To view a MATLAB movie, you must have MATLAB installed. To make
a movie that can be run outside MATLAB, use the MATLAB avifile and
addframe functions to create an AVI file. AVI files can be created using
indexed and RGB images of classes uint8 and double, and don’t require a
multiframe image. For instructions on creating an AVI file, see the
Development Environment section in the MATLAB documentation.

Special Display Techniques

3-35

Texture Mapping
When you use imshow or imview to view an image, MATLAB displays the image
in two dimensions. However, it is also possible to map an image onto a
parametric surface, such as a sphere, or below a surface plot. The warp function
creates these displays by texture mapping the image. Texture mapping is a
process that maps an image onto a surface grid using interpolation.

This example texture-maps an image of a test pattern onto a cylinder.

[x,y,z] = cylinder;
I = imread('testpat1.png');
warp(x,y,z,I);

An Image Texture Mapped onto a Cylinder

The image might not map onto the surface in the way that you had expected.
One way to modify the way the texture map appears is to change the settings
of the Xdir, Ydir, and Zdir properties. For more information, see “Changing
Axis Direction” in the MATLAB Graphics documentation.

For more information about texture mapping, see the reference entry for the
warp function.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

3 Displaying and Printing Images

3-36

Printing Images
If you want to output a MATLAB image to use in another application (such as
a word-processing program or graphics editor), use imwrite to create a file in
the appropriate format. See “Writing a Graphics Image” on page 2-17 for
details.

If you want to print an image, use imshow to display the image in a MATLAB
figure window. You cannot print an image from the Image Viewer.

Once the image is displayed in a figure window, you can use either the
MATLAB print command or the Print option from the File menu of the figure
window to print the image. When you print from the figure window, the output
includes nonimage elements such as labels, titles, and other annotations.

The output reflects the settings of various properties of Handle Graphic
objects. In some cases, you might need to change the settings of certain
properties to get the results you want. Here are some tips that might be helpful
when you print images:

• Image colors print as shown on the screen. This means that images are not
affected by the figure object’s InvertHardcopy property.

• To ensure that printed images have the proper size and aspect ratio, set the
figure object’s PaperPositionMode property to auto. When
PaperPositionMode is set to auto, the width and height of the printed figure
are determined by the figure’s dimensions on the screen. By default, the
value of PaperPositionMode is manual. If you want the default value of
PaperPositionMode to be auto, you can add this line to your startup.m file.

set(0,'DefaultFigurePaperPositionMode','auto')

For detailed information about printing with File/Print or the print command
(and for information about Handle Graphics), see “Printing and Exporting
Figures with MATLAB” in the MATLAB Graphics documentation. For a
complete list of options for the print command, enter help print at the
MATLAB command-line prompt or see the print command reference page in
the MATLAB documentation.

Setting Toolbox Display Preferences

3-37

Setting Toolbox Display Preferences
You can use Image Processing Toolbox preferences to control certain
characteristics of how imshow and imview display images on your screen. For
example, using toolbox preferences, you can suppress the display of axes and
tick marks in a figure window by imshow or specify the initial magnification
used by imview.

This section

• Lists the preferences supported by the toolbox

• Describes how to get the current value of a preference using the iptgetpref
function

• Describes how to set the value of a preference using the iptsetpref function

Toolbox Preferences
The Image Processing Toolbox supports several preferences that affect how
imshow and imview display images. The following table lists these preferences
with brief descriptions. For detailed information about toolbox preferences and
their values, see the iptsetpref reference page.

Toolbox Preference Description

ImshowBorder Controls whether imshow displays the figure window as
larger than the image (leaving a border between the image
axes and the edges of the figure), or the same size as the
image (leaving no border).

ImshowAxesVisible Controls whether imshow displays images with the axes box
and tick labels.

ImshowTruesize Controls whether imshow calls the truesize function. This
preference can be overridden for a single call to imshow; see
“Specifying the Initial Image Size” on page 3-19 for more
details.

3 Displaying and Printing Images

3-38

Retrieving the Value of Toolbox Preferences
To determine the current value of a preference, use the iptgetpref function.
This example uses iptgetpref to determine the value of the
ImviewInitialMagnification preference.

iptgetpref('ImviewInitialMagnification')

ans =

 100

Preference names are case insensitive and can be abbreviated. For more
information, see the iptgetpref reference page.

Setting the Value of Toolbox Preferences
To specify the value of a toolbox preference, use the iptsetpref function. This
example calls iptsetpref to specify that imshow resize the figure window so
that it fits tightly around displayed images.

iptsetpref('ImshowBorder', 'tight');

For detailed information about toolbox preferences and their values, see the
iptsetpref reference page.

The value you specify lasts for the duration of the current MATLAB session. To
preserve your preference settings from one session to the next, include the
iptsetpref commands in your startup.m file.

ImviewInitialMagnification Controls the magnification the Image Viewer uses when it
initially displays an image.

TrueSizeWarning Controls whether you receive a warning message if an image
is too large for the screen.

Toolbox Preference Description

4

Spatial Transformations

This chapter describes the spatial transformation functions in the Image Processing Toolbox. Spatial
transformations map pixel locations in an input image to new locations in an output image.

Terminology (p. 4-2) Provides definitions of image processing terms used in
this section

Interpolation (p. 4-3) Defines interpolation, the process used to estimate the
value of a pixel in an output image when that pixel does
not appear in the input image

Image Resizing (p. 4-5) Describes how to use the imresize function to change the
size of an image

Image Rotation (p. 4-8) Describes how to use the imrotate function to rotate an
image

Image Cropping (p. 4-10) Describes how to use the imcrop function to extract a
rectangular portion of an image

Performing General Spatial
Transformations (p. 4-11)

Describes the general spatial transformation capabilities
of the toolbox

4 Spatial Transformations

4-2

Terminology
An understanding of the following terms will help you to use this chapter.

Term Definition

aliasing Artifacts in an image that can appear as a
result of reducing an image’s size. When the
size of an image is reduced, original pixels
are downsampled to create fewer pixels.
Aliasing that occurs as a result of size
reduction normally appears as “stair-step”
patterns (especially in high contrast images),
or as “moire” (ripple-effect) patterns.

antialiasing Any method for correcting aliasing (see
above). The method discussed in this chapter
is low-pass filtering (see below).

bicubic interpolation Output pixel values are calculated from a
weighted average of pixels in the nearest
4-by-4 neighborhood.

bilinear interpolation Output pixel values are calculated from a
weighted average of pixels in the nearest
2-by-2 neighborhood.

geometric operation An operation that modifies the spatial
relations between pixels in an image.
Examples include resizing (growing or
shrinking), rotating, and shearing.

interpolation The process by which we estimate an image
value at a location in between image pixels.

nearest-neighbor
interpolation

Output pixel values are assigned the value of
the pixel that the point falls within. No other
pixels are considered.

Interpolation

4-3

Interpolation
Interpolation is the process used to estimate an image value at a location in
between image pixels. For example, if you resize an image so it contains more
pixels than it did originally, the software obtains values for the additional
pixels through interpolation. The imresize and imrotate geometric functions
use two-dimensional interpolation as part of the operations they perform. (The
improfile image analysis function also uses interpolation. See “Intensity
Profile” on page 10-5 for information about this function.)

The Image Processing Toolbox provides three interpolation methods:

• Nearest-neighbor interpolation

• Bilinear interpolation

• Bicubic interpolation

The interpolation methods all work in a fundamentally similar way. In each
case, to determine the value for an interpolated pixel, they find the point in the
input image that the output pixel corresponds to. They then assign a value to
the output pixel by computing a weighted average of some set of pixels in the
vicinity of the point. The weightings are based on the distance each pixel is
from the point.

The methods differ in the set of pixels that are considered:

• For nearest-neighbor interpolation, the output pixel is assigned the value of
the pixel that the point falls within. No other pixels are considered.

• For bilinear interpolation, the output pixel value is a weighted average of
pixels in the nearest 2-by-2 neighborhood.

• For bicubic interpolation, the output pixel value is a weighted average of
pixels in the nearest 4-by-4 neighborhood.

The number of pixels considered affects the complexity of the computation.
Therefore the bilinear method takes longer than nearest-neighbor
interpolation, and the bicubic method takes longer than bilinear. However, the
greater the number of pixels considered, the more accurate the effect is, so
there is a tradeoff between processing time and quality.

4 Spatial Transformations

4-4

Image Types
The functions that use interpolation take an argument that specifies the
interpolation method. For most of these functions, the default method is
nearest-neighbor interpolation. This method produces acceptable results for all
image types, and is the only method that is appropriate for indexed images. For
intensity and RGB images, however, you should generally specify bilinear or
bicubic interpolation, because these methods produce better results than
nearest-neighbor interpolation.

For RGB images, interpolation is performed on the red, green, and blue image
planes individually.

For binary images, interpolation has effects that you should be aware of. If you
use bilinear or bicubic interpolation, the computed values for the pixels in the
output image will not all be 0 or 1. The effect on the resulting output image
depends on the class of the input image:

• If the class of the input image is double, the output image is a grayscale
image of class double. The output image is not binary, because it includes
values other than 0 and 1.

• If the class of the input image is uint8, the output image is a binary image
of class uint8. The interpolated pixel values are rounded off to 0 and 1 so the
output image can be of class uint8.

Note For bicubic interpolation, you might need to clamp doubles to within
the [0 1] range.

If you use nearest-neighbor interpolation, the result is always binary, because
the values of the interpolated pixels are taken directly from pixels in the input
image.

Image Resizing

4-5

Image Resizing
To change the size of an image, use the imresize function. Using imresize, you
can

• Specify the size of the output image

• Specify the interpolation method used

• Specify the filter to use to prevent aliasing

Specifying the Size of the Output Image
Using imresize, you can specify the size of the output image in two ways:

• By specifying the magnification factor to be used on the image

• By specifying the dimensions of the output image

Using the Magnification Factor
To enlarge an image, specify a magnification factor greater than 1. To reduce
an image, specify a magnification factor between 0 and 1. For example, the
command below increases the size of the image I by 1.25 times.

I = imread('circuit.tif');
J = imresize(I,1.25);
imshow(I)
figure, imshow(J)

4 Spatial Transformations

4-6

Specifying the Size of the Output Image
You can specify the size of the output image by passing a vector that contains
the number of rows and columns in the output image. The following command
creates an output image, Y, with 100 rows and 150 columns.

Y = imresize(X,[100 150])

Note If the specified size does not produce the same aspect ratio as the input
image, the output image is distorted.

Specifying the Interpolation Method
By default, imresize uses nearest-neighbor interpolation to determine the
values of pixels in the output image, but you can specify other interpolation
methods. This table lists the supported interpolation methods in order of
complexity. See “Interpolation” on page 4-3 for more information about these
methods.

Image Courtesy of Steve Decker and Shujaat Nadeem

Image Resizing

4-7

In this example, imresize uses the bilinear interpolation method.

Y = imresize(X,[100 150],'bilinear')

Using Filters to Prevent Aliasing
Reducing the size of an image can introduce artifacts, such as aliasing, in the
output image because information is always lost when you reduce the size of an
image. Aliasing appears as ripple patterns (called moiré patterns) in the output
image.

When you reduce the size of the image using either bilinear or bicubic
interpolation, imresize automatically applies a lowpass filter to the image
before interpolation, to limit the impact of aliasing on the output image. You
can specify the size of this filter or specify a different filter.

Note Even with lowpass filtering, resizing can introduce artifacts, because
information is always lost when you reduce the size of an image.

The imresize function does not apply a lowpass filter if nearest-neighbor
interpolation is used. Nearest-neighbor interpolation is primarily used for
indexed images, and lowpass filtering is not appropriate for these images.

You can also specify a filter of your own creation. For more information about
specifying a filter, see the reference page for imresize.

Argument Value Interpolation Method

'nearest' Nearest-neighbor interpolation (the default)

'bilinear' Bilinear interpolation

'bicubic' Bicubic interpolation

4 Spatial Transformations

4-8

Image Rotation
To rotate an image, use the imrotate function. imrotate accepts two primary
arguments:

• The image to be rotated

• The rotation angle

You specify the rotation angle in degrees. If you specify a positive value,
imrotate rotates the image counterclockwise; if you specify a negative value,
imrotate rotates the image clockwise. This example rotates the image I 35
degrees in the counterclockwise direction.

J = imrotate(I,35);

As optional arguments to imrotate, you can also specify

• The interpolation method

• The size of the output image

Specifying the Interpolation Method
By default, imrotate uses nearest-neighbor interpolation to determine the
value of pixels in the output image, but you can specify other interpolation
methods. This table lists the supported interpolation methods in order of
complexity. See “Interpolation” on page 4-3 for more information about these
methods.

For example, these commands rotate an image 35° counterclockwise and use
bilinear interpolation.

I = imread('circuit.tif');
J = imrotate(I,35,'bilinear');
imshow(I)

Argument Value Interpolation Method

'nearest' Nearest-neighbor interpolation (the default)

'bilinear' Bilinear interpolation

'bicubic' Bicubic interpolation

Image Rotation

4-9

figure, imshow(J)

Specifying the Size of the Output Image
By default, imrotate creates an output image large enough to include the
entire original image. Pixels that fall outside the boundaries of the original
image are set to 0 and appear as a black background in the output image. If you
specify the text string crop' as an argument, imrotate crops the output
image to be the same size as the input image. (See the reference page for
imrotate for an example of cropping.)

4 Spatial Transformations

4-10

Image Cropping
To extract a rectangular portion of an image, use the imcrop function. imcrop
accepts two primary arguments:

• The image to be cropped

• The coordinates of a rectangle that defines the crop area

If you call imcrop without specifying the crop rectangle, you can specify the
crop rectangle interactively. In this case, the cursor changes to crosshairs when
it is over the image. Position the crosshairs over a corner of the crop region and
press and hold the left mouse button. When you drag the crosshairs over the
image you specify the rectangular crop region. imcrop draws a rectangle
around the area you are selecting. When you release the mouse button, imcrop
creates a new image from the selected region.

In this example, you display an image and call imcrop. The imcrop function
displays the image in a figure window and waits for you to draw the cropping
rectangle on the image. In the figure, the rectangle you select is shown in red.
The example then calls imshow to view the cropped image.

imshow circuit.tif
I = imcrop;
imshow(I);

Performing General Spatial Transformations

4-11

Performing General Spatial Transformations
To perform general two-dimensional (2-D) spatial transformations, use the
imtransform function. (For information about performing advanced
transformations, see “Advanced Spatial Transformation Techniques” on
page 4-13.)

The imtransform function accepts two primary arguments:

• The image to be transformed

• A spatial transformation structure, called a TFORM, that specifies the type of
transformation you want to perform

Specifying the Transformation Type
You specify the type of transformation you want to perform in a TFORM
structure. There are two ways to create a TFORM structure:

• Using the maketform function

• Using the cp2tform function

Using maketform
When you use the maketform function, you can specify the type of
transformation you want to perform. The following table lists the types of
transformations maketform supports in alphabetical order.

Transformation Description

'affine' Transformation that can include translation,
rotation, scaling, stretching, and shearing. Straight
lines remain straight, and parallel lines remain
parallel, but rectangles might become
parallelograms.

'box' Special case of an affine transformation where each
dimension is shifted and scaled independently.

'composite' Composition of two or more transformations.

4 Spatial Transformations

4-12

The 'custom' and 'composite' capabilities of maketform allow a virtually
limitless variety of spatial transformations to be used with imtransform and/or
tformarray.

Using cp2tform
You use cp2tform to create the TFORM when you want to perform a
transformation that requires fitting of data points, such as a polynomial
transformation. Chapter 5, “Image Registration,” explains how to use the
cp2tform function to fit a 2-D transformation to a set of control points selected
in a pair of images.

Note When used with imtransform, TFORM structures must define a 2-D
spatial transformation. If an image contains more than two dimensions, such
as an RGB image, the same 2-D transformation is automatically applied to all
2-D planes along the higher dimensions. To define an n-dimensional
transformation, use the tformarray function.

'custom' User-defined transformation, providing the forward
and/or inverse functions that are called by
imtransform.

'projective' Transformation in which straight lines remain
straight but parallel lines converge toward vanishing
points. (The vanishing points can fall inside or
outside the image — even at infinity.)

Transformation Description

Performing General Spatial Transformations

4-13

Performing the Transformation
Once you define the transformation in a TFORM struct, you can perform the
transformation by calling imtransform.

For example, this code uses imtransform to perform a projective
transformation of a checkerboard image.

I = checkerboard(20,1,1);
figure; imshow(I)
T = maketform('projective',[1 1; 41 1; 41 41; 1 41],...

[5 5; 40 5; 35 30; -10 30]);
R = makeresampler('cubic','circular');
K = imtransform(I,T,R,'Size',[100 100],'XYScale',1);
figure, imshow(K)

The imtransform function options let you control many aspects of the
transformation. For example, note how the transformed image appears to
contain multiple copies of the original image. This is accomplished by using the
'Size' option, to make the output image larger than the input image, and then
specifying a padding method that extends the input image by repeating the
pixels in a circular pattern. The Image Processing Toolbox Image
Transformation demos provide more examples of using the imtransform
function, and related functions, to perform different types of spatial
transformations.

Advanced Spatial Transformation Techniques
The following functions, when used in combination, provide a vast array of
options for defining and working with 2-D, N-D, and mixed-D spatial
transformations:

• maketform

• fliptform

Original
image

Transformed
image

4 Spatial Transformations

4-14

• tformfwd

• tforminv

• findbounds

• makeresampler

• tformarray

• imtransform

The imtransform, findbounds, and tformarray functions use the tformfwd
and tforminv functions internally to encapsulate the forward transformations
needed to determine the extent of an output image or array and/or to map the
output pixels/array locations back to input locations. You can use tformfwd and
tforminv to explore the geometric effects of a transformation by applying them
to points and lines and plotting the results. They support a consistent handling
of both image and pointwise data.

The previous example, “Performing the Transformation” on page 4-13, used
the makeresampler function with a standard interpolation method. You can
also use it to obtain special effects or custom processing. For example, you could
specify your own separable filtering/interpolation kernel, build a custom
resampler around the MATLAB interp2 or interp3 functions, or even
implement an advanced antialiasing technique.

And, as noted, you can use tformarray to work with arbitrary-dimensional
array transformations. The arrays do not even need to have the same
dimensions. The output can have either a lower or higher number of
dimensions than the input.

For example, if you are sampling 3-D data on a 2-D slice or manifold, the input
array might have a lower dimensionality. The output dimensionality might be
higher, for example, if you combine multiple 2-D transformations into a single
2-D to 3-D operation.

5

Image Registration

This chapter describes the image registration capabilities of the Image Processing Toolbox. Image
registration is the process of aligning two or more images of the same scene. Image registration is
often used as a preliminary step in other image processing applications.

Terminology (p. 5-2) Provides definitions of image processing terms used in
this section

Registering an Image (p. 5-4) Steps you through an example of the image registration
process

Types of Supported Transformations
(p. 5-13)

Lists the types of supported transformations

Selecting Control Points (p. 5-15) Describes how to use the Control Point Selection Tool
(cpselect) to select control points in pairs of images

Using Correlation to Improve Control
Points (p. 5-32)

Describes how to use the cpcorr function to fine-tune
your control point selections

5 Image Registration

5-2

Terminology
An understanding of the following terms will help you to use this chapter.

Term Definition

aligned image Output image after registration has been
performed. The output image is derived by
applying a transformation to the input
image (see below) that brings it into
alignment with the base image (see below).

base image Image against which you compare the image
to be registered. It is also often called the
reference image.

control point pairs Matching locations, also referred to as
landmarks, in the input image and the base
image.

distortion Differences in one image as compared to
another of the same subject. These
differences might have occurred as a result
of terrain relief and other changes in
perspective when imaging the same scene
from different viewpoints. Lens and other
internal sensor distortions, or differences
between sensors and sensor types, can also
cause distortion.

global transformation Transformation in which a single
mathematical expression applies to an entire
image.

input image Image that you want to register. It is often
called the observed image.

Terminology

5-3

local transformation Transformation in which different
mathematical expressions (usually differing
in parameters rather than form) apply to
different regions within an image.

spatial transformation Mapping of locations of points in one image
to new locations in another image.

Term Definition

5 Image Registration

5-4

Registering an Image
Image registration is the process of aligning two or more images of the same
scene. Typically, one image, called the base image, is considered the reference
to which the other images, called input images, are compared. The object of
image registration is to bring the input image into alignment with the base
image by applying a spatial transformation to the input image.

A spatial transformation maps locations in one image to new locations in
another image. (For more details, see Chapter 4, “Spatial Transformations.”)
Determining the parameters of the spatial transformation needed to bring the
images into alignment is key to the image registration process.

Image registration is often used as a preliminary step in other image
processing applications. For example, you can use image registration to align
satellite images of the earth’s surface or images created by different medical
diagnostic modalities (MRI and SPECT). After registration, you can compare
features in the images to see how a river has migrated, how an area is flooded,
or to see if a tumor is visible in an MRI or SPECT image.

Point Mapping
The Image Processing Toolbox provides tools to support point mapping to
determine the parameters of the transformation required to bring an image
into alignment with another image. In point mapping, you pick points in a pair
of images that identify the same feature or landmark in the images. Then, a
spatial mapping is inferred from the positions of these control points.

Image registration using point mapping involves these steps:

1 Read the images into the MATLAB workspace.

2 Specify control point pairs in the images.

3 Save the control point pairs.

4 Fine-tune the control points using cross-correlation. (This is an optional
step.)

5 Specify the type of transformation to be used and infer its parameters from
the control point pairs.

Registering an Image

5-5

6 Transform the unregistered image to bring it into alignment.

This process is best understood by looking at an example. See “Example:
Registering to a Digital Orthophoto” on page 5-6 for an extended example.

Note You might need to perform several iterations of this process,
experimenting with different types of transformations, before you achieve a
satisfactory result. In some cases, you might perform successive registrations,
removing gross global distortions first, and then removing smaller local
distortions in subsequent passes.

The following figure provides a graphic illustration of this process.

5 Image Registration

5-6

Overview of Image Registration Process

Example: Registering to a Digital Orthophoto
This example registers a digital aerial photograph to a digital orthophoto
covering the same area. Both images are centered on the business district of
West Concord, Massachusetts.

The aerial image is geometrically uncorrected: it includes camera perspective,
terrain and building relief, and internal (lens) distortions, and it does not have
any particular alignment or registration with respect to the earth.

tform structure

imtransform

Specify control points in
input and base images using
cpselect

Fine-tune control points with
cpcorr (optional)

Aligned
image

Input
Image

Base
Image

Determine parameters of
spatial transformation using
cp2tform

Image to be
registered

Image you are
comparing it to

Registering an Image

5-7

The orthophoto, supplied by the Massachusetts Geographic Information
System (MassGIS), has been orthorectified to remove camera, perspective, and
relief distortions (via a specialized image transformation process). It is also
georegistered (and geocoded)—the columns and rows of the digital orthophoto
image are aligned to the axes of the Massachusetts State Plane coordinate
system, each pixel center corresponds to a definite geographic location, and
every pixel is 1 meter square in map units.

Step 1: Read the Images into MATLAB
In this example, the base image is westconcordorthophoto.png, the MassGIS
georegistered orthophoto. It is a panchromatic (grayscale) image. The image to
be registered is westconcordaerial.png, a digital aerial photograph supplied
by mPower3/Emerge, and is a visible-color RGB image.

orthophoto = imread('westconcordorthophoto.png');
figure, imshow(orthophoto)
unregistered = imread('westconcordaerial.png');
figure, imshow(unregistered)

You do not have to read the images into the MATLAB workspace. The
cpselect function accepts file specifications for grayscale images. However, if
you want to use cross-correlation to tune your control point positioning, the
images must be in the workspace.

5 Image Registration

5-8

Step 2: Choose Control Points in the Images
The toolbox provides an interactive tool, called the Control Point Selection
Tool, that you can use to pick pairs of corresponding control points in both
images. Control points are landmarks that you can find in both images, like a
road intersection, or a natural feature.

To start this tool, enter cpselect at the MATLAB prompt, specifying as
arguments the input and base images.

Note The unregistered image is an RGB image. Because the Control Point
Selection Tool only accepts grayscale images, the example passes only one
plane of the color image to cpselect.

cpselect(unregistered(:,:,1),orthophoto)

Aerial Photo Image Orthophoto Image
Image Courtesy of mPower3/Emerge Image Courtesy of MassGIS

Registering an Image

5-9

The cpselect function displays two views of both the input image and the base
image in which you can pick control points by pointing and clicking. For more
information, see “Selecting Control Points” on page 5-15. This figure shows the
Control Point Selection Tool with four pairs of control points selected. The
number of control point pairs you pick is at least partially determined by the
type of transformation you want to perform (specified in Step 5). See “Types of
Supported Transformations” on page 5-13 for information about the minimum
number of points required by each transformation.

Step 3: Save the Control Point Pairs to the MATLAB Workspace
In the Control Point Selection Tool, click the File menu and choose the Save
Points to Workspace option. See “Saving Control Points” on page 5-30 for
more information.

5 Image Registration

5-10

For example, the Control Point Selection Tool returns the following set of
control points in the input image. These values represent spatial coordinates;
the left column are x-coordinates, the right column are y-coordinates.

input_points =
 120.7086 93.9772
 319.2222 78.9202
 127.9838 291.6312
 352.0729 281.1445

Step 4: Fine-Tune the Control Point Pair Placement
This is an optional step that uses cross-correlation to adjust the position of the
control points you selected with cpselect. See “Using Correlation to Improve
Control Points” on page 5-32 for more information.

Note cpcorr can only adjust points for images that are the same scale and
have the same orientation. Because the Concord image is rotated in relation to
the base image, cpcorr cannot tune the control points. When it cannot tune
the points, cpcorr returns the input points unmodified.

input_points_corr = cpcorr(input_points,base_points,...
unregistered(:,:,1),orthophoto)

input_points_corr =
 120.7086 93.9772
 319.2222 78.9202
 127.1046 289.8935
352.0729 281.1445

Step 5: Specify the Type of Transformation and Infer Its Parameters
In this step, you pass the control points to the cp2tform function that
determines the parameters of the transformation needed to bring the image
into alignment. cp2tform is a data-fitting function that determines the
transformation based on the geometric relationship of the control points.
cp2tform returns the parameters in a geometric transformation structure,
called a TFORM structure.

When you use cp2tform, you must specify the type of transformation you want
to perform. The cp2tform function can infer the parameters for five types of

Registering an Image

5-11

transformations. You must choose which transformation will correct the type
of distortion present in the input image. See “Types of Supported
Transformations” on page 5-13 for more information. Images can contain more
than one type of distortion.

The predominant distortion in the aerial image of West Concord (the input
image) results from the camera perspective. Ignoring terrain relief, which is
minor in this area, image registration can correct for this using a projective
transformation. The projective transformation also rotates the image into
alignment with the map coordinate system underlying the base digital
orthophoto image. (Given sufficient information about the terrain and camera,
you could correct these other distortions at the same time by creating a
composite transformation with maketform. See “Performing General Spatial
Transformations” on page 4-11 for more information.)

mytform = cp2tform(input_points,base_points,'projective');

Step 6: Transform the Unregistered Image
As the final step in image registration, transform the input image to bring it
into alignment with the base image. You use imtransform to perform the
transformation, passing it the input image and the TFORM structure, which
defines the transformation. imtransform returns the transformed image. For
more information about using imtransform, see Chapter 4, “Spatial
Transformations.”

registered = imtransform(unregistered,mytform)

Note imtransform applies the transformation defined in mytform, which is
based on control points picked in only one plane of the RGB image, to all three
planes of the input image.

5 Image Registration

5-12

Compare the transformed image to the base image to see how the registration
came out.

Registered Image Orthophoto Image

Types of Supported Transformations

5-13

Types of Supported Transformations
The cp2tform function can infer the parameters for six types of
transformations. This table lists the transformations in order of complexity,
with examples of each type of distortion.

The first four transformations, 'linear conformal', 'affine', 'projective',
and 'polynomial' are global transformations. In these transformations, a
single mathematical expression applies to an entire image. The last two
transformations, 'piecewise linear' and 'lwm' (local weighted mean), are
local transformations. In these transformations, different mathematical
expressions apply to different regions within an image.

When exploring how different transformations affect the images you are
working with, try the global transformations first. If these transformations are
not satisfactory, try the local transformations: the piecewise linear
transformation first and then the local weighted mean transformation.

Transformation Type Description Minimum
Control Points

Example

'linear conformal' Use this transformation when
shapes in the input image are
unchanged, but the image is
distorted by some combination of
translation, rotation, and scaling.
Straight lines remain straight, and
parallel lines are still parallel.

2 pairs

'affine' Use this transformation when
shapes in the input image exhibit
shearing. Straight lines remain
straight, and parallel lines remain
parallel, but rectangles become
parallelograms.

3 pairs

5 Image Registration

5-14

'projective' Use this transformation when the
scene appears tilted. Straight lines
remain straight, but parallel lines
converge toward vanishing points
(which might or might not fall
within the image).

4 pairs

'polynomial' Use this transformation when
objects in the image are curved. The
higher the order of the polynomial,
the better the fit, but the result can
contain more curves than the base
image.

6 pairs
(order 2)

10 pairs
(order 3)

16 pairs
(order 4)

'piecewise linear' Use this transformation when parts
of the image appear distorted
differently.

4 pairs

'lwm' Use this transformation (local
weighted mean), when the
distortion varies locally and
piecewise linear is not sufficient.

6 pairs
(12 pairs
recommended)

Selecting Control Points

5-15

Selecting Control Points
The toolbox includes an interactive tool that enables you to specify control
points in the images you want to register. The tool displays the images side by
side. When you are satisfied with the number and placement of the control
points, you can save the control points.

Using the Control Point Selection Tool
To specify control points in a pair of images you want to register, use the
Control Point Selection Tool, cpselect. The tool displays the image you want
to register, called the input image, next to the image you want to compare it to,
called the base image or reference image.

Specifying control points is a four-step process:

1 Start the tool, specifying the input image and the base image.

2 View the images, looking for visual elements that you can identify in both
images. cpselect provides many ways to navigate around the image,
panning and zooming to view areas of the image in more detail.

3 Specify matching control point pairs in the input image and the base image.

4 Save the control points in the MATLAB workspace.

The following figure shows the default appearance of the tool when you first
start it.

5 Image Registration

5-16

Control Point Selection Tool

Starting the Control Point Selection Tool
To use the Control Point Selection Tool, enter the cpselect command at the
MATLAB prompt. As arguments, specify the image you want to register (the
input image), and the image you want to compare it to (the base image).

To illustrate, this code fragment reads an image into a variable, moon_base, in
the MATLAB workspace. It then creates another version of the image with a

Zoom in
and out

Overview
windows

Select
points

Detail views

Lock relative
magnification of images

Detail
rectangle

Use point
prediction

Move the
detail image

Specify
magnification

Default Cursor

Selecting Control Points

5-17

deliberate size distortion, called moon_input. This is the image that needs
registration to remove the size distortion. The code then starts the cpselect
tool, specifying the two images.

moon_base = imread('moon.tif);
moon_input = imresize(moon_base, 1.2);
cpselect(moon_input, moon_base);

The cpselect command has other optional arguments. For example, you can
restart a control point selection session by including a cpstruct structure as
the third argument. For more information about restarting sessions, see
“Saving Control Points” on page 5-30. For complete details, see the cpselect
reference page.

Default Views of the Images
When the Control Point Selection Tool starts, it contains four image display
windows. The top two windows are called the Detail windows. These windows
show a closeup view of a portion of the images you are working with. The input
image is on the left and the base image is on the right. The two windows at the
bottom of the interface are called the Overview windows. These windows show
the images in their entirety, at the largest scale that fits the window. The input
overview image is on the left and the base overview image is on the right.

Superimposed on the image in the Overview windows is a rectangle, called the
detail rectangle. This rectangle defines the part of the image that is visible in
the Detail window. By default, at startup, the detail rectangle covers one
quarter of the entire image and is positioned over the center of the image.

5 Image Registration

5-18

Viewing the Images
By default, cpselect displays the entire base and input images in the
Overview windows and displays a closeup view of a portion of these images in
the Detail windows. However, to find visual elements that are common to both
images, you might want to change the section of the image displayed in the
detail view or zoom in on a part of the image to view it in more detail. The
following sections describe the different ways to change your view of the
images:

• “Using Scroll Bars to View Other Parts of an Image” on page 5-19

• “Using the Detail Rectangle to Change the View” on page 5-19

• “Panning the Image Displayed in the Detail Window” on page 5-19

• “Zooming In and Out on an Image” on page 5-20

• “Specifying the Magnification of the Images” on page 5-21

Detail
windows

Detail
rectangles

Overview
windows

Input

Base

Selecting Control Points

5-19

• “Locking the Relative Magnification of the Input and Base Images” on
page 5-22

Using Scroll Bars to View Other Parts of an Image
To view parts of an image that are not visible in the Detail or Overview
windows, use the scroll bars provided in each window.

As you scroll the image in the Detail window, note how the detail rectangle
moves over the image in the Overview window. The position of the detail
rectangle always shows the portion of the image in the Detail window.

Using the Detail Rectangle to Change the View
To get a closer view of any part of the image, move the detail rectangle in the
Overview window over that section of the image. cpselect displays that
section of the image in the Detail window at a higher magnification than the
overview window.

To move the detail rectangle,

1 Click the Default Cursor button in the toolbar.

2 Move the pointer into the detail rectangle. The cursor changes to the fleur
shape, .

3 Press and hold the mouse button to drag the detail rectangle anywhere on
the image.

Note As you move the detail rectangle over the image in the Overview
window, the view of the image displayed in the Detail window changes.

Panning the Image Displayed in the Detail Window
To change the section of the image displayed in the Detail window, use the pan
tool to move the image in the window.

To use the pan tool,

1 Click the Drag Images to Pan button in the toolbar.

5 Image Registration

5-20

2 Move the pointer over the image in the Detail window. The cursor changes
to the fleur shape, .

3 Press and hold the mouse button and drag the image in the Detail window.

Note As you move the image in the Detail window, the detail rectangle in the
Overview window moves.

Zooming In and Out on an Image
To enlarge an image to get a closer look or shrink an image to see the whole
image in context, use the Zoom buttons on the button bar. (You can also zoom
in or out on an image by changing the magnification. See “Specifying the
Magnification of the Images” on page 5-21 for more information.)

To zoom in or zoom out on the base or input images,

1 Click the appropriate magnifying glass button.

2 Move the pointer over the image you want to zoom in or out on. The cursor
changes to crosshairs, .

You can zoom in or out on either the input or the base images, in either the
Detail or Overview windows. To keep the relative magnifications of the
base and input images synchronized, click the Lock ratio check box. See
“Locking the Relative Magnification of the Input and Base Images” on
page 5-22 for more information.

Zoom in Zoom out

Selecting Control Points

5-21

Note If you zoom in close on the image displayed in the Overview window,
the detail rectangle might no longer be visible.

You can use the zoom tool in two ways:

- Position the cursor over a location in the image and click the mouse. With
each click, cpselect changes the magnification of the image by a preset
amount. (See “Specifying the Magnification of the Images” on page 5-21 for
a list of some of these magnifications.) cpselect centers the new view of
the image on the spot where you clicked.

- Alternatively, you can position the cursor over a location in the image and,
while pressing and holding the mouse button, draw a rectangle defining
the area you want to zoom in or out on. cpselect magnifies the image so
that the chosen section fills the Detail window. cpselect resizes the detail
rectangle in the Overview window as well.

Note When you zoom in or out on an image, notice how the magnification
value changes.

Specifying the Magnification of the Images
To enlarge an image to get a closer look or to shrink an image to see the whole
image in context, use the magnification edit box. (You can also use the Zoom
buttons to enlarge or shrink an image. See “Zooming In and Out on an Image”
on page 5-20 for more information.)

To change the magnification of an image,

1 Move the cursor into the magnification edit box of the window you want to
change. The cursor changes to the text entry cursor.

Note Each Detail window and Overview window has its own magnification
edit box.

5 Image Registration

5-22

2 Type a new value in the magnification edit box and press Enter, or click the
menu associated with the edit box and choose from a list of preset
magnifications. cpselect changes the magnification of the image and
displays the new view in the appropriate window.

Locking the Relative Magnification of the Input and Base Images
To keep the relative magnification of the input and base images automatically
synchronized in the Detail or Overview windows, click the Lock Ratio check
box. The two Detail windows and the two Overview windows each have their
own Lock ratio check boxes.

When the Lock Ratio check box is selected, cpselect changes the
magnification of both the input and base images when you zoom in or out on
either one of the images or specify a magnification value for either of the
images.

Magnification edit box Magnification menu

Lock magnification ratio check box

Selecting Control Points

5-23

Specifying Matching Control Point Pairs
The primary function of the Control Point Selection Tool is to enable you to pick
control points in the image to be registered, the input image, and the image to
which you are comparing it, the base image. When you start cpselect, the
point selection tool is enabled, by default.

You specify control points by pointing and clicking in the input and base
images, in either the Detail or the Overview windows. Each point you specify
in the input image must have a match in the base image. The following sections
describe the ways you can use the Control Point Selection Tool to choose control
point pairs:

• “Picking Control Point Pairs Manually”

• “Using Control Point Prediction” on page 5-25

This section also describes how to move control points after you’ve created
them and how to delete control points.

Picking Control Point Pairs Manually
To specify a pair of control points in your images,

1 Click the Control Point Selection button . Control point selection mode
is active by default.

2 Position the cursor over a feature you have visually selected in any of the
images displayed. The cursor changes to a pointing finger, .

You can pick control points in either of the Detail windows, input or base, or
in either of the Overview windows, input or base. You also can work in
either direction: input-to-base image, or base-to-input image.

3 Click the mouse button. cpselect places a control point symbol at the
position you specified, in both the Detail window and the Overview window.
(The appearance of the control point symbol indicates its current state.
Initially, control points are in an active, unmatched state. See “Control Point
States” on page 5-27 for more information.

5 Image Registration

5-24

Note Depending on where in the image you pick control points, the symbol
for the point might be visible in the Overview window, but not in the Detail
window.

4 To create the match for this control point, move the cursor into the
corresponding Detail or Overview window. For example, if you started in
an input window, move the cursor to a base window.

5 Click the mouse button. cpselect places a control point symbol at the
position you specified, in both the Detail and Overview windows. Because
this control point completes a pair, the appearance of this symbol indicates
an active, matched state. Note that the appearance of the first control point
you selected (in step 3) also changes to an active, matched state.

You pick pairs of control points by moving from a view of the input image to a
view of the base image, or vice versa. You can pick several control points in one
view of the image, and then move to the corresponding window to locate their
matches. To match an unmatched control point, select it to make it active, and
then pick a point in the corresponding view window. When you select a match
for a control point, the symbols for both points change to indicate their matched
state. You can move or delete control points after you create them.

The following figure illustrates control points in several states.

Selecting Control Points

5-25

Using Control Point Prediction
Instead of picking matching control points by moving the cursor between
corresponding Detail or Overview windows, you can let the Control Point
Selection Tool estimate the match for the control points you specify,
automatically. The Control Point Selection Tool determines the position of the
matching control point based on the geometric relationship of the previously
selected control points.

Active
unmatched

Unmatched

Matched

5 Image Registration

5-26

Note By default, the Control Point Selection Tool does not include predicted
points in the set of valid control points returned in input_points or
base_points. To include predicted points, you must accept them by selecting
the points and fine-tuning their position with the cursor. When you move a
predicted point, the Control Point Selection Tool changes the symbol to
indicate that it has changed to a standard control point. For more information,
see “Moving Control Points” on page 5-28.

To illustrate point prediction, this figure shows four control points selected in
the input image, where the points form the four corners of a square. (The
control points selections in the figure do not attempt to identify any landmarks
in the image.) The figure shows the picking of a fourth point, in the left window,
and the corresponding predicted point in the right window. Note how the
Control Point Selection Tool places the predicted point at the same location
relative to the other control points, forming the bottom right corner of the
square.

Note Because the Control Point Selection Tool predicts control point
locations based on the locations of the previous control points, you cannot use
point prediction until you have a minimum of two pairs of matched points.
Until this minimum is met, the Control Point Prediction button is disabled.

Control point selected manually Predicted control point

Selecting Control Points

5-27

To use control point prediction,

1 Click the Control Point Prediction button .

2 Position the cursor anywhere in any of the images displayed. The cursor
changes to a pointing finger, .

You can pick control points in either of the Detail windows, input or base, or
in either of the Overview windows, input or base. You also can work in
either direction: input-to-base image or base-to-input image.

3 Click either mouse button. The Control Point Selection Tool places a control
point symbol at the position you specified and places another control point
symbol for a matching point in all the other windows. The symbol for the
predicted point contains the letter “P,” indicating that it’s a predicted control
point.

This figure illustrates predicted points in active unmatched, matched, and
predicted states. For a complete description of all point states, see “Control
Point States” on page 5-27.

Control Point States
The appearance of control point symbols indicates their current state. When
you first pick a control point, its state is active and unmatched. When you pick

Predicted
control point

Active predicted
control point

5 Image Registration

5-28

the match for a control point, the appearance of both symbols changes to
indicate their matched status.

This table lists all the possible control point states with their symbols.
cpselect displays this list in a separate window called a Legend. The Legend
is visible by default, but you can control its visibility using the Legend option
from the View menu.

Moving Control Points
To move a control point,

1 Click the Control Point Selection button or the Default Cursor button
.

2 Position the cursor over the control point you want to move.

3 Press and hold the mouse button and drag the control point. The state of the
control point changes to active when you move it.

Control Point States

Symbol State Description

Active unmatched The point is currently selected but does
not have a matching point. This is the
initial state of most points.

Active matched The point is currently selected and has a
matching point.

Active predicted The point is a predicted point. If you
move its position, the point changes to
active matched state.

Unmatched The point is not selected and it is
unmatched. You must select it before you
can create its matching point.

Matched The point has a matching point.

Predicted This point was added by cpselect
during point prediction.

Selecting Control Points

5-29

If you move a predicted control point, the state of the control point changes to
a regular (nonpredicted) control point.

Deleting Control Points
To delete a control point, and optionally its matching point,

1 Click the Control Point Selection button or the Default Cursor button
.

2 Click the control point you want to delete. Its state changes to active. If the
control point has a match, both points become active.

3 Delete the point (or points) using one of these methods:

- Pressing the Backspace key

- Pressing the Delete key

- Choosing one of the delete options from the Edit menu

Using this menu you can delete individual points or pairs of matched
points, in the input or base images.

Undoing and Redoing Control Point Selections
You can undo a deletion or series of deletions using the Undo Delete option on
the cpselect Edit menu.

After undoing a deletion, you can delete the points again using the Redo
option, also on the Edit menu.

Delete options

Undo options

5 Image Registration

5-30

Saving Control Points
After you specify control point pairs, you must save them in the MATLAB
workspace to make them available for the next step in image registration,
processing by cp2tform.

To save control points to the MATLAB workspace,

1 Select File on the Control Point Selection Tool menu bar.

2 Choose the Save Points to Workspace option. The Control Point Selection
Tool displays this dialog box:

By default, the Control Point Selection Tool saves the x-coordinates and
y-coordinates that specify the locations of the control points you selected in two
arrays named input_points and base_points, although you can specify other
names. These are n-by-2 arrays, where n is the number of valid control point
pairs you selected. For example, this is an example of the input_points array
if you picked four pairs of control points. The values in the left column
represent the x-coordinates; the values in the right column represent the
y-coordinates.

input_points =

 215.6667 262.3333
 225.7778 311.3333
 156.5556 340.1111
 270.8889 368.8889

Whenever you exit the Control Point Selection Tool, it asks if you want to save
your control points.

Selecting Control Points

5-31

Saving Your Control Point Selection Session
To save the current state of the Control Point Selection Tool, select the
Structure with all points check box in the Save Points to Workspace dialog
box.

This option saves the positions of all the control points you specified and their
current states in a cpstruct structure.

cpstruct =

 inputPoints: [4x2 double]
 basePoints: [4x2 double]
 inputBasePairs: [4x2 double]
 ids: [4x1 double]
 inputIdPairs: [4x2 double]
 baseIdPairs: [4x2 double]
 isInputPredicted: [4x1 double]
 isBasePredicted: [4x1 double]

You can use the cpstruct to restart a control point selection session at the
point where you left off.

This option is useful if you are picking many points over a long time and want
to preserve unmatched and predicted points when you resume work. The
Control Point Selection Tool does not include unmatched and predicted points
in the input_points and base_points arrays.

To extract the arrays of valid control point coordinates from a cpstruct, use
the cpstruct2pairs function.

5 Image Registration

5-32

Using Correlation to Improve Control Points
You might want to fine-tune the control points you selected using cpselect.
Using cross-correlation, you can sometimes improve the points you selected by
eye using the Control Point Selection Tool.

To use cross-correlation, pass sets of control points in the input and base
images, along with the images themselves, to the cpcorr function.

input_pts_adj= cpcorr(input_points, base_points, input, base);

The cpcorr function defines 11-by-11 regions around each control point in the
input image and around the matching control point in the base image, and then
calculates the correlation between the values at each pixel in the region. Next,
the cpcorr function looks for the position with the highest correlation value
and uses this as the optimal position of the control point. The cpcorr function
only moves control points up to 4 pixels based on the results of the
cross-correlation.

Note Features in the two images must be at the same scale and have the
same orientation. They cannot be rotated relative to each other.

If cpcorr cannot correlate some of the control points, it returns their values in
input_points unmodified.

6
Neighborhood and Block
Operations

This chapter discusses these generic block processing functions. Topics covered include

Terminology (p. 6-2) Provides definitions of image processing terms used in
this section

Block Processing Operations (p. 6-3) Provides an overview of the types of block processing
operations supported by the toolbox

Sliding Neighborhood Operations
(p. 6-4)

Defines sliding neighborhood operations and describes
how you can use them to implement many types of
filtering operations

Distinct Block Operations (p. 6-8) Describes block operations

Column Processing (p. 6-11) Describes how to process sliding neighborhoods or
distinct blocks as columns

6 Neighborhood and Block Operations

6-2

Terminology
An understanding of the following terms will help you to use this section.

Term Definition

block operation Operation in which an image is processed in
blocks rather than all at once. The blocks have
the same size across the image. Some operation
is applied to one block at a time. The blocks are
reassembled to form an output image.

border padding Additional rows and columns temporarily
added to the border(s) of an image when some of
the blocks extend outside the image. The
additional rows and columns normally contain
zeros.

center pixel Pixel at the center of a neighborhood.

column processing Operation in which neighborhoods are reshaped
into columns before processing in order to speed
up computation time.

distinct block
operation

Block operation in which the blocks do not
overlap.

neighborhood
operation

Operation in which each output pixel is
computed from a set of neighboring input
pixels. Convolution, dilation, and median
filtering are examples of neighborhood
operations. A neighborhood operation can also
be called a sliding neighborhood operation.

overlap Extra rows and columns of pixels outside a
block whose values are taken into account when
processing the block. These extra pixels cause
distinct blocks to overlap one another. The
blkproc function enables you to specify an
overlap.

Block Processing Operations

6-3

Block Processing Operations
Certain image processing operations involve processing an image in sections
called blocks, rather than processing the entire image at once. The Image
Processing Toolbox provides several functions for specific operations that work
with blocks, for example, the imdilate function for image dilation. In addition,
the toolbox provides more generic functions for processing an image in blocks.
This section discusses these generic block processing functions.

To use one of the functions, you supply information about the size of the blocks,
and specify a separate function to use to process the blocks. The block
processing function does the work of breaking the input image into blocks,
calling the specified function for each block, and reassembling the results into
an output image.

Types of Block Processing Operations
Using these functions, you can perform various block processing operations,
including sliding neighborhood operations and distinct block operations:

• In a sliding neighborhood operation, the input image is processed in a
pixelwise fashion. That is, for each pixel in the input image, some operation
is performed to determine the value of the corresponding pixel in the output
image. The operation is based on the values of a block of neighboring pixels.

• In a distinct block operation, the input image is processed a block at a time.
That is, the image is divided into rectangular blocks, and some operation is
performed on each block individually to determine the values of the pixels in
the corresponding block of the output image.

In addition, the toolbox provides functions for column processing operations.
These operations are not actually distinct from block operations; instead, they
are a way of speeding up block operations by rearranging blocks into matrix
columns.

Note that even if you do not use these block processing functions, the
information here might be useful to you, as it includes concepts fundamental
to many areas of image processing. In particular, the discussion of sliding
neighborhood operations is applicable to linear filtering and morphological
operations. See Chapter 7, “Linear Filtering and Filter Design,” and Chapter
9, “Morphological Operations,” for information about these applications.

6 Neighborhood and Block Operations

6-4

Sliding Neighborhood Operations
A sliding neighborhood operation is an operation that is performed a pixel at a
time, with the value of any given pixel in the output image being determined
by the application of an algorithm to the values of the corresponding input
pixel’s neighborhood. A pixel’s neighborhood is some set of pixels, defined by
their locations relative to that pixel, which is called the center pixel. The
neighborhood is a rectangular block, and as you move from one element to the
next in an image matrix, the neighborhood block slides in the same direction.

The following figure shows the neighborhood blocks for some of the elements in
a 6-by-5 matrix with 2-by-3 sliding blocks. The center pixel for each
neighborhood is marked with a dot.

Neighborhood Blocks in a 6-by-5 Matrix

The center pixel is the actual pixel in the input image being processed by the
operation. If the neighborhood has an odd number of rows and columns, the
center pixel is actually in the center of the neighborhood. If one of the
dimensions has even length, the center pixel is just to the left of center or just
above center. For example, in a 2-by-2 neighborhood, the center pixel is the
upper left one.

For any m-by-n neighborhood, the center pixel is

floor(([m n]+1)/2)

In the 2-by-3 block shown in Figure , the center pixel is (1,2), or the pixel in the
second column of the top row of the neighborhood.

Sliding Neighborhood Operations

6-5

To perform a sliding neighborhood operation,

1 Select a single pixel.

2 Determine the pixel’s neighborhood.

3 Apply a function to the values of the pixels in the neighborhood. This
function must return a scalar.

4 Find the pixel in the output image whose position corresponds to that of the
center pixel in the input image. Set this output pixel to the value returned
by the function.

5 Repeat steps 1 through 4 for each pixel in the input image.

For example, the function might be an averaging operation that sums the
values of the neighborhood pixels and then divides the result by the number of
pixels in the neighborhood. The result of this calculation is the value of the
output pixel.

Padding Borders
As the neighborhood block slides over the image, some of the pixels in a
neighborhood might be missing, especially if the center pixel is on the border
of the image. For example, if the center pixel is the pixel in the upper left corner
of the image, the neighborhoods include pixels that are not part of the image.

To process these neighborhoods, sliding neighborhood operations pad the
borders of the image, usually with 0’s. In other words, these functions process
the border pixels by assuming that the image is surrounded by additional rows
and columns of 0’s. These rows and columns do not become part of the output
image and are used only as parts of the neighborhoods of the actual pixels in
the image.

Linear and Nonlinear Filtering
You can use sliding neighborhood operations to implement many kinds of
filtering operations. One example of a sliding neighbor operation is
convolution, which is used to implement linear filtering. MATLAB provides the
conv and filter2 functions for performing convolution, and the toolbox

6 Neighborhood and Block Operations

6-6

provides the imfilter function. See Chapter 7, “Linear Filtering and Filter
Design,” for more information about these functions.

In addition to convolution, there are many other filtering operations you can
implement through sliding neighborhoods. Many of these operations are
nonlinear in nature. For example, you can implement a sliding neighborhood
operation where the value of an output pixel is equal to the standard deviation
of the values of the pixels in the input pixel’s neighborhood.

You can use the nlfilter function to implement a variety of sliding
neighborhood operations. nlfilter takes as input arguments an image, a
neighborhood size, and a function that returns a scalar, and returns an image
of the same size as the input image. The value of each pixel in the output image
is computed by passing the corresponding input pixel’s neighborhood to the
function. For example, this call computes each output pixel by taking the
standard deviation of the values of the input pixel’s 3-by-3 neighborhood (that
is, the pixel itself and its eight contiguous neighbors).

I2 = nlfilter(I,[3 3],'std2');

You can write an M-file to implement a specific function, and then use this
function with nlfilter. For example, this command processes the matrix I in
2-by-3 neighborhoods with a function called myfun.m.

nlfilter(I,[2 3],@myfun);

@myfun is an example of a function handle. You can also use an inline function.
For example:

f = inline('sqrt(min(x(:)))');
I2 = nlfilter(I,[2 2],f);

The example below uses nlfilter to set each pixel to the maximum value in
its 3-by-3 neighborhood.

I = imread('tire.tif');
f = inline('max(x(:))');
I2 = nlfilter(I,[3 3],f);
imshow(I);
figure, imshow(I2);

Sliding Neighborhood Operations

6-7

Each Output Pixel Set to Maximum Input Neighborhood Value

Many operations that nlfilter can implement run much faster if the
computations are performed on matrix columns rather than rectangular
neighborhoods. For information about this approach, see the reference page for
colfilt.

Note nlfilter is an example of a “function function.” For more information
on how to use this kind of function, see “Function Functions” in the MATLAB
documentation. For more information on inline functions, see inline in the
MATLAB Function Reference documentation. For more information on
function handles, see function_handle in the MATLAB Function Reference
documentation.

6 Neighborhood and Block Operations

6-8

Distinct Block Operations
Distinct blocks are rectangular partitions that divide a matrix into m-by-n
sections. Distinct blocks overlay the image matrix starting in the upper left
corner, with no overlap. If the blocks don’t fit exactly over the image, the
toolbox adds zero padding so that they do. The following figure shows a
15-by-30 matrix divided into 4-by-8 blocks.

Image Divided into Distinct Blocks

The zero padding process adds 0’s to the bottom and right of the image matrix,
as needed. After zero padding, the matrix is size 16-by-32.

The function blkproc performs distinct block operations. blkproc extracts
each distinct block from an image and passes it to a function you specify.
blkproc assembles the returned blocks to create an output image.

For example, the command below processes the matrix I in 4-by-6 blocks with
the function myfun.

I2 = blkproc(I,[4 6],@myfun);

You can specify the function as an inline function. For example:

f = inline('mean2(x)*ones(size(x))');
I2 = blkproc(I,[4 6],f);

Distinct Block Operations

6-9

The example below uses blkproc to set every pixel in each 8-by-8 block of an
image matrix to the average of the elements in that block.

I = imread('tire.tif');
f = inline('uint8(round(mean2(x)*ones(size(x))))');
I2 = blkproc(I,[8 8],f);
imshow(I)
figure, imshow(I2);

Notice that inline computes the mean of the block and then multiplies the
result by a matrix of ones, so that the output block is the same size as the input
block. As a result, the output image is the same size as the input image.
blkproc does not require that the images be the same size; however, if this is
the result you want, you must make sure that the function you specify returns
blocks of the appropriate size.

Note blkproc is an example of a “function function.” For more information
on how to use this kind of function, see the “Function Functions” section in the
MATLAB documentation.

Overlap
When you call blkproc to define distinct blocks, you can specify that the blocks
overlap each other, that is, you can specify extra rows and columns of pixels
outside the block whose values are taken into account when processing the
block. When there is an overlap, blkproc passes the expanded block (including
the overlap) to the specified function.

6 Neighborhood and Block Operations

6-10

The following figure shows the overlap areas for some of the blocks in a
15-by-30 matrix with 1-by-2 overlaps. Each 4-by-8 block has a one-row overlap
above and below, and a two-column overlap on each side. In the figure, shading
indicates the overlap. The 4-by-8 blocks overlay the image matrix starting in
the upper left corner.

Image Divided into Distinct Blocks with Specified Overlaps

To specify the overlap, you provide an additional input argument to blkproc.
To process the blocks in the figure above with the function myfun, the call is

B = blkproc(A,[4 8],[1 2],@myfun)

Overlap often increases the amount of zero padding needed. For example, in
the figure, the original 15-by-30 matrix became a 16-by-32 matrix with zero
padding. When the 15-by-30 matrix includes a 1-by-2 overlap, the padded
matrix becomes an 18-by-36 matrix. The outermost rectangle in the figure
delineates the new boundaries of the image after padding has been added to
accommodate the overlap plus block processing. Notice that in the preceding
figure, padding has been added to the left and top of the original image, not just
to the right and bottom.

Column Processing

6-11

Column Processing
The toolbox provides functions that you can use to process sliding
neighborhoods or distinct blocks as columns. This approach is useful for
operations that MATLAB performs columnwise; in many cases, column
processing can reduce the execution time required to process an image.

For example, suppose the operation you are performing involves computing the
mean of each block. This computation is much faster if you first rearrange the
blocks into columns, because you can compute the mean of every column with
a single call to the mean function, rather than calling mean for each block
individually.

You can use the colfilt function to implement column processing. This
function

1 Reshapes each sliding or distinct block of an image matrix into a column in
a temporary matrix

2 Passes the temporary matrix to a function you specify

3 Rearranges the resulting matrix back into the original shape

Sliding Neighborhoods
For a sliding neighborhood operation, colfilt creates a temporary matrix that
has a separate column for each pixel in the original image. The column
corresponding to a given pixel contains the values of that pixel’s neighborhood
from the original image.

The following figure illustrates this process. In this figure, a 6-by-5 image
matrix is processed in 2-by-3 neighborhoods. colfilt creates one column for
each pixel in the image, so there are a total of 30 columns in the temporary
matrix. Each pixel’s column contains the value of the pixels in its
neighborhood, so there are six rows. colfilt zero-pads the input image as
necessary. For example, the neighborhood of the upper left pixel in the figure
has two zero-valued neighbors, due to zero padding.

6 Neighborhood and Block Operations

6-12

colfilt Creates a Temporary Matrix for Sliding Neighborhood

The temporary matrix is passed to a function, which must return a single value
for each column. (Many MATLAB functions work this way, for example, mean,
median, std, sum, etc.) The resulting values are then assigned to the
appropriate pixels in the output image.

colfilt can produce the same results as nlfilter with faster execution time;
however, it might use more memory. The example below sets each output pixel
to the maximum value in the input pixel’s neighborhood, producing the same
result as the nlfilter example shown in “Linear and Nonlinear Filtering” on
page 6-5.

I2 = colfilt(I,[3 3],'sliding',@max);

Distinct Blocks
For a distinct block operation, colfilt creates a temporary matrix by
rearranging each block in the image into a column. colfilt pads the original
image with 0’s, if necessary, before creating the temporary matrix.

The following figure illustrates this process. A 6-by-16 image matrix is
processed in 4-by-6 blocks. colfilt first zero-pads the image to make the size
8-by-18 (six 4-by-6 blocks), and then rearranges the blocks into six columns of
24 elements each.

Column Processing

6-13

colfilt Creates a Temporary Matrix for Distinct Block Operation

After rearranging the image into a temporary matrix, colfilt passes this
matrix to the function. The function must return a matrix of the same size as
the temporary matrix. If the block size is m-by-n, and the image is mm-by-nn, the
size of the temporary matrix is (m*n)-by-(ceil(mm/m)*ceil(nn/n)). After the
function processes the temporary matrix, the output is rearranged into the
shape of the original image matrix.

This example sets all the pixels in each 8-by-8 block of an image to the mean
pixel value for the block, producing the same result as the blkproc example in
“Distinct Block Operations” on page 6-8.

6 Neighborhood and Block Operations

6-14

I = im2double(imread('tire.tif'));
f = inline('ones(64,1)*mean(x)');
I2 = colfilt(I,[8 8],'distinct',f);

Notice that the inline function computes the mean of the block and then
multiplies the result by a vector of ones, so that the output block is the same
size as the input block. As a result, the output image is the same size as the
input image.

Restrictions
You can use colfilt to implement many of the same distinct block operations
that blkproc performs. However, colfilt has certain restrictions that
blkproc does not:

• The output image must be the same size as the input image.

• The blocks cannot overlap.

For situations that do not satisfy these constraints, use blkproc.

7
Linear Filtering and Filter
Design

The Image Processing Toolbox provides a number of functions for designing and implementing
two-dimensional linear filters for image data. This chapter describes these functions and how to use
them effectively.

Terminology (p. 7-2) Provides definitions of image processing terms used in
this section

Linear Filtering (p. 7-4) Provides an explanation of linear filtering and how it is
implemented in the toolbox. This topic describes filtering
in terms of the spatial domain, and is accessible to
anyone doing image processing.

Filter Design (p. 7-17) Discusses designing two-dimensional finite impulse
response (FIR) filters. This section assumes you are
familiar with working in the frequency domain.

7 Linear Filtering and Filter Design

7-2

Terminology
An understanding of the following terms will help you to use this chapter. Note
that this table includes brief definitions of terms related to filter design; a
detailed discussion of these terms and the theory behind filter design is outside
the scope of this user’s guide.

Term Definition

convolution Neighborhood operation in which each output pixel is a weighted
sum of neighboring input pixels. The weights are defined by the
convolution kernel. Image processing operations implemented with
convolution include smoothing, sharpening, and edge enhancement.

convolution kernel Matrix of weights used to perform convolution. A convolution kernel
is a correlation kernel that has been rotated 180 degrees.

correlation Neighborhood operation in which each output pixel is a weighted
sum of neighboring input pixels. The weights are defined by the
correlation kernel. Correlation is closely related mathematically to
convolution.

correlation kernel Matrix of weights used to perform correlation. The filter design
functions in the Image Processing Toolbox return correlation
kernels. A correlation kernel is a convolution kernel that has been
rotated 180 degrees.

FIR filter Filter whose response to a single point, or impulse, has finite extent.
FIR stands for finite impulse response. An FIR filter can be
implemented using convolution. All filter design functions in the
Image Processing Toolbox return FIR filters.

frequency response Mathematical function describing the gain of a filter in response to
different input frequencies.

neighborhood operation Operation in which each output pixel is computed from a set of
neighboring input pixels. Convolution, dilation, and median
filtering are examples of neighborhood operations.

Terminology

7-3

ripples Oscillations around a constant value. The frequency response of a
practical filter often has ripples where the frequency response of an
ideal filter is flat.

window method Filter design method that multiples the ideal impulse response by a
window function, which tapers the ideal impulse response. The
resulting filter’s frequency response approximates a desired
frequency response.

Term Definition

7 Linear Filtering and Filter Design

7-4

Linear Filtering
Filtering is a technique for modifying or enhancing an image. For example, you
can filter an image to emphasize certain features or remove other features.

Filtering is a neighborhood operation, in which the value of any given pixel in
the output image is determined by applying some algorithm to the values of the
pixels in the neighborhood of the corresponding input pixel. A pixel’s
neighborhood is some set of pixels, defined by their locations relative to that
pixel. (See Chapter 6, “Neighborhood and Block Operations,” for a general
discussion of neighborhood operations.)

Linear filtering is filtering in which the value of an output pixel is a linear
combination of the values of the pixels in the input pixel’s neighborhood.

This section discusses linear filtering in MATLAB and the Image Processing
Toolbox. It includes

• A description of filtering, using convolution and correlation

• A description of how to use the imfilter function to perform filtering

• A discussion about using predefined filter types

See “Filter Design” on page 7-17 for information about how to design filters.

Convolution
Linear filtering of an image is accomplished through an operation called
convolution. In convolution, the value of an output pixel is computed as a
weighted sum of neighboring pixels. The matrix of weights is called the
convolution kernel, also known as the filter.

For example, suppose the image is

A = [17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9]

Linear Filtering

7-5

and the convolution kernel is

h = [8 1 6
 3 5 7
 4 9 2]

The following figure shows how to compute the (2,4) output pixel using these
steps:

1 Rotate the convolution kernel 180 degrees about its center element.

2 Slide the center element of the convolution kernel so that it lies on top of the
(2,4) element of A.

3 Multiply each weight in the rotated convolution kernel by the pixel of A
underneath.

4 Sum the individual products from step 3.

Hence the (2,4) output pixel is

Computing the (2,4) Output of Convolution

1 2⋅ 8 9⋅ 15 4⋅ 7 7⋅ 14 5⋅ 16 3⋅ 13 6⋅ 20 1⋅ 22 8⋅ 575=+ + + + + + + +

Image pixel values

Values of rotated convolution kernel

Center of kernel

17

23

4

10

11

24

5

6

12

18

1

7

13

19

25

8

14

20

21

2

15

16

22

3

9

2 9 4

7 5 3

816

7 Linear Filtering and Filter Design

7-6

Correlation
The operation called correlation is closely related to convolution. In correlation,
the value of an output pixel is also computed as a weighted sum of neighboring
pixels. The difference is that the matrix of weights, in this case called the
correlation kernel, is not rotated during the computation. The following figure
shows how to compute the (2,4) output pixel of the correlation of A, assuming h
is a correlation kernel instead of a convolution kernel, using these steps:

1 Slide the center element of the correlation kernel so that lies on top of the
(2,4) element of A.

2 Multiply each weight in the correlation kernel by the pixel of A underneath.

3 Sum the individual products from step 3.

The (2,4) output pixel from the correlation is

Computing the (2,4) Output of Correlation

1 8⋅ 8 1⋅ 15 6⋅ 7 3⋅ 14 5⋅ 16 7⋅ 13 4⋅ 20 9⋅ 22 2⋅ 585=+ + + + + + + +

Values of correlation kernel

Center of kernel
Image pixel values

17

23

4

10

11

24

5

6

12

18

1

7

13

19

25

8

14

20

21

2

15

16

22

3

9

8 1 6

3

4 9 2

75

Linear Filtering

7-7

Filtering Using imfilter
Filtering of images, either by correlation or convolution, can be performed
using the toolbox function imfilter. This example filters an image with a
5-by-5 filter containing equal weights. Such a filter is often called an averaging
filter.

I = imread('coins.png');
h = ones(5,5) / 25;
I2 = imfilter(I,h);
imshow(I), title('Original Image');
figure, imshow(I2), title('Filtered Image')

Data Types
The imfilter function handles data types similarly to the way the image
arithmetic functions do, as described in “Image Arithmetic Truncation Rules”
on page 2-30. The output image has the same data type, or numeric class, as
the input image. The imfilter function computes the value of each output
pixel using double-precision, floating-point arithmetic. If the result exceeds the
range of the data type, the imfilter function truncates the result to that data
type's allowed range. If it is an integer data type, imfilter rounds fractional
values.

Because of the truncation behavior, you might sometimes want to consider
converting your image to a different data type before calling imfilter. In this
example, the output of imfilter has negative values when the input is of class
double.

Original Image Filtered Image

7 Linear Filtering and Filter Design

7-8

A = magic(5)

A =
 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

h = [-1 0 1]

h =
 -1 0 1

imfilter(A,h)

ans =
 24 -16 -16 14 -8
 5 -16 9 9 -14
 6 9 14 9 -20
 12 9 9 -16 -21
 18 14 -16 -16 -2

Notice that the result has negative values. Now suppose A is of class uint8,
instead of double.

A = uint8(magic(5));
imfilter(A,h)

ans =

 24 0 0 14 0
 5 0 9 9 0
 6 9 14 9 0
 12 9 9 0 0
 18 14 0 0 0

Since the input to imfilter is of class uint8, the output also is of class uint8,
and so the negative values are truncated to 0. In such cases, it might be
appropriate to convert the image to another type, such as a signed integer type,
single, or double, before calling imfilter.

Linear Filtering

7-9

Correlation and Convolution Options
The imfilter function can perform filtering using either correlation or
convolution. It uses correlation by default, because the filter design functions,
described in “Filter Design” on page 7-17, and the fspecial function, described
in “Using Predefined Filter Types” on page 7-15, produce correlation kernels.

However, if you want to perform filtering using convolution instead, you can
pass the string 'conv' as an optional input argument to imfilter. For
example:

A = magic(5);
h = [-1 0 1]
imfilter(A,h) % filter using correlation

ans =
 24 -16 -16 14 -8
 5 -16 9 9 -14
 6 9 14 9 -20
 12 9 9 -16 -21
 18 14 -16 -16 -2

imfilter(A,h,'conv') % filter using convolution

ans =

 -24 16 16 -14 8
 -5 16 -9 -9 14
 -6 -9 -14 -9 20
 -12 -9 -9 16 21
 -18 -14 16 16 2

7 Linear Filtering and Filter Design

7-10

Boundary Padding Options
When computing an output pixel at the boundary of an image, a portion of the
convolution or correlation kernel is usually off the edge of the image, as
illustrated in the following figure.

When the Values of the Kernel Fall Outside the Image

The imfilter function normally fills in these off-the-edge image pixels by
assuming that they are 0. This is called zero padding and is illustrated in the
following figure.

Center of kernel

What value should these
outside pixels have?

17

23

4

10

11

24

5

6

12

18

1

7

13

19

25

8

14

20

21

2

15

16

22

3

9

?
8 1 6

? ?

3

4

5

9 2

7

Linear Filtering

7-11

Zero Padding of Outside Pixels

When you filter an image, zero padding can result in a dark band around the
edge of the image, as shown in this example.

I = imread('eight.tif');
h = ones(5,5) / 25;
I2 = imfilter(I,h);
imshow(I), title('Original Image');
figure, imshow(I2), title('Filtered Image with Black Border')

Center of kernel

Outside pixels are
assumed to be 0.

17

23

4

10

11

24

5

6

12

18

1

7

13

19

25

8

14

20

21

2

15

16

22

3

9

0
8 1 6

0 0

3 5 7

294

7 Linear Filtering and Filter Design

7-12

To eliminate the zero-padding artifacts around the edge of the image, imfilter
offers an alternative boundary padding method called border replication. In
border replication, the value of any pixel outside the image is determined by
replicating the value from the nearest border pixel. This is illustrated in the
following figure.

Replicated Boundary Pixels

Original Image Filtered Image with Black Border

These pixel values are replicated
from boundary pixels.

Center of kernel
17

23

4

10

11

24

5

6

12

18

1

7

13

19

25

8

14

20

21

2

15

16

22

3

9

151 8
8 1 6

3 5 7

4 9 2

Linear Filtering

7-13

To filter using border replication, pass the additional optional argument
'replicate' to imfilter.

I3 = imfilter(I,h,'replicate');
figure, imshow(I3);
title('Filtered Image with Border Replication')

The imfilter function supports other boundary padding options, such as
'circular' and 'symmetric'. See the reference page for imfilter for details.

Multidimensional Filtering
The imfilter function can handle both multidimensional images and
multidimensional filters. A convenient property of filtering is that filtering a
three-dimensional image with a two-dimensional filter is equivalent to filtering
each plane of the three-dimensional image individually with the same
two-dimensional filter. This example shows how easy it is to filter each color
plane of a true-color image with the same filter:

1 Read in an RGB image and display it.

rgb = imread('peppers.png');
imshow(rgb);

Filtered Image with Border Replication

7 Linear Filtering and Filter Design

7-14

2 Filter the image and display it.

h = ones(5,5)/25;
rgb2 = imfilter(rgb,h);
figure, imshow(rgb2)

Relationship to Other Filtering Functions
MATLAB has several two-dimensional and multidimensional filtering
functions. The function filter2 performs two-dimensional correlation, conv2
performs two-dimensional convolution, and convn performs multidimensional

Linear Filtering

7-15

convolution. Each of these filtering functions always converts the input to
double, and the output is always double. These other filtering functions
always assume the input is zero padded, and they do not support other padding
options.

In contrast, the imfilter function does not convert input images to double.
The imfilter function also offers a flexible set of boundary padding options, as
described in “Boundary Padding Options” on page 7-10.

Using Predefined Filter Types
The fspecial function produces several kinds of predefined filters, in the form
of correlation kernels. After creating a filter with fspecial, you can apply it
directly to your image data using imfilter. This example illustrates applying
an unsharp masking filter to an intensity image. The unsharp masking filter
has the effect of making edges and fine detail in the image more crisp.

I = imread('moon.tif');
h = fspecial('unsharp');
I2 = imfilter(I,h);
imshow(I), title('Original Image')
figure, imshow(I2), title('Filtered Image')

7 Linear Filtering and Filter Design

7-16

Original Image Filtered Image
Image Courtesy of Michael Myers

Filter Design

7-17

Filter Design
This section describes working in the frequency domain to design filters. Topics
discussed include

• Finite impulse response (FIR) filters, the class of linear filter that the toolbox
supports

• The frequency transformation method, which transforms a one-dimensional
FIR filter into a two-dimensional FIR filter

• The frequency sampling method, which creates a filter based on a desired
frequency response

• The windowing method, which multiplies the ideal impulse response with a
window function to generate the filter

• Creating the desired frequency response matrix

• Computing the frequency response of a filter

This section assumes you are familiar with working in the frequency domain.
This topic is discussed in many signal processing and image processing
textbooks.

Note Most of the design methods described in this section work by creating a
two-dimensional filter from a one-dimensional filter or window created using
functions from the Signal Processing Toolbox. Although this toolbox is not
required, you might find it difficult to design filters in the Image Processing
Toolbox if you do not have the Signal Processing Toolbox as well.

FIR Filters
The Image Processing Toolbox supports one class of linear filter, the
two-dimensional finite impulse response (FIR) filter. FIR filters have several
characteristics that make them ideal for image processing in the MATLAB
environment:

• FIR filters are easy to represent as matrices of coefficients.

• Two-dimensional FIR filters are natural extensions of one-dimensional FIR
filters.

7 Linear Filtering and Filter Design

7-18

• There are several well-known, reliable methods for FIR filter design.

• FIR filters are easy to implement.

• FIR filters can be designed to have linear phase, which helps prevent
distortion.

Another class of filter, the infinite impulse response (IIR) filter, is not as
suitable for image processing applications. It lacks the inherent stability and
ease of design and implementation of the FIR filter. Therefore, this toolbox
does not provide IIR filter support.

Frequency Transformation Method
The frequency transformation method transforms a one-dimensional FIR filter
into a two-dimensional FIR filter. The frequency transformation method
preserves most of the characteristics of the one-dimensional filter, particularly
the transition bandwidth and ripple characteristics. This method uses a
transformation matrix, a set of elements that defines the frequency
transformation.

The toolbox function ftrans2 implements the frequency transformation
method. This function’s default transformation matrix produces filters with
nearly circular symmetry. By defining your own transformation matrix, you
can obtain different symmetries. (See Jae S. Lim, Two-Dimensional Signal and
Image Processing, 1990, for details.)

The frequency transformation method generally produces very good results, as
it is easier to design a one-dimensional filter with particular characteristics
than a corresponding two-dimensional filter. For instance, the next example
designs an optimal equiripple one-dimensional FIR filter and uses it to create
a two-dimensional filter with similar characteristics. The shape of the
one-dimensional frequency response is clearly evident in the two-dimensional
response.

b = remez(10,[0 0.4 0.6 1],[1 1 0 0]);
h = ftrans2(b);
[H,w] = freqz(b,1,64,'whole');
colormap(jet(64))
plot(w/pi-1,fftshift(abs(H)))
figure, freqz2(h,[32 32])

Filter Design

7-19

One-Dimensional Frequency Response (left) and Corresponding
Two-Dimensional Frequency Response (right)

Frequency Sampling Method
The frequency sampling method creates a filter based on a desired frequency
response. Given a matrix of points that define the shape of the frequency
response, this method creates a filter whose frequency response passes through
those points. Frequency sampling places no constraints on the behavior of the
frequency response between the given points; usually, the response ripples in
these areas.

The toolbox function fsamp2 implements frequency sampling design for
two-dimensional FIR filters. fsamp2 returns a filter h with a frequency
response that passes through the points in the input matrix Hd. The example
below creates an 11-by-11 filter using fsamp2 and plots the frequency response
of the resulting filter. (The freqz2 function in this example calculates the
two-dimensional frequency response of a filter. See “Computing the Frequency
Response of a Filter” on page 7-22 for more information.)

Hd = zeros(11,11); Hd(4:8,4:8) = 1;
[f1,f2] = freqspace(11,'meshgrid');
mesh(f1,f2,Hd), axis([-1 1 -1 1 0 1.2]), colormap(jet(64))
h = fsamp2(Hd);
figure, freqz2(h,[32 32]), axis([-1 1 -1 1 0 1.2])

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

FrequencyFrequency

M
ag

ni
tu

de

7 Linear Filtering and Filter Design

7-20

Desired Two-Dimensional Frequency Response (left) and Actual
Two-Dimensional Frequency Response (right)

Notice the ripples in the actual frequency response, compared to the desired
frequency response. These ripples are a fundamental problem with the
frequency sampling design method. They occur wherever there are sharp
transitions in the desired response.

You can reduce the spatial extent of the ripples by using a larger filter.
However, a larger filter does not reduce the height of the ripples, and requires
more computation time for filtering. To achieve a smoother approximation to
the desired frequency response, consider using the frequency transformation
method or the windowing method.

Windowing Method
The windowing method involves multiplying the ideal impulse response with a
window function to generate a corresponding filter. Like the frequency
sampling method, the windowing method produces a filter whose frequency
response approximates a desired frequency response. The windowing method,
however, tends to produce better results than the frequency sampling method.

The toolbox provides two functions for window-based filter design, fwind1 and
fwind2. fwind1 designs a two-dimensional filter by using a two-dimensional
window that it creates from one or two one-dimensional windows that you
specify. fwind2 designs a two-dimensional filter by using a specified
two-dimensional window directly.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

FrequencyFrequency

M
ag

ni
tu

de

Filter Design

7-21

fwind1 supports two different methods for making the two-dimensional
windows it uses:

• Transforming a single one-dimensional window to create a two-dimensional
window that is nearly circularly symmetric, by using a process similar to
rotation

• Creating a rectangular, separable window from two one-dimensional
windows, by computing their outer product

The example below uses fwind1 to create an 11-by-11 filter from the desired
frequency response Hd. Here, the hamming function from the Signal Processing
Toolbox is used to create a one-dimensional window, which fwind1 then
extends to a two-dimensional window.

Hd = zeros(11,11); Hd(4:8,4:8) = 1;
[f1,f2] = freqspace(11,'meshgrid');
mesh(f1,f2,Hd), axis([-1 1 -1 1 0 1.2]), colormap(jet(64))
h = fwind1(Hd,hamming(11));
figure, freqz2(h,[32 32]), axis([-1 1 -1 1 0 1.2])

Desired Two-Dimensional Frequency Response (left) and Actual
Two-Dimensional Frequency Response (right)

Creating the Desired Frequency Response Matrix
The filter design functions fsamp2, fwind2, and fwind2 all create filters based
on a desired frequency response magnitude matrix. You can create an
appropriate desired frequency response matrix using the freqspace function.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

FrequencyFrequency

M
ag

ni
tu

de

7 Linear Filtering and Filter Design

7-22

freqspace returns correct, evenly spaced frequency values for any size
response. If you create a desired frequency response matrix using frequency
points other than those returned by freqspace, you might get unexpected
results, such as nonlinear phase.

For example, to create a circular ideal lowpass frequency response with cutoff
at 0.5, use

[f1,f2] = freqspace(25,'meshgrid');
Hd = zeros(25,25); d = sqrt(f1.^2 + f2.^2) < 0.5;
Hd(d) = 1;
mesh(f1,f2,Hd)

Ideal Circular Lowpass Frequency Response

Note that for this frequency response, the filters produced by fsamp2, fwind1,
and fwind2 are real. This result is desirable for most image processing
applications. To achieve this in general, the desired frequency response should
be symmetric about the frequency origin (f1 = 0, f2 = 0).

Computing the Frequency Response of a Filter
The freqz2 function computes the frequency response for a two-dimensional
filter. With no output arguments, freqz2 creates a mesh plot of the frequency
response. For example, consider this FIR filter,

h =[0.1667 0.6667 0.1667
 0.6667 -3.3333 0.6667
 0.1667 0.6667 0.1667];

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

Filter Design

7-23

This command computes and displays the 64-by-64 point frequency response of
h.

freqz2(h)

Frequency Response of a Two-Dimensional Filter

To obtain the frequency response matrix H and the frequency point vectors f1
and f2, use output arguments

[H,f1,f2] = freqz2(h);

freqz2 normalizes the frequencies f1 and f2 so that the value 1.0 corresponds
to half the sampling frequency, or π radians.

For a simple m-by-n response, as shown above, freqz2 uses the
two-dimensional fast Fourier transform function fft2. You can also specify
vectors of arbitrary frequency points, but in this case freqz2 uses a slower
algorithm.

See “Fourier Transform” on page 8-3 for more information about the fast
Fourier transform and its application to linear filtering and filter design.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

1

2

3

4

5

6

FrequencyFrequency

M
ag

ni
tu

de

7 Linear Filtering and Filter Design

7-24

8

Transforms

The usual mathematical representation of an image is a function of two spatial variables: . The
value of the function at a particular location represents the intensity of the image at that point.
The term transform refers to an alternative mathematical representation of an image.

This chapter defines several important transforms and shows examples of their application to image
processing.

Terminology (p. 8-2) Provides definitions of image processing terms used in
this section

Fourier Transform (p. 8-3) Defines the Fourier transform and some of its
applications in image processing

Discrete Cosine Transform (p. 8-17) Describes the discrete cosine transform (DCT) of an
image and its application, particularly in image
compression

Radon Transform (p. 8-21) Describes how the Image Processing Toolbox radon
function computes projections of an image matrix along
specified directions

Fan-Beam Projection Data (p. 8-35) Describes how the Image Processing Toolbox radon
function computes projections of an image matrix along
specified directions

f x y,()
x y,()

8 Transforms

8-2

Terminology
An understanding of the following terms will help you to use this chapter. Note
that this table includes brief definitions of terms related to transforms; a
detailed discussion of these terms and the theory behind transforms is outside
the scope of this user’s guide.

Term Definition

discrete transform Transform whose input and output values are discrete samples,
making it convenient for computer manipulation. Discrete
transforms implemented by MATLAB and the Image Processing
Toolbox include the discrete Fourier transform (DFT) and the
discrete cosine transform (DCT).

frequency domain Domain in which an image is represented by a sum of periodic
signals with varying frequency.

inverse transform Operation that when performed on a transformed image produces
the original image.

spatial domain Domain in which an image is represented by intensities at given
points in space. This is the most common representation for image
data.

transform Alternative mathematical representation of an image. For example,
the Fourier transform is a representation of an image as a sum of
complex exponentials of varying magnitudes, frequencies, and
phases. Transforms are useful for a wide range of purposes,
including convolution, enhancement, feature detection, and
compression.

Fourier Transform

8-3

Fourier Transform
The Fourier transform is a representation of an image as a sum of complex
exponentials of varying magnitudes, frequencies, and phases. The Fourier
transform plays a critical role in a broad range of image processing
applications, including enhancement, analysis, restoration, and compression.

This section includes the following subsections:

• “Definition of Fourier Transform”

• “Discrete Fourier Transform” on page 8-8, including a discussion of fast
Fourier transform

• “Applications of the Fourier Transform” on page 8-11 (sample applications
using Fourier transforms)

Definition of Fourier Transform
If is a function of two discrete spatial variables m and n, then the
two-dimensional Fourier transform of is defined by the relationship

The variables ω1 and ω2 are frequency variables; their units are radians per
sample. is often called the frequency-domain representation of

. is a complex-valued function that is periodic both in and
, with period . Because of the periodicity, usually only the range

 is displayed. Note that is the sum of all the values of
. For this reason, is often called the constant component or DC

component of the Fourier transform. (DC stands for direct current; it is an
electrical engineering term that refers to a constant-voltage power source, as
opposed to a power source whose voltage varies sinusoidally.)

The inverse two-dimensional Fourier transform is given by

f m n,()
f m n,()

F ω1 ω2,() f m n,()e jω– 1me jω– 2n

n ∞–=

∞

∑
m ∞–=

∞

∑=

F ω1 ω2,()
f m n,() F ω1 ω2,() ω1
ω2 2π
π ω1 ω2 π≤,≤– F 0 0,()

f m n,() F 0 0,()

f m n,() 1

4π2
--------- F ω1 ω2,()e

jω1m
e

jω2n
 ω1 ω2dd

ω2 π–=

π

∫ω1 π–=

π

∫=

8 Transforms

8-4

Roughly speaking, this equation means that can be represented as a
sum of an infinite number of complex exponentials (sinusoids) with different
frequencies. The magnitude and phase of the contribution at the frequencies

 are given by .

Visualizing the Fourier Transform
To illustrate, consider a function that equals 1 within a rectangular
region and 0 everywhere else. To simplify the diagram, is shown as a
continuous function, even though the variables m and n are discrete.

Rectangular Function

The following figure shows, as a mesh plot, the magnitude of the Fourier
transform, , of the rectangular function shown in the preceding
figure. The mesh plot of the magnitude is a common way to visualize the
Fourier transform.

f m n,()

ω1 ω2,() F ω1 ω2,()

f m n,()
f m n,()

m

n

f(m,n)

F ω1 ω2,()

Fourier Transform

8-5

Magnitude Image of a Rectangular Function

The peak at the center of the plot is , which is the sum of all the values
in . The plot also shows that has more energy at high
horizontal frequencies than at high vertical frequencies. This reflects the fact
that horizontal cross sections of are narrow pulses, while vertical cross
sections are broad pulses. Narrow pulses have more high-frequency content
than broad pulses.

ω1 (horizontal frequency)

ω
2 (vertical frequency)

F 0 0,()
f m n,() F ω1 ω2,()

f m n,()

8 Transforms

8-6

Another common way to visualize the Fourier transform is to display
 as an image, as shown.

Log of the Fourier Transform of a Rectangular Function

Using the logarithm helps to bring out details of the Fourier transform in
regions where is very close to 0.

F ω1 ω2,()log

1

0

1

2

3

4

5

ω1

ω
2

F ω1 ω2,()

Fourier Transform

8-7

Examples of the Fourier transform for other simple shapes are shown below.

Fourier Transforms of Some Simple Shapes

8 Transforms

8-8

Discrete Fourier Transform
Working with the Fourier transform on a computer usually involves a form of
the transform known as the discrete Fourier transform (DFT). There are two
principal reasons for using this form:

• The input and output of the DFT are both discrete, which makes it
convenient for computer manipulations.

• There is a fast algorithm for computing the DFT known as the fast Fourier
transform (FFT).

The DFT is usually defined for a discrete function that is nonzero only
over the finite region and . The two-dimensional
M-by-N DFT and inverse M-by-N DFT relationships are given by

The values are the DFT coefficients of . The zero-frequency
coefficient, , is often called the “DC component.” DC is an electrical
engineering term that stands for direct current. (Note that matrix indices in
MATLAB always start at 1 rather than 0; therefore, the matrix elements
f(1,1) and F(1,1) correspond to the mathematical quantities and

, respectively.)

The MATLAB functions fft, fft2, and fftn implement the fast Fourier
transform algorithm for computing the one-dimensional DFT, two-dimensional
DFT, and N-dimensional DFT, respectively. The functions ifft, ifft2, and
ifftn compute the inverse DFT.

f m n,()
0 m M 1–≤ ≤ 0 n N 1–≤ ≤

F p q,() f m n,()e j 2π M⁄()pm– e j 2π N⁄()qn–

n 0=

N 1–

∑
m 0=

M 1–

∑=
p 0 1 … M 1–, , ,=

q 0 1 … N 1–, , ,=

f m n,() 1
MN
---------- F p q,()ej 2π M⁄()pmej 2π N⁄()qn

q 0=

N 1–

∑
p 0=

M 1–

∑=
m 0 1 … M 1–, , ,=

n 0 1 … N 1–, , ,=

F p q,() f m n,()
F 0 0,()

f 0 0,()
F 0 0,()

Fourier Transform

8-9

Relationship to the Fourier Transform
The DFT coefficients are samples of the Fourier transform .

Example

1 Construct a matrix f that is similar to the function f(m,n) in the example in
“Definition of Fourier Transform” on page 8-3. Remember that f(m,n) is
equal to 1 within the rectangular region and 0 elsewhere. Use a binary
image to represent f(m,n).

f = zeros(30,30);
f(5:24,13:17) = 1;
imshow(f,'notruesize')

2 Compute and visualize the 30-by-30 DFT of f with these commands.

F = fft2(f);
F2 = log(abs(F));
imshow(F2,[-1 5],'notruesize'); colormap(jet); colorbar

F p q,() F ω1 ω2,()

F p q,() F ω1 ω2,()
ω1 2πp M⁄=

ω2 2πq N⁄=

= p 0 1 … M 1–, , ,=

q 0 1 … N 1–, , ,=

8 Transforms

8-10

Discrete Fourier Transform Computed Without Padding

This plot differs from the Fourier transform displayed in “Visualizing the
Fourier Transform” on page 8-4. First, the sampling of the Fourier
transform is much coarser. Second, the zero-frequency coefficient is
displayed in the upper left corner instead of the traditional location in the
center.

3 To obtain a finer sampling of the Fourier transform, add zero padding to f
when computing its DFT. The zero padding and DFT computation can be
performed in a single step with this command.

F = fft2(f,256,256);

This command zero-pads f to be 256-by-256 before computing the DFT.

imshow(log(abs(F)),[-1 5]); colormap(jet); colorbar

1

0

1

2

3

4

5

Fourier Transform

8-11

Discrete Fourier Transform Computed with Padding

4 The zero-frequency coefficient, however, is still displayed in the upper left
corner rather than the center. You can fix this problem by using the function
fftshift, which swaps the quadrants of F so that the zero-frequency
coefficient is in the center.

F = fft2(f,256,256);
F2 = fftshift(F);
imshow(log(abs(F2)),[-1 5]); colormap(jet); colorbar

The resulting plot is identical to the one shown in “Visualizing the Fourier
Transform” on page 8-4.

Applications of the Fourier Transform
This section presents a few of the many image processing-related applications
of the Fourier transform.

Frequency Response of Linear Filters
The Fourier transform of the impulse response of a linear filter gives the
frequency response of the filter. The function freqz2 computes and displays a
filter’s frequency response. The frequency response of the Gaussian

1

0

1

2

3

4

5

8 Transforms

8-12

convolution kernel shows that this filter passes low frequencies and attenuates
high frequencies.

h = fspecial('gaussian');
freqz2(h)

Frequency Response of a Gaussian Filter

See “Linear Filtering and Filter Design” on page 7-1 for more information
about linear filtering, filter design, and frequency responses.

Fast Convolution
A key property of the Fourier transform is that the multiplication of two
Fourier transforms corresponds to the convolution of the associated spatial
functions. This property, together with the fast Fourier transform, forms the
basis for a fast convolution algorithm.

Note The FFT-based convolution method is most often used for large inputs.
For small inputs it is generally faster to use imfilter.

1

0.5

0

0.5

1

1

0.5

0

0.5

1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FrequencyFrequency

M
ag

ni
tu

de

Fourier Transform

8-13

To illustrate, this example performs the convolution of A and B, where A is an
M-by-N matrix and B is a P-by-Q matrix:

1 Create two matrices.

A = magic(3);
B = ones(3);

2 Zero-pad A and B so that they are at least (M+P–1)-by-(N+Q–1). (Often A and
B are zero-padded to a size that is a power of 2 because fft2 is fastest for
these sizes.) The example pads the matrices to be 8-by-8.

A(8,8) = 0;
B(8,8) = 0;

3 Compute the two-dimensional DFT of A and B using fft2.

4 Multiply the two DFTs together.

5 Compute the inverse two-dimensional DFT of the result using ifft2.

The following code performs steps 3, 4, and 5 in the procedure.

C = ifft2(fft2(A).*fft2(B));

6 Extract the nonzero portion of the result and remove the imaginary part
caused by roundoff error.

C = C(1:5,1:5);
C = real(C)

C =

 8.0000 9.0000 15.0000 7.0000 6.0000
 11.0000 17.0000 30.0000 19.0000 13.0000
 15.0000 30.0000 45.0000 30.0000 15.0000
 7.0000 21.0000 30.0000 23.0000 9.0000
 4.0000 13.0000 15.0000 11.0000 2.0000

Locating Image Features
The Fourier transform can also be used to perform correlation, which is closely
related to convolution. Correlation can be used to locate features within an
image; in this context correlation is often called template matching.

8 Transforms

8-14

This example illustrates how to use correlation to locate occurrences of the
letter “a” in an image containing text:

1 Read in the sample image.

bw = imread('text.png');

2 Create a template for matching by extracting the letter “a” from the image.

a = bw(32:45,88:98);

You can also create the template image by using the interactive version of
imcrop, using the pixval function to determine the coordinates of features
in an image.

The following figure shows both the original image and the template.

imshow(bw);
figure, imshow(a);

Image (left) and the Template to Correlate (right)

3 Compute the correlation of the template image a with the original image bw
by rotating the template image by 180o and then using the FFT-based
convolution technique described in “Fast Convolution” on page 8-12.
(Convolution is equivalent to correlation if you rotate the convolution kernel
by 180o.) To match the template to the image, use the fft2 and ifft2
functions.

Fourier Transform

8-15

C = real(ifft2(fft2(bw) .* fft2(rot90(a,2),256,256)));

The following image shows the result of the correlation. Bright peaks in the
image correspond to occurrences of the letter.

figure, imshow(C,[]) % Scale image to appropriate display range.

Correlated Image

4 To view the locations of the template in the image, find the maximum pixel
value and then define a threshold value that is less than this maximum. The
locations of these peaks are indicated by the white spots in the thresholded
correlation image. (To make the locations easier to see in this figure, the
thresholded image has been dilated to enlarge the size of the points.)

max(C(:))
ans =

68.0000

thresh = 60; % Use a threshold that s a little less than max.
figure, imshow(C > thresh)% Display showing pixels over threshold.

8 Transforms

8-16

Correlated, Thresholded Image Showing Template Locations

Discrete Cosine Transform

8-17

Discrete Cosine Transform
The discrete cosine transform (DCT) represents an image as a sum of sinusoids
of varying magnitudes and frequencies. The dct2 function in the Image
Processing Toolbox computes the two-dimensional discrete cosine transform
(DCT) of an image. The DCT has the property that, for a typical image, most of
the visually significant information about the image is concentrated in just a
few coefficients of the DCT. For this reason, the DCT is often used in image
compression applications. For example, the DCT is at the heart of the
international standard lossy image compression algorithm known as JPEG.
(The name comes from the working group that developed the standard: the
Joint Photographic Experts Group.)

The two-dimensional DCT of an M-by-N matrix A is defined as follows.

The values are called the DCT coefficients of A. (Note that matrix indices
in MATLAB always start at 1 rather than 0; therefore, the MATLAB matrix
elements A(1,1) and B(1,1) correspond to the mathematical quantities
and , respectively.)

The DCT is an invertible transform, and its inverse is given by

Bpq αpαq Amn
π 2m 1+()p

2M
------------------------------- π 2n 1+()q

2N
-----------------------------,

0 p M 1–≤ ≤
0 q N 1–≤ ≤

coscos

n 0=

N 1–

∑
m 0=

M 1–

∑=

αp
1 M, p⁄ 0=

2 M⁄ , 1 p M 1–≤ ≤

= αq
1 N, q⁄ 0=

2 N⁄ , 1 q N 1–≤ ≤

=

Bpq

A00
B00

Amn αpαqBpq
π 2m 1+()p

2M
------------------------------- π 2n 1+()q

2N
-----------------------------,

0 m M 1–≤ ≤
0 n N 1–≤ ≤

coscos

q 0=

N 1–

∑
p 0=

M 1–

∑=

αp
1 M, p⁄ 0=

2 M⁄ , 1 p M 1–≤ ≤

= αq
1 N, q⁄ 0=

2 N⁄ , 1 q N 1–≤ ≤

=

8 Transforms

8-18

The inverse DCT equation can be interpreted as meaning that any M-by-N
matrix A can be written as a sum of functions of the form

These functions are called the basis functions of the DCT. The DCT coefficients
, then, can be regarded as the weights applied to each basis function. For

8-by-8 matrices, the 64 basis functions are illustrated by this image.

The 64 Basis Functions of an 8-by-8 Matrix

Horizontal frequencies increase from left to right, and vertical frequencies
increase from top to bottom. The constant-valued basis function at the upper
left is often called the DC basis function, and the corresponding DCT coefficient

is often called the DC coefficient.

The DCT Transform Matrix
The Image Processing Toolbox offers two different ways to compute the DCT.
The first method is to use the function dct2. dct2 uses an FFT-based algorithm
for speedy computation with large inputs. The second method is to use the DCT
transform matrix, which is returned by the function dctmtx and might be more

MN

αpαq
π 2m 1+()p

2M
------------------------------- π 2n 1+()q

2N
-----------------------------,

0 p M 1–≤ ≤
0 q N 1–≤ ≤

coscos

Bpq

B00

Discrete Cosine Transform

8-19

efficient for small square inputs, such as 8-by-8 or 16-by-16. The M-by-M
transform matrix T is given by

For an M-by-M matrix A, T*A is an M-by-M matrix whose columns contain the
one-dimensional DCT of the columns of A. The two-dimensional DCT of A can
be computed as B=T*A*T'. Since T is a real orthonormal matrix, its inverse is
the same as its transpose. Therefore, the inverse two-dimensional DCT of B is
given by T'*B*T.

DCT and Image Compression
In the JPEG image compression algorithm, the input image is divided into
8-by-8 or 16-by-16 blocks, and the two-dimensional DCT is computed for each
block. The DCT coefficients are then quantized, coded, and transmitted. The
JPEG receiver (or JPEG file reader) decodes the quantized DCT coefficients,
computes the inverse two-dimensional DCT of each block, and then puts the
blocks back together into a single image. For typical images, many of the DCT
coefficients have values close to zero; these coefficients can be discarded
without seriously affecting the quality of the reconstructed image.

The example code below computes the two-dimensional DCT of 8-by-8 blocks in
the input image, discards (sets to zero) all but 10 of the 64 DCT coefficients in
each block, and then reconstructs the image using the two-dimensional inverse
DCT of each block. The transform matrix computation method is used.

I = imread('cameraman.tif');
I = im2double(I);
T = dctmtx(8);
B = blkproc(I,[8 8],'P1*x*P2',T,T');
mask = [1 1 1 1 0 0 0 0

1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Tpq

1
M

--------- p 0 0 q M 1–≤ ≤,=

2
M
----- π 2q 1+()p

2M
-----------------------------cos 1 p M 1 0 q M 1–≤ ≤,–≤ ≤

=

8 Transforms

8-20

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0];

B2 = blkproc(B,[8 8],'P1.*x',mask);
I2 = blkproc(B2,[8 8],'P1*x*P2',T',T);
imshow(I), figure, imshow(I2)

Although there is some loss of quality in the reconstructed image, it is clearly
recognizable, even though almost 85% of the DCT coefficients were discarded.
To experiment with discarding more or fewer coefficients, and to apply this
technique to other images, try running the demo function dctdemo.

Image Courtesy of MIT

Radon Transform

8-21

Radon Transform
The radon function in the Image Processing Toolbox computes projections of an
image matrix along specified directions. A projection of a two-dimensional
function f(x,y) is a set of line integrals. The radon function computes the line
integrals from multiple sources along parallel paths, or beams, in a certain
direction. The beams are spaced 1 pixel unit apart. To represent an image, the
radon function takes multiple, parallel-beam projections of the image from
different angles by rotating the source around the center of the image. The
following figure shows a single projection at a specified rotation angle.

Parallel-Beam Projection at Rotation Angle Theta

Note For information about creating projection data from line integrals
along paths that radiate from a single source, called fan-beam projections, see
“Fan-Beam Projection Data” on page 8-35. To convert parallel-beam projection
data to fan-beam projection data, use the para2fan function.

For example, the line integral of f(x,y) in the vertical direction is the projection
of f(x,y) onto the x-axis; the line integral in the horizontal direction is the
projection of f(x,y) onto the y-axis. The following figure shows horizontal and
vertical projections for a simple two-dimensional function.

x

y

f(x,y)
Source

Sensors

 Rotation angle theta

8 Transforms

8-22

Horizontal and Vertical Projections of a Simple Function

Projections can be computed along any angle θ. In general, the Radon
transform of f(x,y) is the line integral of f parallel to the y′-axis

where

The following figure illustrates the geometry of the Radon transform.

x

y

Projection onto the x-axis

Pr
oj

ec
tio

n
on

to
 th

e
y-

ax
isf(x,y)

Rθ x ′() f x ′ θcos y ′ θsin– x ′ θsin y ′ θcos+(,) y ′d
∞–

∞

∫=

x ′
y ′

θcos θsin
θsin– θcos

x
y

=

Radon Transform

8-23

Geometry of the Radon Transform

This command computes the Radon transform of I for the angles specified in
the vector theta.

[R,xp] = radon(I,theta);

The columns of R contain the Radon transform for each angle in theta. The
vector xp contains the corresponding coordinates along the x′-axis. The center
pixel of I is defined to be floor((size(I)+1)/2); this is the pixel on the x′-axis
corresponding to .

The commands below compute and plot the Radon transform at 0° and 45° of
an image containing a single square object.

I = zeros(100,100);

x

y

x′

y′

x′

f(x,y)

Rθ x ′()

θ

x ′ 0=

8 Transforms

8-24

I(25:75, 25:75) = 1;
imshow(I)

[R,xp] = radon(I,[0 45]);
figure; plot(xp,R(:,1)); title('R_{0^o} (x\prime)')
figure; plot(xp,R(:,2)); title('R_{45^o} (x\prime)')

Two Radon Transforms of a Square Function

Note xp is the same for all projection angles.

The Radon transform for a large number of angles is often displayed as an
image. In this example, the Radon transform for the square image is computed
at angles from 0° to 180°, in 1° increments.

theta = 0:180;
[R,xp] = radon(I,theta);

Radon Transform

8-25

imagesc(theta,xp,R);
title('R_{\theta} (X\prime)');
xlabel('\theta (degrees)');
ylabel('X\prime');
set(gca,'XTick',0:20:180);
colormap(hot);
colorbar

Radon Transform Using 180 Projections

8 Transforms

8-26

Using the Radon Transform to Detect Lines
The Radon transform is closely related to a common computer vision operation
known as the Hough transform. You can use the radon function to implement
a form of the Hough transform used to detect straight lines. The steps are

1 Compute a binary edge image using the edge function.

I = fitsread('solarspectra.fts');
I = mat2gray(I);
BW = edge(I);
imshow(I), figure, imshow(BW)

2 Compute the Radon transform of the edge image.

theta = 0:179;
[R,xp] = radon(BW,theta);
figure, imagesc(theta, xp, R); colormap(hot);
xlabel('\theta (degrees)'); ylabel('x\prime');
title('R_{\theta} (x\prime)');
colorbar

Original Image Edge Image
Image Courtesy of Ann Walker

Radon Transform

8-27

Radon Transform of an Edge Image

3 Find the locations of strong peaks in the Radon transform matrix. The
locations of these peaks correspond to the locations of straight lines in the
original image.

In the following figure, the strongest peaks in R correspond to and
. The line perpendicular to that angle and located at is

shown below, superimposed in red on the original image. The Radon transform
geometry is shown in black. Notice that the other strong lines parallel to the
red line also appear as peaks at in the transform. Also, the lines
perpendicular to this line appear as peaks at .

θ 1°=
x ′ 80–= x ′ 80–=

θ 1°=
θ 91°=

8 Transforms

8-28

Radon Transform Geometry and the Strongest Peak (Red)

Inverse Radon Transform
The iradon function performs the inverse Radon transform, which is
commonly used in tomography applications. This transform inverts the Radon
transform (which was introduced in the previous section), and can therefore be
used to reconstruct images from projection data.

As described in “Radon Transform” on page 8-21, given an image I and a set of
angles theta, the radon function can be used to calculate the Radon transform.

R = radon(I,theta);

The function iradon can then be called to reconstruct the image I.

IR = iradon(R,theta);

In the example above, projections are calculated from the original image I. In
most application areas, there is no original image from which projections are
formed. For example, in X-ray absorption tomography, projections are formed
by measuring the attenuation of radiation that passes through a physical
specimen at different angles. The original image can be thought of as a cross
section through the specimen, in which intensity values represent the density
of the specimen. Projections are collected using special purpose hardware, and
then an internal image of the specimen is reconstructed by iradon. This allows
for noninvasive imaging of the inside of a living body or another opaque object.

x’ = -80°

theta = 1°

Radon Transform

8-29

iradon reconstructs an image from parallel-beam projections. In parallel-beam
geometry, each projection is formed by combining a set of line integrals through
an image at a specific angle.

The following figure illustrates how parallel-beam geometry is applied in X-ray
absorption tomography. Note that there is an equal number of n emitters and
n sensors. Each sensor measures the radiation emitted from its corresponding
emitter, and the attenuation in the radiation gives a measure of the integrated
density, or mass, of the object. This corresponds to the line integral that is
calculated in the Radon transform.

The parallel-beam geometry used in the figure is the same as the geometry that
was described in “Radon Transform” on page 8-21. f(x,y) denotes the brightness
of the image and is the projection at angle theta.Rθ x ′()

8 Transforms

8-30

Parallel-Beam Projections Through an Object

Another geometry that is commonly used is fan-beam geometry, in which there
is one source and n sensors. For more information, see “Fan-Beam Projection
Data” on page 8-35. To convert parallel-beam projection data into fan-beam
projection data, use the para2fan function.

Improving the Results
iradon uses the filtered backprojection algorithm to compute the inverse Radon
transform. This algorithm forms an approximation of the image I based on the
projections in the columns of R. A more accurate result can be obtained by using

x

y

x′

x′

f(x,y)

Rθ x ′()

θ

Radon Transform

8-31

more projections in the reconstruction. As the number of projections (the length
of theta) increases, the reconstructed image IR more accurately approximates
the original image I. The vector theta must contain monotonically increasing
angular values with a constant incremental angle ∆θ. When the scalar ∆θ is
known, it can be passed to iradon instead of the array of theta values. Here is
an example.

IR = iradon(R,Dtheta);

The filtered backprojection algorithm filters the projections in R and then
reconstructs the image using the filtered projections. In some cases, noise can
be present in the projections. To remove high frequency noise, apply a window
to the filter to attenuate the noise. Many such windowed filters are available
in iradon. The example call to iradon below applies a Hamming window to the
filter. See the iradon reference page for more information.

IR = iradon(R,theta,'Hamming');

iradon also enables you to specify a normalized frequency, D, above which the
filter has zero response. D must be a scalar in the range [0,1]. With this option,
the frequency axis is rescaled so that the whole filter is compressed to fit into
the frequency range [0,D]. This can be useful in cases where the projections
contain little high-frequency information but there is high-frequency noise. In
this case, the noise can be completely suppressed without compromising the
reconstruction. The following call to iradon sets a normalized frequency value
of 0.85.

IR = iradon(R,theta,0.85);

Example: Reconstructing an Image from Parallel
Projection Data
The commands below illustrate how to reconstruct an image from parallel
projection data. The test image is the Shepp-Logan head phantom, which can
be generated by the Image Processing Toolbox function phantom. The phantom
image illustrates many of the qualities that are found in real-world
tomographic imaging of human heads. The bright elliptical shell along the
exterior is analogous to a skull, and the many ellipses inside are analogous to
brain features.

1 Create a Shepp-Logan head phantom image.

8 Transforms

8-32

P = phantom(256);
imshow(P)

2 Compute the Radon transform of the phantom brain for three different sets
of theta values. R1 has 18 projections, R2 has 36 projections, and R3 has 90
projections.

theta1 = 0:10:170; [R1,xp] = radon(P,theta1);
theta2 = 0:5:175; [R2,xp] = radon(P,theta2);
theta3 = 0:2:178; [R3,xp] = radon(P,theta3);

3 Display a plot of one of the Radon transforms of the Shepp-Logan head
phantom. The following figure shows R3, the transform with 90 projections.

figure, imagesc(theta3,xp,R3); colormap(hot); colorbar
xlabel('\theta'); ylabel('x\prime');

Radon Transform

8-33

Radon Transform of Head Phantom Using 90 Projections

Note how some of the features of the input image appear in this image of the
transform. The first column in the Radon transform corresponds to a
projection at 0° that is integrating in the vertical direction. The centermost
column corresponds to a projection at 90°, which is integrating in the
horizontal direction. The projection at 90° has a wider profile than the
projection at 0° due to the larger vertical semiaxis of the outermost ellipse of
the phantom.

4 Reconstruct the head phantom image from the projection data created in
step 2 and display the results.

I1 = iradon(R1,10);
I2 = iradon(R2,5);
I3 = iradon(R3,2);
imshow(I1)
figure, imshow(I2)

8 Transforms

8-34

figure, imshow(I3)

The following figure shows the results of all three reconstructions. Notice
how image I1, which was reconstructed from only 18 projections, is the least
accurate reconstruction. Image I2, which was reconstructed from 36
projections, is better, but it is still not clear enough to discern clearly the
small ellipses in the lower portion of the image. I3, reconstructed using 90
projections, most closely resembles the original image. Notice that when the
number of projections is relatively small (as in I1 and I2), the reconstruction
can include some artifacts from the back projection.

Inverse Radon Transforms of the Shepp-Logan Head Phantom

I1 I2

I3

Fan-Beam Projection Data

8-35

Fan-Beam Projection Data
The fanbeam function in the Image Processing Toolbox computes projections of
an image matrix along specified directions. A projection of a two-dimensional
function f(x,y) is a set of line integrals. The fanbeam function computes the line
integrals along paths that radiate from a single source, forming a fan shape. To
represent an image, the fanbeam function takes multiple projections of the
image from different angles by rotating the source around the center of the
image. The following figure shows a single fan-beam projection at a specified
rotation angle.

Fan-Beam Projection at Rotation Angle Theta

This section

• Describes how to use the fanbeam function to generate fan-beam projection
data

• Describes how to reconstruct an image from fan-beam projection data

• Shows an example that creates a fan-beam projection of an image and then
reconstructs the image from the fan-beam projection data

x

y

f(x,y)

Source

Sensors

 Rotation angle theta

8 Transforms

8-36

Note For information about creating projection data from line integrals
along parallel paths, see “Radon Transform” on page 8-21. To convert
fan-beam projection data to parallel-beam projection data, use the fan2para
function.

Computing Fan-Beam Projection Data
To compute fan-beam projection data, use the fanbeam function. You specify as
arguments an image and the distance between the vertex of the fan-beam
projections and the center of rotation (the center pixel in the image). The
fanbeam function determines the number of beams, based on the size of the
image and the settings of fanbeam parameters.

By default, fanbeam positions the sensors along an arc at distance D from the
center of rotation, and spaces the sensors at 1 degree intervals. Using the
FanSensorSpacing parameter, you can specify a different angle between each
beam. Using the FanSensorGeometry parameter, you can optionally specify
that fanbeam position sensors along a straight line, rather than an arc. With
this geometry, you specify the spacing between sensors in pixels. In this case,
only the sensor aligned with the center pixel is distance D from the center of
rotation.

fanbeam takes projections at different angles by rotating the source around the
center pixel at 1 degree intervals. Using the FanRotationIncrement parameter
you can specify a different rotation angle increment.

The following figures illustrate both these geometries.

The first figure illustrates geometry used by the fanbeam function when
FanSensorGeometry is set to 'arc' (the default). Note how you specify the
distance between sensors by specifying the angular spacing of the beams.

Fan-Beam Projection Data

8-37

Fan-Beam Projection with Arc Geometry

The following figure illustrates geometry used by the fanbeam function when
FanSensorGeometry is set to 'line'. In this figure, note how you specify the
position of the sensors by specifying the distance between them in pixels.

x

FanSensorGeometry='arc'

FanSensorSpacing,
measured in degrees

Fan rotation angle

Source

Sensors x’

D

y

f(x,y) Center pixel

8 Transforms

8-38

Fan-Beam Projection with Line Geometry

Reconstructing an Image from Fan-Beam Projection
Data
To reconstruct an image from fan-beam projection data, use the ifanbeam
function. With this function, you specify as arguments the projection data and
the distance between the vertex of the fan-beam projections and the center of
rotation when the projection data was created. For example, this code recreates
the image I from the projection data P and distance D.

I = ifanbeam(P,D);

x

y

FanSensorGeometry='line'

FanSensorSpacing,
measured in pixels

Fan rotation angle

Source

Sensors x’

D

f(x,y) Center pixel

Fan-Beam Projection Data

8-39

By default, the ifanbeam function assumes that the fan-beam projection data
was created using the arc fan sensor geometry, with beams spaced at 1 degree
angles and projections taken at 1 degree increments over a full 360 degree
range. As with the fanbeam function, you can use ifanbeam parameters to
specify other values for these characteristics of the projection data. Use the
same values for these parameters that were used when the projection data was
created. For more information about these parameters, see “Computing
Fan-Beam Projection Data” on page 8-36.

The ifanbeam function converts the fan-beam projection data to parallel-beam
projection data with the fan2para function, and then calls the iradon function
to perform the image reconstruction. For this reason, the ifanfeam function
supports certain iradon parameters, which it passes to the iradon function.
See “Inverse Radon Transform” on page 8-28 for more information about the
iradon function.

Working with Fan-Beam Projection Data
The commands below illustrate how to use fanbeam and ifanbeam to form
projections from a sample image and then reconstruct the image from the
projections. The test image is the Shepp-Logan head phantom, which can be
generated by the Image Processing Toolbox function phantom. The phantom
image illustrates many of the qualities that are found in real-world
tomographic imaging of human heads.

1 Generate the test image and display it.

P = phantom(256);
imshow(P)

8 Transforms

8-40

2 Compute fan-beam projection data of the test image, using the
FanSensorSpacing parameter to vary the sensor spacing. The example uses
the fanbeam arc geometry, so you specify the spacing between sensors by
specifying the angular spacing of the beams. The first call spaces the beams
at 2 degrees; the second at 1 degree; and the third at 0.25 degrees. In each
call, the distance between the center of rotation and vertex of the projections
is constant at 250 pixels. In addition, fanbeam rotates the projection around
the center pixel at 1 degree increments.

D = 250;

dsensor1 = 2;
F1 = fanbeam(P,D,'FanSensorSpacing',dsensor1);

dsensor2 = 1;
F2 = fanbeam(P,D,'FanSensorSpacing',dsensor2);

dsensor3 = 0.25
[F3, sensor_pos3, fan_rot_angles3] = fanbeam(P,D,...
'FanSensorSpacing',dsensor3);

3 Plot the projection data F3. Because fanbeam calculates projection data at
rotation angles from 0 to 360 degrees, the same patterns occur at an offset
of 180 degrees. The same features are being sampled from both sides.
Compare this plot to the plot of the parallel-beam projection data of the head
phantom on page 8-33.

figure, imagesc(fan_rot_angles3, sensor_pos3, F3)
colormap(hot); colorbar
xlabel('Fan Rotation Angle (degrees)')
ylabel('Fan Sensor Position (degrees)')

Fan-Beam Projection Data

8-41

4 Reconstruct the image from the fan-beam projection data using ifanbeam. In
each reconstruction, match the fan sensor spacing with the spacing used
when the projection data was created in step 2. The example uses the
OutputSize parameter to constrain the output size of each reconstruction to
be the same as the size of the original image |P|.

output_size = max(size(P));

Ifan1 = ifanbeam(F1,D,
'FanSensorSpacing',dsensor1,'OutputSize',output_size);

figure, imshow(Ifan1)

Ifan2 = ifanbeam(F2,D,
'FanSensorSpacing',dsensor2,'OutputSize',output_size);

figure, imshow(Ifan2)

Ifan3 = ifanbeam(F3,D,
'FanSensorSpacing',dsensor3,'OutputSize',output_size);

8 Transforms

8-42

figure, imshow(Ifan3)

The following figure shows the result of each transform. Note how the
quality of the reconstruction gets better as the number of beams in the
projection increases. The first image, Ifan1, was created using 2 degree
spacing of the beams; the second image, ifan2, was created using 1 degree
spacing of the beams; the third image, ifan3, was created using 0.25 spacing
of the beams.

Reconstruction of the Head Phantom Image from Fan-Beam Projections

Ifan1 Ifan2

Ifan3

9

Morphological Operations

Morphology is a technique of image processing based on shapes. The value of each pixel in the output
image is based on a comparison of the corresponding pixel in the input image with its neighbors. By
choosing the size and shape of the neighborhood, you can construct a morphological operation that is
sensitive to specific shapes in the input image.

This chapter describes the Image Processing Toolbox morphological functions. You can use these
functions to perform common image processing tasks, such as contrast enhancement, noise removal,
thinning, skeletonization, filling, and segmentation.

Terminology (p. 9-2) Provides definitions of image processing terms used in
this section

Dilation and Erosion (p. 9-4) Defines the two fundamental morphological operations,
dilation and erosion, and some of the morphological
image processing operations that are based on
combinations of these operations

Morphological Reconstruction (p. 9-19) Describes morphological reconstruction and the toolbox
functions that use this type of processing

Distance Transform (p. 9-37) Describes how to use the bwdist function to compute the
distance transform of an image

Objects, Regions, and Feature
Measurement (p. 9-40)

Describes functions that return information about a
binary image

Lookup Table Operations (p. 9-44) Describes functions that perform lookup table operations

9 Morphological Operations

9-2

Terminology
An understanding of the following terms will help you to use this chapter.

Term Definition

background In a binary image, pixels that are off, i.e., set to the value 0,
are considered the background. When you view a binary
image, the background pixels appear black.

connectivity Criteria that describe how pixels in an image form a
connected group. For example, a connected component is
“8-connected” if diagonally adjacent pixels are considered to
be touching; otherwise, it is “4-connected.” The toolbox
supports 2-D as well as multidimensional connectivities. See
“Pixel Connectivity” on page 9-23 for more information.

foreground In a binary image, pixels that are on, i.e., set to the value 1,
are considered the foreground. When you view a binary image,
the foreground pixels appear white.

global maxima Highest regional maxima in the image. See the entry for
regional maxima in this table for more information.

global minima Lowest regional minima in the image. See the entry for
regional minima in this table for more information.

morphology A broad set of image processing operations that process
images based on shapes. Morphological operations apply a
structuring element to an input image, creating an output
image of the same size. The most basic morphological
operations are dilation and erosion.

neighborhood Set of pixels that are defined by their locations relative to the
pixel of interest. A neighborhood can be defined by a
structuring element or by specifying a connectivity.

object Set of pixels in a binary image that form a connected group. In
the context of this chapter, “object” and “connected
component” are equivalent.

Terminology

9-3

packed binary image Method of compressing binary images that can speed up the
processing of the image.

regional maxima Connected set of pixels of constant intensity from which it is
impossible to reach a point with higher intensity without first
descending; that is, a connected component of pixels with the
same intensity value, t, surrounded by pixels that all have a
value less than t.

regional minima Connected set of pixels of constant intensity from which it is
impossible to reach a point with lower intensity without first
ascending; that is, a connected component of pixels with the
same intensity value, t, surrounded by pixels that all have a
value greater than t.

structuring element Matrix used to define a neighborhood shape and size for
morphological operations, including dilation and erosion. It
consists of only 0’s and 1’s and can have an arbitrary shape
and size. The pixels with values of 1 define the neighborhood.

Term Definition

9 Morphological Operations

9-4

Dilation and Erosion
Dilation and erosion are two fundamental morphological operations. Dilation
adds pixels to the boundaries of objects in an image, while erosion removes
pixels on object boundaries. The number of pixels added or removed from the
objects in an image depends on the size and shape of the structuring element
used to process the image.

The following sections

• Provide important background information about how the dilation and
erosion functions operate

• Describe structuring elements and how to create them

• Describe how to perform a morphological dilation

• Describe how to perform a morphological erosion

• Describe some of the common operations that are based on dilation and
erosion

• Describe toolbox functions that are based on dilation and erosion

To view an extended example that uses morphological processing to solve an
image processing problem, see the Image Processing Toolbox watershed
segmentation demo.

Understanding Dilation and Erosion
In the morphological dilation and erosion operations, the state of any given
pixel in the output image is determined by applying a rule to the corresponding
pixel and its neighbors in the input image. The rule used to process the pixels
defines the operation as a dilation or an erosion. This table lists the rules for
both dilation and erosion.

Dilation and Erosion

9-5

The following figure illustrates the dilation of a binary image. Note how the
structuring element defines the neighborhood of the pixel of interest, which is
circled. (See “Structuring Elements” on page 9-7 for more information.) The
dilation function applies the appropriate rule to the pixels in the neighborhood
and assigns a value to the corresponding pixel in the output image. In the
figure, the morphological dilation function sets the value of the output pixel to
1 because one of the elements in the neighborhood defined by the structuring
element is on.

Morphological Dilation of a Binary Image

Rules for Grayscale Dilation and Erosion

Operation Rule

Dilation The value of the output pixel is the maximum value of all
the pixels in the input pixel’s neighborhood. In a binary
image, if any of the pixels is set to the value 1, the output
pixel is set to 1.

Erosion The value of the output pixel is the minimum value of all
the pixels in the input pixel’s neighborhood. In a binary
image, if any of the pixels is set to 0, the output pixel is
set to 0.

1 0 0 0 0

 0 1 0 0 0

 0 0 1 0 0

 0 0 0 1 0

 0 0 0 0 1

Structuring Element

Input Image

1 1

1 1 0 0 0

 0 0 1 0 0

 0 0 0 1 0

 0 0 0 0 1

Output Image

1 1 1

9 Morphological Operations

9-6

The following figure illustrates this processing for a grayscale image. The
figure shows the processing of a particular pixel in the input image. Note how
the function applies the rule to the input pixel’s neighborhood and uses the
highest value of all the pixels in the neighborhood as the value of the
corresponding pixel in the output image.

Morphological Dilation of a Grayscale Image

Processing Pixels at Image Borders
Morphological functions position the origin of the structuring element, its
center element, over the pixel of interest in the input image. For pixels at the
edge of an image, parts of the neighborhood defined by the structuring element
can extend past the border of the image.

To process border pixels, the morphological functions assign a value to these
undefined pixels, as if the functions had padded the image with additional rows
and columns. The value of these padding pixels varies for dilation and erosion
operations. The following table describes the padding rules for dilation and
erosion for both binary and grayscale images.

16 14 14 17 19 15 21

53 57 61 62 64 60 68

126 128 124 122 125 125 127

132 130 133 132 131 132 130

140 138 137 143 138 137 134

143 141 138 142 140 134 144

138 142 137 139 138 132 136

1 1 1

Structuring Element

Input Image Output Image

16 16 17 17 19 15 21

57

128

132

140

143

142

Dilation and Erosion

9-7

Note By using the minimum value for dilation operations and the maximum
value for erosion operations, the toolbox avoids border effects, where regions
near the borders of the output image do not appear to be homogeneous with
the rest of the image. For example, if erosion padded with a minimum value,
eroding an image would result in a black border around the edge of the output
image.

Structuring Elements
An essential part of the dilation and erosion operations is the structuring
element used to probe the input image. Two-dimensional, or flat, structuring
elements consist of a matrix of 0’s and 1’s, typically much smaller than the
image being processed. The center pixel of the structuring element, called the
origin, identifies the pixel of interest — the pixel being processed. The pixels in
the structuring element containing 1’s define the neighborhood of the
structuring element. These pixels are also considered in dilation or erosion
processing. Three-dimensional, or nonflat, structuring elements use 0’s and 1’s
to define the extent of the structuring element in the x- and y-planes and add
height values to define the third dimension.

Rules for Padding Images

Operation Rule

Dilation Pixels beyond the image border are assigned the
minimum value afforded by the data type.

For binary images, these pixels are assumed to be set to 0.
For grayscale images, the minimum value for uint8
images is 0.

Erosion Pixels beyond the image border are assigned the
maximum value afforded by the data type.

For binary images, these pixels are assumed to be set to 1.
For grayscale images, the maximum value for uint8
images is 255.

9 Morphological Operations

9-8

The Origin of a Structuring Element
The morphological functions use this code to get the coordinates of the origin of
structuring elements of any size and dimension.

origin = floor((size(nhood)+1)/2)

(In this code nhood is the neighborhood defining the structuring element.
Because structuring elements are MATLAB objects, you cannot use the size of
the STREL object itself in this calculation. You must use the STREL getnhood
method to retrieve the neighborhood of the structuring element from the STREL
object. For information about other STREL object methods, see the strel
function reference page.)

For example, the following illustrates a diamond-shaped structuring element.

Origin of a Diamond-Shaped Structuring Element

Creating a Structuring Element
The toolbox dilation and erosion functions accept structuring element objects,
called STRELs. You use the strel function to create STRELs of any arbitrary size
and shape. The strel function also includes built-in support for many common
shapes, such as lines, diamonds, disks, periodic lines, and balls.

Note You typically choose a structuring element the same size and shape as
the objects you want to process in the input image. For example, to find lines
in an image, create a linear structuring element.

Origin

 0 0 0 1 0 0 0

 0 0 1 1 1 0 0

 0 1 1 1 1 1 0

 1 1 1 1 1 1 1

 0 1 1 1 1 1 0

 0 0 1 1 1 0 0

 0 0 0 1 0 0 0

Structuring Element

Dilation and Erosion

9-9

For example, this code creates a flat, diamond-shaped structuring element.

se = strel('diamond',3)
se =

Flat STREL object containing 25 neighbors.
Decomposition: 3 STREL objects containing a total of 13 neighbors

Neighborhood:
 0 0 0 1 0 0 0
 0 0 1 1 1 0 0
 0 1 1 1 1 1 0
 1 1 1 1 1 1 1
 0 1 1 1 1 1 0
 0 0 1 1 1 0 0
 0 0 0 1 0 0 0

Structuring Element Decomposition
To enhance performance, the strel function might break structuring elements
into smaller pieces, a technique known as structuring element decomposition.

For example, dilation by an 11-by-11 square structuring element can be
accomplished by dilating first with a 1-by-11 structuring element, and then
with an 11-by-1 structuring element. This results in a theoretical speed
improvement of a factor of 5.5, although in practice the actual speed
improvement is somewhat less.

Structuring element decompositions used for the 'disk' and 'ball' shapes
are approximations; all other decompositions are exact. Decomposition is not
used with an arbitrary structuring element unless it is a flat structuring
element whose neighborhood is all 1’s.

To view the sequence of structuring elements used in a decomposition, use the
STREL getsequence method. The getsequence function returns an array of the
structuring elements that form the decomposition. For example, here are the
structuring elements created in the decomposition of a diamond-shaped
structuring element.

sel = strel('diamond',4)
sel =
Flat STREL object containing 41 neighbors.
Decomposition: 3 STREL objects containing a total of 13 neighbors

9 Morphological Operations

9-10

Neighborhood:
 0 0 0 0 1 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 1 1 1 1 1 0 0
 0 1 1 1 1 1 1 1 0
 1 1 1 1 1 1 1 1 1
 0 1 1 1 1 1 1 1 0
 0 0 1 1 1 1 1 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 1 0 0 0 0

seq = getsequence(sel)
seq =
3x1 array of STREL objects

seq(1)
ans =
Flat STREL object containing 5 neighbors.

Neighborhood:
 0 1 0
 1 1 1
 0 1 0

seq(2)
ans =
Flat STREL object containing 4 neighbors.

Neighborhood:
 0 1 0
 1 0 1
 0 1 0

seq(3)
ans =
Flat STREL object containing 4 neighbors.

Neighborhood:
 0 0 1 0 0

Dilation and Erosion

9-11

 0 0 0 0 0
 1 0 0 0 1
 0 0 0 0 0
 0 0 1 0 0

Dilating an Image
To dilate an image, use the imdilate function. The imdilate function accepts
two primary arguments:

• The input image to be processed (grayscale, binary, or packed binary image)

• A structuring element object, returned by the strel function, or a binary
matrix defining the neighborhood of a structuring element

imdilate also accepts two optional arguments: PADOPT and PACKOPT. The
PADOPT argument affects the size of the output image. The PACKOPT argument
identifies the input image as packed binary. (See the bwpack reference page for
information about binary image packing.)

This example dilates a simple binary image containing one rectangular object.

BW = zeros(9,10);
BW(4:6,4:7) = 1
BW =
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 1 0 0 0
 0 0 0 1 1 1 1 0 0 0
 0 0 0 1 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0

To expand all sides of the foreground component, the example uses a 3-by-3
square structuring element object. (For more information about using the
strel function, see “Structuring Elements” on page 9-7.)

SE = strel('square',3)
SE =

Flat STREL object containing 3 neighbors.

9 Morphological Operations

9-12

Neighborhood:
 1 1 1

1 1 1
 1 1 1

To dilate the image, pass the image BW and the structuring element SE to the
imdilate function. Note how dilation adds a rank of 1’s to all sides of the
foreground object.

BW2 = imdilate(BW,SE)

Eroding an Image
To erode an image, use the imerode function. The imerode function accepts two
primary arguments:

• The input image to be processed (grayscale, binary, or packed binary image)

• A structuring element object, returned by the strel function, or a binary
matrix defining the neighborhood of a structuring element

imerode also accepts three optional arguments: PADOPT, PACKOPT, and M.

The PADOPT argument affects the size of the output image. The PACKOPT
argument identifies the input image as packed binary. If the image is packed
binary, M identifies the number of rows in the original image. (See the bwpack
reference page for more information about binary image packing.)

BW2 =
0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0
 0 0 1 1 1 1 1 1 0 0
 0 0 1 1 1 1 1 1 0 0
 0 0 1 1 1 1 1 1 0 0
 0 0 1 1 1 1 1 1 0 0
 0 0 1 1 1 1 1 1 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0

Dilation and Erosion

9-13

The following example erodes the binary image circbw.tif:

1 Read the image into the MATLAB workspace.

BW1 = imread('circbw.tif');

2 Create a structuring element. The following code creates a diagonal
structuring element object. (For more information about using the strel
function, see “Structuring Elements” on page 9-7.)

SE = strel('arbitrary ,eye(5));
SE=

Flat STREL object containing 5 neighbors.

Neighborhood:
 1 0 0 0 0
 0 1 0 0 0
 0 0 1 0 0
 0 0 0 1 0
 0 0 0 0 1

3 Call the imerode function, passing the image BW and the structuring element
SE as arguments.

BW2 = imerode(BW1,SE);

Notice the diagonal streaks on the right side of the output image. These are
due to the shape of the structuring element.

imshow(BW1)
figure, imshow(BW2)

9 Morphological Operations

9-14

Combining Dilation and Erosion
Dilation and erosion are often used in combination to implement image
processing operations. For example, the definition of a morphological opening
of an image is an erosion followed by a dilation, using the same structuring
element for both operations. The related operation, morphological closing of an
image, is the reverse: it consists of dilation followed by an erosion with the
same structuring element.

The following section uses imdilate and imerode to illustrate how to
implement a morphological opening. Note, however, that the toolbox already
includes the imopen function, which performs this processing. The toolbox
includes functions that perform many common morphological operations. See
“Dilation- and Erosion-Based Functions” on page 9-16 for a complete list.

Morphological Opening
You can use morphological opening to remove small objects from an image
while preserving the shape and size of larger objects in the image. For example,
you can use the imopen function to remove all the circuit lines from the original
circuit image, circbw.tif, creating an output image that contains only the
rectangular shapes of the microchips.

Original Image Eroded Image

Dilation and Erosion

9-15

To morphologically open the image, perform these steps:

1 Read the image into the MATLAB workspace.

BW1 = imread('circbw.tif');

2 Create a structuring element.

SE = strel('rectangle ,[40 30]);

The structuring element should be large enough to remove the lines when
you erode the image, but not large enough to remove the rectangles. It
should consist of all 1’s, so it removes everything but large contiguous
patches of foreground pixels.

3 Erode the image with the structuring element.

BW2 = imerode(BW1,SE);
imshow(BW2)

This removes all the lines, but also shrinks the rectangles.

4 To restore the rectangles to their original sizes, dilate the eroded image
using the same structuring element, SE.

BW3 = imdilate(BW2,SE);
imshow(BW3)

9 Morphological Operations

9-16

Dilation- and Erosion-Based Functions
This section describes two common image processing operations that are based
on dilation and erosion:

• Skeletonization

• Perimeter determination

This table lists other functions in the toolbox that perform common
morphological operations that are based on dilation and erosion. For more
information about these functions, see their reference pages.

Dilation- and Erosion-Based Functions

Function Morphological Definition

bwhitmiss Logical AND of an image, eroded with one structuring
element, and the image’s complement, eroded with a
second structuring element.

imbothat Subtracts the original image from a morphologically
closed version of the image. Can be used to find
intensity troughs in an image.

imclose Dilates an image and then erodes the dilated image
using the same structuring element for both operations.

Dilation and Erosion

9-17

Skeletonization
To reduce all objects in an image to lines, without changing the essential
structure of the image, use the bwmorph function. This process is known as
skeletonization.

BW1 = imread('circbw.tif');
BW2 = bwmorph(BW1,'skel',Inf);
imshow(BW1)
figure, imshow(BW2)

Perimeter Determination
The bwperim function determines the perimeter pixels of the objects in a binary
image. A pixel is considered a perimeter pixel if it satisfies both of these
criteria:

• The pixel is on.

imopen Erodes an image and then dilates the eroded image
using the same structuring element for both operations.

imtophat Subtracts a morphologically opened image from the
original image. Can be used to enhance contrast in an
image.

Dilation- and Erosion-Based Functions

Function Morphological Definition (Continued)

Original Image Skeletonization of Image

9 Morphological Operations

9-18

• One (or more) of the pixels in its neighborhood is off.

For example, this code finds the perimeter pixels in a binary image of a circuit
board.

BW1 = imread('circbw.tif');
BW2 = bwperim(BW1);
imshow(BW1)
figure, imshow(BW2)

Original Image Perimeters Determined

Morphological Reconstruction

9-19

Morphological Reconstruction
Morphological reconstruction is another major part of morphological image
processing. Based on dilation, morphological reconstruction has these unique
properties:

• Processing is based on two images, a marker and a mask, rather than one
image and a structuring element.

• Processing repeats until stability; i.e., the image no longer changes.

• Processing is based on the concept of connectivity, rather than a structuring
element.

This section

• Provides background information about morphological reconstruction and
describes how to use the imreconstruct function

• Describes how pixel connectivity affects morphological reconstruction

• Describes how to use the imfill function, which is based on morphological
reconstruction

• Describes a group of functions, all based on morphological reconstruction,
that process image extrema, i.e., the areas of high and low intensity in
images

Marker and Mask
Morphological reconstruction processes one image, called the marker, based on
the characteristics of another image, called the mask. The high points, or
peaks, in the marker image specify where processing begins. The processing
continues until the image values stop changing.

To illustrate morphological reconstruction, consider this simple image. It
contains two primary regions, the blocks of pixels containing the values 14 and
18. The background is primarily all set to 10, with some pixels set to 11.

9 Morphological Operations

9-20

To morphologically reconstruct this image, perform these steps:

1 Create a marker image. As with the structuring element in dilation and
erosion, the characteristics of the marker image determine the processing
performed in morphological reconstruction. The peaks in the marker image
should identify the location of objects in the mask image that you want to
emphasize.

One way to create a marker image is to subtract a constant from the mask
image, using imsubtract.

marker = imsubtract(A,2)
marker =
 8 8 8 8 8 8 8 8 8 8
 8 12 12 12 8 8 9 8 9 8
 8 12 12 12 8 8 8 9 8 8
 8 12 12 12 8 8 9 8 9 8
 8 8 8 8 8 8 8 8 8 8
 8 9 8 8 8 16 16 16 8 8
 8 8 8 9 8 16 16 16 8 8
 8 8 9 8 8 16 16 16 8 8
 8 9 8 9 8 8 8 8 8 8
 8 8 8 8 8 8 9 8 8 8

2 Call the imreconstruct function to morphologically reconstruct the image.
In the output image, note how all the intensity fluctuations except the
intensity peak have been removed.

A = [10 10 10 10 10 10 10 10 10 10;
10 14 14 14 10 10 11 10 11 10;
10 14 14 14 10 10 10 11 10 10;
10 14 14 14 10 10 11 10 11 10;
10 10 10 10 10 10 10 10 10 10;
10 11 10 10 10 18 18 18 10 10;
10 10 10 11 10 18 18 18 10 10;
10 10 11 10 10 18 18 18 10 10;
10 11 10 11 10 10 10 10 10 10;
10 10 10 10 10 10 11 10 10 10];

Morphological Reconstruction

9-21

recon = imreconstruct(marker, mask)

Understanding Morphological Reconstruction
Morphological reconstruction can be thought of conceptually as repeated
dilations of the marker image until the contour of the marker image fits under
the mask image. In this way, the peaks in the marker image “spread out”, or
dilate.

This figure illustrates this processing in 1-D. Each successive dilation is
constrained to lie underneath the mask. When further dilation ceases to
change the image, processing stops. The final dilation is the reconstructed
image. (Note: the actual implementation of this operation in the toolbox is done
much more efficiently. See the imreconstruct reference page for more details.)
The figure shows the successive dilations of the marker.

recon =
10 10 10 10 10 10 10 10 10 10
10 12 12 12 10 10 10 10 10 10
10 12 12 12 10 10 10 10 10 10
10 12 12 12 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 16 16 16 10 10
10 10 10 10 10 16 16 16 10 10
10 10 10 10 10 16 16 16 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10

9 Morphological Operations

9-22

Repeated Dilations of Marker Image, Constrained by Mask

Marker

Mask

Repeated dilations of marker image

Image
Reconstructed

Morphological Reconstruction

9-23

Pixel Connectivity
Morphological processing starts at the peaks in the marker image and spreads
throughout the rest of the image based on the connectivity of the pixels.
Connectivity defines which pixels are connected to other pixels.

For example, this binary image contains one foreground object—all the pixels
that are set to 1. If the foreground is 4-connected, the image has one
background object, and all the pixels are set to 0. However, if the foreground is
8-connected, the foreground makes a closed loop and the image has two
separate background objects: the pixels in the loop and the pixels outside the
loop.

0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0
0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Defining Connectivity in an Image
The following table lists all the standard two- and three-dimensional
connectivities supported by the toolbox. See these sections for more
information:

• “Choosing a Connectivity”

• “Specifying Custom Connectivities”

9 Morphological Operations

9-24

Supported Connectivities

Two-Dimensional Connectivities

4-connected Pixels are connected if their edges touch. This
means that a pair of adjoining pixels are part of the
same object only if they are both on and are
connected along the horizontal or vertical direction.

8-connected Pixels are connected if their edges or corners touch.
This means that if two adjoining pixels are on, they
are part of the same object, regardless of whether
they are connected along the horizontal, vertical, or
diagonal direction.

Three-Dimensional Connectivities

6-connected Pixels are connected if their faces touch.

18-connected Pixels are connected if their faces or edges touch.

26-connected Pixels are connected if their faces, edges, or corners
touch.

6 faces

6 faces +
12 edges

6 faces +
12 edges +
8 corners

Morphological Reconstruction

9-25

Choosing a Connectivity
The type of neighborhood you choose affects the number of objects found in an
image and the boundaries of those objects. For this reason, the results of many
morphology operations often differ depending upon the type of connectivity you
specify.

For example, if you specify a 4-connected neighborhood, this binary image
contains two objects; if you specify an 8-connected neighborhood, the image has
one object.

0 0 0 0 0 0
0 1 1 0 0 0
0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 1 1 0

Specifying Custom Connectivities
You can also define custom neighborhoods by specifying a 3-by-3-by-...-by-3
array of 0’s and 1’s. The 1-valued elements define the connectivity of the
neighborhood relative to the center element.

For example, this array defines a “North/South” connectivity that has the effect
of breaking up an image into independent columns.

CONN = [0 1 0; 0 1 0; 0 1 0]
CONN =
 0 1 0
 0 1 0
 0 1 0

Note Connectivity arrays must be symmetric about their center element.
Also, you can use a 2-D connectivity array with a 3-D image; the connectivity
affects each “page” in the 3-D image.

9 Morphological Operations

9-26

Flood-Fill Operations
The imfill function performs a flood-fill operation on binary and grayscale
images. For binary images, imfill changes connected background pixels (0’s)
to foreground pixels (1’s), stopping when it reaches object boundaries. For
grayscale images, imfill brings the intensity values of dark areas that are
surrounded by lighter areas up to the same intensity level as surrounding
pixels. (In effect, imfill removes regional minima that are not connected to the
image border. See “Finding Areas of High or Low Intensity” for more
information.) This operation can be useful in removing irrelevant artifacts
from images.

This section includes information about

• Specifying the connectivity in flood-fill operations

• Specifying the starting point for binary image fill operations

• Filling holes in binary or grayscale images

Specifying Connectivity
For both binary and grayscale images, the boundary of the fill operation is
determined by the connectivity you specify.

Note imfill differs from the other object-based operations in that it operates
on background pixels. When you specify connectivity with imfill, you are
specifying the connectivity of the background, not the foreground.

The implications of connectivity can be illustrated with this matrix.

BW = [0 0 0 0 0 0 0 0;
0 1 1 1 1 1 0 0;
0 1 0 0 0 1 0 0;
0 1 0 0 0 1 0 0;
0 1 0 0 0 1 0 0;
0 1 1 1 1 0 0 0;
0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0];

If the background is 4-connected, this binary image contains two separate
background elements (the part inside the loop and the part outside). If the

Morphological Reconstruction

9-27

background is 8-connected, the pixels connect diagonally, and there is only one
background element.

Specifying the Starting Point
For binary images, you can specify the starting point of the fill operation by
passing in the location subscript or by using imfill in interactive mode,
selecting starting pixels with a mouse. See the reference page for imfill for
more information about using imfill interactively.

For example, if you call imfill, specifying the pixel BW(4,3) as the starting
point, imfill only fills the inside of the loop because, by default, the
background is 4-connected.

imfill(BW,[4 3])

ans =
0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0
0 1 1 1 1 1 0 0
0 1 1 1 1 1 0 0
0 1 1 1 1 1 0 0
0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

If you specify the same starting point, but use an 8-connected background
connectivity, imfill fills the entire image.

imfill(BW,[4 3],8)

ans =
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

9 Morphological Operations

9-28

Filling Holes
A common use of the flood-fill operation is to fill holes in images. For example,
suppose you have an image, binary or grayscale, in which the foreground
objects represent spheres. In the image, these objects should appear as disks,
but instead are donut shaped because of reflections in the original photograph.
Before doing any further processing of the image, you might want to first fill in
the “donut holes” using imfill.

Because the use of flood-fill to fill holes is so common, imfill includes special
syntax to support it for both binary and grayscale images. In this syntax, you
just specify the argument 'holes'; you do not have to specify starting locations
in each hole.

To illustrate, this example fills holes in a grayscale image of a spinal column.

[X,map] = imread('spine.tif');
I = ind2gray(X,map);
Ifill = imfill(I,'holes');
imshow(I);figure, imshow(Ifill)

Original After Filling Holes

Morphological Reconstruction

9-29

Finding Peaks and Valleys
Grayscale images can be thought of in three dimensions: the x- and y-axes
represent pixel positions and the z-axis represents the intensity of each pixel.
In this interpretation, the intensity values represent elevations, as in a
topographical map. The areas of high intensity and low intensity in an image,
peaks and valleys in topographical terms, can be important morphological
features because they often mark relevant image objects.

For example, in an image of several spherical objects, points of high intensity
could represent the tops of the objects. Using morphological processing, these
maxima can be used to identify objects in an image.

This section covers these topics:

• “Understanding the Maxima and Minima Functions”

• “Finding Areas of High or Low Intensity” on page 9-30

• “Suppressing Minima and Maxima” on page 9-31

• “Imposing a Minimum” on page 9-33

Understanding the Maxima and Minima Functions
An image can have multiple regional maxima or minima but only a single
global maximum or minimum. Determining image peaks or valleys can be used
to create marker images that are used in morphological reconstruction.

This figure illustrates the concept in 1-D.

Regional maxima

Regional minima Global minimum

Global maximum

9 Morphological Operations

9-30

Finding Areas of High or Low Intensity
The toolbox includes functions that you can use to find areas of high or low
intensity in an image:

• The imregionalmax and imregionalmin functions identify all regional
minima or maxima.

• The imextendedmax and imextendedmin functions identify all regional
minima or maxima that are greater than or less than a specified threshold.

The functions accept a grayscale image as input and return a binary image as
output. In the output binary image, the regional minima or maxima are set to
1; all other pixels are set to 0.

For example, this simple image contains two primary regional maxima, the
blocks of pixels containing the value 13 and 18, and several smaller maxima,
set to 11.

The binary image returned by imregionalmax pinpoints all these regional
maxima.

A = [10 10 10 10 10 10 10 10 10 10;
10 13 13 13 10 10 11 10 11 10;
10 13 13 13 10 10 10 11 10 10;
10 13 13 13 10 10 11 10 11 10;
10 10 10 10 10 10 10 10 10 10;
10 11 10 10 10 18 18 18 10 10;
10 10 10 11 10 18 18 18 10 10;
10 10 11 10 10 18 18 18 10 10;
10 11 10 11 10 10 10 10 10 10;
10 10 10 10 10 10 11 10 10 10];

Morphological Reconstruction

9-31

B = imregionalmax(A)

You might want only to identify areas of the image where the change in
intensity is extreme; that is, the difference between the pixel and neighboring
pixels is greater than (or less than) a certain threshold. For example, to find
only those regional maxima in the sample image, A, that are at least two units
higher than their neighbors, use imextendedmax.

B = imextendedmax(A,2)

Suppressing Minima and Maxima
In an image, every small fluctuation in intensity represents a regional
minimum or maximum. You might only be interested in significant minima or
maxima and not in these smaller minima and maxima caused by background
texture.

To remove the less significant minima and maxima but retain the significant
minima and maxima, use the imhmax or imhmin function. With these functions,

B =
0 0 0 0 0 0 0 0 0 0

 0 1 1 1 0 0 1 0 1 0
 0 1 1 1 0 0 0 1 0 0
 0 1 1 1 0 0 1 0 1 0
 0 0 0 0 0 0 0 0 0 0
 0 1 0 0 0 1 1 1 0 0
 0 0 0 1 0 1 1 1 0 0
 0 0 1 0 0 1 1 1 0 0
 0 1 0 1 0 0 0 0 0 0
 0 0 0 0 0 0 1 0 0 0

B =
 0 0 0 0 0 0 0 0 0 0
 0 1 1 1 0 0 0 0 0 0
 0 1 1 1 0 0 0 0 0 0
 0 1 1 1 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0

9 Morphological Operations

9-32

you can specify a contrast criteria or threshold level, h, that suppresses all
maxima whose height is less than h or whose minima are greater than h.

Note The imregionalmin, imregionalmax, imextendedmin, and
imextendedmax functions return a binary image that marks the locations of
the regional minima and maxima in an image. The imhmax and imhmin
functions produce an altered image.

For example, this simple image contains two primary regional maxima, the
blocks of pixels containing the value 14 and 18, and several smaller maxima,
set to 11.

To eliminate all regional maxima except the two significant maxima, use
imhmax, specifying a threshold value of 2. Note that imhmax only affects the
maxima; none of the other pixel values are changed. The two significant
maxima remain, although their heights are reduced.

A = [10 10 10 10 10 10 10 10 10 10;
 10 14 14 14 10 10 11 10 11 10;
 10 14 14 14 10 10 10 11 10 10;
 10 14 14 14 10 10 11 10 11 10;
 10 10 10 10 10 10 10 10 10 10;
 10 11 10 10 10 18 18 18 10 10;
 10 10 10 11 10 18 18 18 10 10;
 10 10 11 10 10 18 18 18 10 10;
 10 11 10 11 10 10 10 10 10 10;
 10 10 10 10 10 10 11 10 10 10];

Morphological Reconstruction

9-33

B = imhmax(A,2)

This figure takes the second row from the sample image to illustrate in 1-D how
imhmax changes the profile of the image.

Imposing a Minimum
You can emphasize specific minima (dark objects) in an image using the
imimposemin function. The imimposemin function uses morphological
reconstruction to eliminate all minima from the image except the minima you
specify.

To illustrate the process of imposing a minimum, this code creates a simple
image containing two primary regional minima and several other regional
minima.

mask = uint8(10*ones(10,10));
mask(6:8,6:8) = 2;
mask(2:4,2:4) = 7;

B =
 10 10 10 10 10 10 10 10 10 10
 10 12 12 12 10 10 10 10 10 10
 10 12 12 12 10 10 10 10 10 10
 10 12 12 12 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 16 16 16 10 10
 10 10 10 10 10 16 16 16 10 10
 10 10 10 10 10 16 16 16 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10

Original profile

h-maxima transform

9 Morphological Operations

9-34

mask(3,3) = 5;
mask(2,9) = 9
mask(3,8) = 9
mask(9,2) = 9
mask(8,3) = 9

Creating a Marker Image
To obtain an image that emphasizes the two deepest minima and removes all
others, create a marker image that pinpoints the two minima of interest. You
can create the marker image by explicitly setting certain pixels to specific
values or by using other morphological functions to extract the features you
want to emphasize in the mask image.

This example uses imextendedmin to get a binary image that shows the
locations of the two deepest minima.

marker = imextendedmin(mask,1)

mask = 10 10 10 10 10 10 10 10 10 10
10 7 7 7 10 10 10 10 9 10
10 7 6 7 10 10 10 9 10 10
10 7 7 7 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 2 2 2 10 10
10 10 10 10 10 2 2 2 10 10
10 10 9 10 10 2 2 2 10 10
10 9 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10

marker = 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Morphological Reconstruction

9-35

Applying the Marker Image to the Mask
Now use imimposemin to create new minima in the mask image at the points
specified by the marker image. Note how imimposemin sets the values of pixels
specified by the marker image to the lowest value supported by the datatype (0
for uint8 values). imimposemin also changes the values of all the other pixels
in the image to eliminate the other minima.

I = imimposemin(mask,marker)
I =

11 11 11 11 11 11 11 11 11 11
 11 8 8 8 11 11 11 11 11 11
 11 8 0 8 11 11 11 11 11 11
 11 8 8 8 11 11 11 11 11 11
 11 11 11 11 11 11 11 11 11 11
 11 11 11 11 11 0 0 0 11 11
 11 11 11 11 11 0 0 0 11 11
 11 11 11 11 11 0 0 0 11 11
 11 11 11 11 11 11 11 11 11 11
 11 11 11 11 11 11 11 11 11 11

This figure illustrates in 1-D how imimposemin changes the profile of row 2 of
the image.

9 Morphological Operations

9-36

Imposing a Minimum

Three regional minima

Single minimum

Image after minima

Original image

Original image

Marker image
superimposed

imposition

Original image

Single minimum

Distance Transform

9-37

Distance Transform
The distance transform provides a metric or measure of the separation of
points in the image. The Image Processing Toolbox provides a function, bwdist,
that calculates the distance between each pixel that is set to off (0) and the
nearest nonzero pixel for binary images.

The bwdist function supports several distance metrics, listed in the following
table.

Distance Metrics

Distance Metric Description Illustration

Euclidean The Euclidean distance is the
straight-line distance between two
pixels.

City Block The city block distance metric
measures the path between the
pixels based on a 4-connected
neighborhood. Pixels whose edges
touch are 1 unit apart; pixels
diagonally touching are 2 units
apart.

1

0

0

0

0

0

00

0

0.0

1.41

1.0

1.41

1.41

1.0

1.411.0

1.0

Image Distance transform

1

0

0

0

0

0

00

0

Image Distance transform

0

2

1

2

2

1

21

1

9 Morphological Operations

9-38

This example creates a binary image containing two intersecting circular
objects.

center1 = -10;
center2 = -center1;
dist = sqrt(2*(2*center1)^2);
radius = dist/2 * 1.4;
lims = [floor(center1-1.2*radius) ceil(center2+1.2*radius)];
[x,y] = meshgrid(lims(1):lims(2));
bw1 = sqrt((x-center1).^2 + (y-center1).^2) <= radius;
bw2 = sqrt((x-center2).^2 + (y-center2).^2) <= radius;
bw = bw1 | bw2;
figure, imshow(bw), title('bw')

Chessboard The chessboard distance metric
measures the path between the
pixels based on an 8-connected
neighborhood. Pixels whose edges
or corners touch are 1 unit apart.

Quasi-Euclidean The quasi-Euclidean metric
measures the total Euclidean
distance along a set of horizontal,
vertical, and diagonal line
segments.

Distance Metrics (Continued)

Distance Metric Description Illustration

1

0

0

0

0

0

00

0

Image Distance transform

1

1

1

1

1

1

11

1

Image Distance transform

0

0

0

0

00000

0 0 0 0

0

0

0

0

0

0 1

00

0 0 0 2.8

2.2

2.0

2.2

2.82.22.02.22.8

2.2 1.4 1.0 1.4

1.0

1.4

2.2

2.0

2.2

1.0 0

1.01.4

2.8 2.2 2.0

Distance Transform

9-39

To compute the distance transform of the complement of the binary image, use
the bwdist function. In the image of the distance transform, note how the
centers of the two circular areas are white.

D = bwdist(~bw);
figure, imshow(D,[]), title('Distance transform of ~bw')

9 Morphological Operations

9-40

Objects, Regions, and Feature Measurement
The toolbox includes several functions that return information about the
features in a binary image, including

• Connected-component labeling, and using the label matrix to get statistics
about an image

• Selecting objects in a binary image

• Finding the area of the foreground of a binary image

• Finding the Euler number of a binary image

Connected-Component Labeling
The bwlabel and the bwlabeln functions perform connected-component
labeling, which is a method for identifying each object in a binary image. The
bwlabel function supports 2-D inputs only; the bwlabeln function supports
inputs of any dimension.

These functions return a matrix, called a label matrix. A label matrix is an
image, the same size as the input image, in which the objects in the input image
are distinguished by different integer values in the output matrix. For
example, bwlabel can identify the objects in this binary image.

BW = [0 0 0 0 0 0 0 0;
0 1 1 0 0 1 1 1;
0 1 1 0 0 0 1 1;
0 1 1 0 0 0 0 0;
0 0 0 1 1 0 0 0;
0 0 0 1 1 0 0 0;
0 0 0 1 1 0 0 0;
0 0 0 0 0 0 0 0];

Objects, Regions, and Feature Measurement

9-41

X = bwlabel(BW,4)
X =

0 0 0 0 0 0 0 0
0 1 1 0 0 3 3 3
0 1 1 0 0 0 3 3
0 1 1 0 0 0 0 0
0 0 0 2 2 0 0 0
0 0 0 2 2 0 0 0
0 0 0 2 2 0 0 0
0 0 0 0 0 0 0 0

In the output matrix, the 1’s represent one object, the 2’s a second object, and
the 3’s a third. (If you had used 8-connected neighborhoods (the default), there
would be only two objects, because the first and second objects would be a single
object, connected along the diagonal.)

Viewing a Label Matrix
The label matrix returned by bwlabel or bwlabeln is of class double; it is not
a binary image. One way to view it is to display it as a pseudocolor indexed
image, using label2rgb. In the pseudocolor image, each number that identifies
an object in the label matrix is used as an index value into the associated
colormap matrix. When you view a label matrix as an RGB image, the objects
in the image are easier to distinguish.

To illustrate this technique, this example uses label2rgb to view the label
matrix X. The call to label2rgb specifies one of the standard MATLAB
colormaps, jet. The third argument, 'k', specifies the background color
(black).

X = bwlabel(BW1,4);
RGB = label2rgb(X, @jet, 'k');
imshow(RGB,'notruesize')

9 Morphological Operations

9-42

Using Color to Distinguish Objects in a Binary Image

Selecting Objects in a Binary Image
You can use the bwselect function to select individual objects in a binary
image. You specify pixels in the input image, and bwselect returns a binary
image that includes only those objects from the input image that contain one of
the specified pixels.

You can specify the pixels either noninteractively or with a mouse. For
example, suppose you want to select objects in the image displayed in the
current axes. You type

BW2 = bwselect;

The cursor changes to crosshairs when it is over the image. Click the objects
you want to select; bwselect displays a small star over each pixel you click.
When you are done, press Return. bwselect returns a binary image consisting
of the objects you selected, and removes the stars.

See the reference page for bwselect for more information.

Finding the Area of the Foreground of a Binary
Image
The bwarea function returns the area of a binary image. The area is a measure
of the size of the foreground of the image. Roughly speaking, the area is the
number of on pixels in the image.

Objects, Regions, and Feature Measurement

9-43

bwarea does not simply count the number of pixels set to on, however. Rather,
bwarea weights different pixel patterns unequally when computing the area.
This weighting compensates for the distortion that is inherent in representing
a continuous image with discrete pixels. For example, a diagonal line of 50
pixels is longer than a horizontal line of 50 pixels. As a result of the weighting
bwarea uses, the horizontal line has area of 50, but the diagonal line has area
of 62.5.

This example uses bwarea to determine the percentage area increase in
circbw.tif that results from a dilation operation.

BW = imread('circbw.tif');
SE = ones(5);
BW2 = imdilate(BW,SE);
increase = (bwarea(BW2) - bwarea(BW))/bwarea(BW);
increase =

 0.3456

See the reference page for bwarea for more information about the weighting
pattern.

Finding the Euler Number of a Binary Image
The bweuler function returns the Euler number for a binary image. The Euler
number is a measure of the topology of an image. It is defined as the total
number of objects in the image minus the number of holes in those objects. You
can use either 4- or 8-connected neighborhoods.

This example computes the Euler number for the circuit image, using
8-connected neighborhoods.

BW1 = imread('circbw.tif');
eul = bweuler(BW1,8)

eul =

 -85

In this example, the Euler number is negative, indicating that the number of
holes is greater than the number of objects.

9 Morphological Operations

9-44

Lookup Table Operations
Certain binary image operations can be implemented most easily through
lookup tables. A lookup table is a column vector in which each element
represents the value to return for one possible combination of pixels in a
neighborhood.

You can use the makelut function to create lookup tables for various
operations. makelut creates lookup tables for 2-by-2 and 3-by-3 neighborhoods.
This figure illustrates these types of neighborhoods. Each neighborhood pixel
is indicated by an x, and the center pixel is the one with a circle.

For a 2-by-2 neighborhood, there are 16 possible permutations of the pixels in
the neighborhood. Therefore, the lookup table for this operation is a 16-element
vector. For a 3-by-3 neighborhood, there are 512 permutations, so the lookup
table is a 512-element vector.

Once you create a lookup table, you can use it to perform the desired operation
by using the applylut function.

The example below illustrates using lookup table operations to modify an
image containing text. You begin by writing a function that returns 1 if three
or more pixels in the 3-by-3 neighborhood are 1; otherwise, it returns 0. You
then call makelut, passing in this function as the first argument, and using the
second argument to specify a 3-by-3 lookup table.

f = inline('sum(x(:)) >= 3');
lut = makelut(f,3);

lut is returned as a 512-element vector of 1’s and 0’s. Each value is the output
from the function for one of the 512 possible permutations.

x

x x

x

xx

x

x

x x

x x x

2-by-2 neighborhood 3-by-3 neighborhood

Lookup Table Operations

9-45

You then perform the operation using applylut.

BW1 = imread('text.png');
BW2 = applylut(BW1,lut);
imshow(BW1)
figure, imshow(BW2)

Image Before and After Applying Lookup Table Operation

For information about how applylut maps pixel combinations in the image to
entries in the lookup table, see the reference page for applylut.

Note You cannot use makelut and applylut for neighborhoods of sizes other
than 2-by-2 or 3-by-3. These functions support only 2-by-2 and 3-by-3
neighborhoods, because lookup tables are not practical for neighborhoods
larger than 3-by-3. For example, a lookup table for a 4-by-4 neighborhood
would have 65,536 entries.

9 Morphological Operations

9-46

10
Analyzing and Enhancing
Images

This chapter describes the Image Processing Toolbox functions that support a range of standard
image processing operations for analyzing and enhancing images.

Terminology (p. 10-2) Provides definitions of image processing terms used in
this section

Pixel Values and Statistics (p. 10-3) Describes the toolbox functions that return information
about the data values that make up an image

Image Analysis (p. 10-12) Describes the toolbox functions that return information
about the structure of an image

Intensity Adjustment (p. 10-21) Describes the toolbox functions used to improve an image
by intensity adjustment

Noise Removal (p. 10-34) Describes the toolbox functions used to improve an image
by removing noise

10 Analyzing and Enhancing Images

10-2

Terminology
An understanding of the following terms will help you to use this chapter.

Term Definition

adaptive filter Filter whose properties vary across an image depending on
the local characteristics of the image pixels.

contour Path in an image along which the image intensity values are
equal to a constant.

edge Curve that follows a path of rapid change in image intensity.
Edges are often associated with the boundaries of objects in a
scene. Edge detection is used to identify the edges in an
image.

property Quantitative measurement of an image or image region.
Examples of image region properties include centroid,
bounding box, and area.

histogram Graph used in image analysis that shows the distribution of
intensities in an image. You can use the information in a
histogram to choose an appropriate enhancement operation.
For example, if an image histogram shows that the range of
intensity values is small, you can use an intensity adjustment
function to spread the values across a wider range.

noise Errors in the image acquisition process that result in pixel
values that do not reflect the true intensities of the real scene.

profile Set of intensity values taken from regularly spaced points
along a line segment or multiline path in an image. For points
that do not fall on the center of a pixel, the intensity values
are interpolated.

quadtree decomposition Image analysis technique that partitions an image into
homogeneous blocks.

Pixel Values and Statistics

10-3

Pixel Values and Statistics
The Image Processing Toolbox provides several functions that return
information about the data values that make up an image. These functions
return information about image data in various forms, including

• Data values for selected pixels (pixval, impixel)

• Data values along a path in an image (improfile)

• Contour plot of the image data (imcontour)

• Histogram of the image data (imhist)

• Summary statistics for the image data (mean2, std2, corr2)

• Feature measurements for image regions (regionprops)

Pixel Selection
The toolbox includes two functions that provide information about the color
data values of image pixels you specify:

• The pixval function interactively displays the data values for pixels as you
move the cursor over the image. pixval can also display the Euclidean
distance between two pixels.

• The impixel function returns the data values for a selected pixel or set of
pixels. You can supply the coordinates of the pixels as input arguments, or
you can select pixels using a mouse.

Note For indexed images, pixval and impixel both show the RGB values
stored in the colormap, not the index values.

To use pixval, you first display an image and then enter the pixval command.
pixval installs a black bar at the bottom of the figure, which displays the (x,y)
coordinates for whatever pixel the cursor is currently over and the color data
for that pixel.

If you click the image and hold down the mouse button while you move the
cursor, pixval also displays the Euclidean distance between the point you
clicked and the current cursor location. pixval draws a line between these

10 Analyzing and Enhancing Images

10-4

points to indicate the distance being measured. When you release the mouse
button, the line and the distance display disappear.

pixval gives you more immediate results than impixel, but impixel has the
advantage of returning its results in a variable, and it can be called either
interactively or noninteractively. If you call impixel with no input arguments,
the cursor changes to crosshairs when it is over the image. You can then click
the pixels of interest; impixel displays a small star over each pixel you select.
When you are done selecting pixels, press Return. impixel returns the color
values for the selected pixels, and the stars disappear.

This example illustrates how to use impixel:

1 Display an image.

imshow canoe.tif

2 Call impixel to select points.

vals = impixel

Click several points in the image to select pixels. When you are finished
selecting points, press Return.

*

*
*

Pixel Values and Statistics

10-5

The impixel function returns the pixel values in vals.

vals =

0.1294 0.1294 0.1294
0.5176 0 0
0.7765 0.6118 0.4196

Notice that the second pixel, which is part of the canoe, is pure red; its green
and blue values are both 0.

Intensity Profile
The improfile function calculates and plots the intensity values along a line
segment or a multiline path in an image. You can supply the coordinates of the
line segments as input arguments, or you can define the desired path using a
mouse. In either case, improfile uses interpolation to determine the values of
equally spaced points along the path. (By default, improfile uses
nearest-neighbor interpolation, but you can specify a different method. For
more information, see “Interpolation” on page 4-3.) improfile works best with
intensity and RGB images.

For a single line segment, improfile plots the intensity values in a
two-dimensional view. For a multiline path, improfile plots the intensity
values in a three-dimensional view.

If you call improfile with no arguments, the cursor changes to crosshairs
when it is over the image. You can then specify line segments by clicking the
endpoints; improfile draws a line between each two consecutive points you
select. When you finish specifying the path, press Return. improfile displays
the plot in a new figure.

In this example, you call improfile and specify a single line with the mouse.
In this figure, the line is shown in red, and is drawn from top to bottom.

I = fitsread('solarspectra.fts');
imshow(I,[]);
improfile

10 Analyzing and Enhancing Images

10-6

improfile displays a plot of the data along the line. Notice the peaks and
valleys and how they correspond to the light and dark bands in the image.

Plot Produced by improfile

The example below shows how improfile works with an RGB image. Use
imshow to display the image in a figure window. Call improfile without any
arguments and trace a line segment in the image interactively. In the figure,

Image Courtesy of Ann Walker

Pixel Values and Statistics

10-7

the black line indicates a line segment drawn from top to bottom. Double-click
to end the line segment.

imshow peppers.png
improfile

RGB Image with Line Segment Drawn with improfile

The improfile function displays a plot of the intensity values along the line
segment. The plot includes separate lines for the red, green, and blue
intensities. In the plot, notice how low the blue values are at the beginning of
the plot where the line traverses the orange pepper.

10 Analyzing and Enhancing Images

10-8

Plot of Intensity Values Along a Line Segment in an RGB Image

Image Contours
You can use the toolbox function imcontour to display a contour plot of the data
in an intensity image. This function is similar to the contour function in
MATLAB, but it automatically sets up the axes so their orientation and aspect
ratio match the image.

This example displays an intensity image of grains of rice and a contour plot of
the image data:

1 Read an intensity image and display it.

I = imread('rice.png');
imshow(I)

Pixel Values and Statistics

10-9

2 Display a contour plot of the intensity image.

figure, imcontour(I,3)

You can use the clabel function to label the levels of the contours. See the
description of clabel in the MATLAB Function Reference for details.

Image Histogram
An image histogram is a chart that shows the distribution of intensities in an
indexed or intensity image. The image histogram function imhist creates this
plot by making n equally spaced bins, each representing a range of data values.
It then calculates the number of pixels within each range.

10 Analyzing and Enhancing Images

10-10

The following example displays an image of grains of rice and a histogram
based on 64 bins. The histogram shows a peak at around 100, corresponding to
the dark gray background in the image. For information about how to modify
an image by changing the distribution of its histogram, see “Adjusting
Intensity Values to a Specified Range” on page 10-22.

1 Read image and display it.

I = imread('rice.png');
imshow(I)

2 Display histogram of image.

figure, imhist(I)

Pixel Values and Statistics

10-11

Summary Statistics
You can compute standard statistics of an image using the mean2, std2, and
corr2 functions. mean2 and std2 compute the mean and standard deviation of
the elements of a matrix. corr2 computes the correlation coefficient between
two matrices of the same size.

These functions are two-dimensional versions of the mean, std, and corrcoef
functions described in the MATLAB Function Reference.

Region Property Measurement
You can use the regionprops function to compute properties for image regions.
For example, regionprops can measure such properties as the area, center of
mass, and bounding box for a region you specify. See the reference page for
regionprops for more information.

10 Analyzing and Enhancing Images

10-12

Image Analysis
Image analysis techniques return information about the structure of an image.
This section describes toolbox functions that you can use for these image
analysis techniques:

• “Edge Detection”

• “Boundary Tracing” on page 10-13

• “Quadtree Decomposition” on page 10-18

Edge Detection
You can use the edge function to detect edges, which are those places in an
image that correspond to object boundaries. To find edges, this function looks
for places in the image where the intensity changes rapidly, using one of these
two criteria:

• Places where the first derivative of the intensity is larger in magnitude than
some threshold

• Places where the second derivative of the intensity has a zero crossing

edge provides a number of derivative estimators, each of which implements one
of the definitions above. For some of these estimators, you can specify whether
the operation should be sensitive to horizontal edges, vertical edges, or both.
edge returns a binary image containing 1’s where edges are found and 0’s
elsewhere.

The most powerful edge-detection method that edge provides is the Canny
method. The Canny method differs from the other edge-detection methods in
that it uses two different thresholds (to detect strong and weak edges), and
includes the weak edges in the output only if they are connected to strong
edges. This method is therefore less likely than the others to be fooled by noise,
and more likely to detect true weak edges.

The following example illustrates the power of the Canny edge detector by
showing the results of applying the Sobel and Canny edge detectors to the same
image:

1 Read image and display it.

I = imread('coins.png');
imshow(I)

Image Analysis

10-13

2 Apply the Sobel and Canny edge detectors to the image and display them.

BW1 = edge(I,'sobel');
BW2 = edge(I,'canny');
imshow(BW1)
figure, imshow(BW2)

For an interactive demonstration of edge detection, try running edgedemo.

Boundary Tracing
The toolbox includes two functions you can use to find the boundaries of objects
in a binary image:

• bwtraceboundary
• bwboundaries

Sobel Filter Canny Filter

10 Analyzing and Enhancing Images

10-14

The bwtraceboundary function returns the row and column coordinates of all
the pixels on the border of an object in an image. You must specify the location
of a border pixel on the object as the starting point for the trace.

The bwboundaries function returns the row and column coordinates of border
pixels of all the objects in an image.

For both functions, nonzero pixels belong to an object and pixels with the value
0 (zero) constitute the background.

The following example uses bwtraceboundary to trace the border of an object
in a binary image and then uses bwboundaries to trace the borders of all the
objects in the image:

1 Read image and display it.

I = imread('coins.png');
imshow(I)

2 Convert the image to a binary image. bwtraceboundary and bwboundaries
only work with binary images.

BW = im2bw(I);
imshow(BW)

Image Analysis

10-15

3 Determine the row and column coordinates of a pixel on the border of the
object you want to trace. bwboundary uses this point as the starting location
for the boundary tracing.

dim = size(BW)
col = round(dim(2)/2)-90;
row = min(find(BW(:,col)))

4 Call bwtraceboundary to trace the boundary from the specified point. As
required arguments, you must specify a binary image, the row and column
coordinates of the starting point, and the direction of the first step. The
example specifies north ('N'). For information about this parameter, see
“Choosing the First Step and Direction for Boundary Tracing” on
page 10-17.

boundary = bwtraceboundary(BW,[row, col],'N');

5 Display the original grayscale image and use the coordinates returned by
bwtraceboundary to plot the border on the image.

imshow(I)
hold on;
plot(boundary(:,2),boundary(:,1),'g','LineWidth',3);

10 Analyzing and Enhancing Images

10-16

6 To trace the boundaries of all the coins in the image, use the bwboundaries
function. By default, bwboundaries finds the boundaries of all objects in an
image, including objects inside other objects. In the binary image used in
this example, some of the coins contain black areas that bwboundaries
interprets as separate objects. To ensure that bwboundaries only traces the
coins, use imfill to fill the area inside each coin.

BW_filled = imfill(BW,'holes');
boundaries = bwboundaries(BW_filled);

bwboundaries returns a cell array, where each cell contains the row/column
coordinates for an object in the image.

7 Plot the borders of all the coins on the original grayscale image using the
coordinates returned by bwboundaries.

for k=1:10
b = boundaries{k};
plot(b(:,2),b(:,1),'g','LineWidth',3);

end

Object with traced boundary

Image Analysis

10-17

Choosing the First Step and Direction for Boundary Tracing
For certain objects, you must take care when selecting the border pixel you
choose as the starting point and the direction you choose for the first step
parameter (north, south, etc.).

For example, if an object contains a hole and you select a pixel on a thin part of
the object as the starting pixel, you can trace the outside border of the object or
the inside border of the hole, depending on the direction you choose for the first
step. For filled objects, the direction you select for the first step parameter is
not as important.

To illustrate, this figure shows the pixels traced when the starting pixel is on
a thin part of the object and the first step is set to north and south. The
connectivity is set to 8 (the default).

10 Analyzing and Enhancing Images

10-18

Impact of First Step and Direction Parameters on Boundary Tracing

Quadtree Decomposition
Quadtree decomposition is an analysis technique that involves subdividing an
image into blocks that are more homogeneous than the image itself. This
technique reveals information about the structure of the image. It is also useful
as the first step in adaptive compression algorithms.

FirstStep = North Direction = Clockwise

FirstStep = South Direction = Clockwise

= Boundary pixel

= Starting point

Image Analysis

10-19

You can perform quadtree decomposition using the qtdecomp function. This
function works by dividing a square image into four equal-sized square blocks,
and then testing each block to see if it meets some criterion of homogeneity
(e.g., if all the pixels in the block are within a specific dynamic range). If a block
meets the criterion, it is not divided any further. If it does not meet the
criterion, it is subdivided again into four blocks, and the test criterion is applied
to those blocks. This process is repeated iteratively until each block meets the
criterion. The result might have blocks of several different sizes.

For example, suppose you want to perform quadtree decomposition on a
128-by-128 intensity image. The first step is to divide the image into four
64-by-64 blocks. You then apply the test criterion to each block; for example,
the criterion might be this threshold calculation.

max(block(:)) min(block(:)) <= 0.2

If one of the blocks meets this criterion, it is not divided any further; it is
64-by-64 in the final decomposition. If a block does not meet the criterion, it is
then divided into four 32-by-32 blocks, and the test is then applied to each of
these blocks. The blocks that fail to meet the criterion are then divided into four
16-by-16 blocks, and so on, until all blocks pass. Some of the blocks can be as
small as 1-by-1, unless you specify otherwise.

To perform this quadtree decomposition, call the qtdecomp function, specifying
the image and the threshold value as arguments.

S = qtdecomp(I,0.27)

You specify the threshold as a value between 0 and 1, regardless of the class of
I. If I is uint8, qtdecomp multiplies the threshold value by 255 to determine
the actual threshold to use. If I is uint16, qtdecomp multiplies the threshold
value by 65535.

S is returned as a sparse matrix, the same size as I. The nonzero elements of S
represent the upper left corners of the blocks; the value of each nonzero
element indicates the block size.

The example below shows an image and a representation of its quadtree
decomposition. (To see how this representation was created, see the example
on the qtdecomp reference page.) Each black square represents a homogeneous
block, and the white lines represent the boundaries between blocks. Notice how
the blocks are smaller in areas corresponding to large changes in intensity in
the image.

10 Analyzing and Enhancing Images

10-20

Image and a Representation of Its Quadtree Decomposition

You can also supply qtdecomp with a function (rather than a threshold value)
for deciding whether to split blocks; for example, you might base the decision
on the variance of the block. See the reference page for qtdecomp for more
information. For an interactive demonstration of quadtree decomposition, try
running qtdemo.

Image Courtesy of NASA

Intensity Adjustment

10-21

Intensity Adjustment
Image enhancement techniques are used to improve an image, where
“improve” is sometimes defined objectively (e.g., increase the signal-to-noise
ratio), and sometimes subjectively (e.g., make certain features easier to see by
modifying the colors or intensities).

Intensity adjustment is an image enhancement technique that maps an
image’s intensity values to a new range. To illustrate, this figure shows a
low-contrast image with its histogram. Notice in the histogram of the image
how all the values gather in the center of the range.

I = imread('pout.tif');
imshow(I)
figure, imhist(I,64)

If you remap the data values to fill the entire intensity range [0, 255], you can
increase the contrast of the image. The following sections describe several
intensity adjustment techniques, including

• “Adjusting Intensity Values to a Specified Range” on page 10-22

• “Histogram Equalization” on page 10-26

• “Contrast-Limited Adaptive Histogram Equalization” on page 10-28

• “Decorrelation Stretching” on page 10-29

0 50 100 150 200 250

0

1000

2000

3000

4000

5000

10 Analyzing and Enhancing Images

10-22

The functions described in this section apply primarily to intensity images.
However, some of these functions can be applied to color images as well. For
information about how these functions work with color images, see the
reference pages for the individual functions.

Adjusting Intensity Values to a Specified Range
You can adjust the intensity values in an image using the imadjust function,
where you specify the range of intensity values in the output image.

For example, this code increases the contrast in a low-contrast intensity image
by remapping the data values to fill the entire intensity range [0, 255].

I = imread('pout.tif');
J = imadjust(I);
imshow(J)
figure, imhist(J,64)

This figure displays the adjusted image and its histogram. Notice the increased
contrast in the image, and that the histogram now fills the entire range.

Adjusted Image and Its Histogram

Specifying the Adjustment Limits
You can optionally specify the range of the input values and the output values
using imadjust. You specify these ranges in two vectors that you pass to
imadjust as arguments. The first vector specifies the low- and high-intensity

Intensity Adjustment

10-23

values that you want to map. The second vector specifies the scale over which
you want to map them.

Note Note that you must specify the intensities as values between 0 and 1
regardless of the class of I. If I is uint8, the values you supply are multiplied
by 255 to determine the actual values to use; if I is uint16, the values are
multiplied by 65535. To learn about an alternative way to set these limits
automatically, see “Setting the Adjustment Limits Automatically” on
page 10-24.

For example, you can decrease the contrast of an image by narrowing the range
of the data. In the example below, the man’s coat is too dark to reveal any
detail. imadjust maps the range [0,51] in the uint8 input image to [128,255]
in the output image. This brightens the image considerably, and also widens
the dynamic range of the dark portions of the original image, making it much
easier to see the details in the coat. Note, however, that because all values
above 51 in the original image are mapped to 255 (white) in the adjusted image,
the adjusted image appears washed out.

I = imread('cameraman.tif');
J = imadjust(I,[0 0.2],[0.5 1]);
imshow(I)
figure, imshow(J)

Image After Remapping and Widening the Dynamic Range

Image Courtesy of MIT

10 Analyzing and Enhancing Images

10-24

Setting the Adjustment Limits Automatically
To use imadjust, you must typically perform two steps:

1 View the histogram of the image to determine the intensity value limits.

2 Specify these limits as a fraction between 0.0 and 1.0 so that you can pass
them to imadjust in the [low_in high_in] vector.

For a more convenient way to specify these limits, use the stretchlim function.
(The imadjust function uses stretchlim for its simplest syntax, imadjust(I).)

This function calculates the histogram of the image and determines the
adjustment limits automatically. The stretchlim function returns these
values as fractions in a vector that you can pass as the [low_in high_in]
argument to imadjust; for example:

I = imread('rice.png');
J = imadjust(I,stretchlim(I),[0 1]);

By default, stretchlim uses the intensity values that represent the bottom 1%
(0.01) and the top 1% (0.99) of the range as the adjustment limits. By trimming
the extremes at both ends of the intensity range, stretchlim makes more room
in the adjusted dynamic range for the remaining intensities. But you can
specify other range limits as an argument to stretchlim. See the stretchlim
reference page for more information.

Gamma Correction
imadjust maps low to bottom, and high to top. By default, the values between
low and high are mapped linearly to values between bottom and top. For
example, the value halfway between low and high corresponds to the value
halfway between bottom and top.

imadjust can accept an additional argument that specifies the gamma
correction factor. Depending on the value of gamma, the mapping between
values in the input and output images might be nonlinear. For example, the
value halfway between low and high might map to a value either greater than
or less than the value halfway between bottom and top.

Gamma can be any value between 0 and infinity. If gamma is 1 (the default),
the mapping is linear. If gamma is less than 1, the mapping is weighted toward

Intensity Adjustment

10-25

higher (brighter) output values. If gamma is greater than 1, the mapping is
weighted toward lower (darker) output values.

The figure below illustrates this relationship. The three transformation curves
show how values are mapped when gamma is less than, equal to, and greater
than 1. (In each graph, the x-axis represents the intensity values in the input
image, and the y-axis represents the intensity values in the output image.)

Plots Showing Three Different Gamma Correction Settings

The example below illustrates gamma correction. Notice that in the call to
imadjust, the data ranges of the input and output images are specified as
empty matrices. When you specify an empty matrix, imadjust uses the default
range of [0,1]. In the example, both ranges are left empty; this means that
gamma correction is applied without any other adjustment of the data.

[X,map] = imread('forest.tif')
I = ind2gray(X,map);
J = imadjust(I,[],[],0.5);
imshow(I)
figure, imshow(J)

low high

bottom

top

γ > 1

low high

bottom

top

γ = 1

low high

bottom

top

γ < 1

10 Analyzing and Enhancing Images

10-26

Image Before and After Applying Gamma Correction

Histogram Equalization
The process of adjusting intensity values can be done automatically by the
histeq function. histeq performs histogram equalization, which involves
transforming the intensity values so that the histogram of the output image
approximately matches a specified histogram. (By default, histeq tries to
match a flat histogram with 64 bins, but you can specify a different histogram
instead; see the reference page for histeq.)

This example illustrates using histeq to adjust an intensity image. The
original image has low contrast, with most values in the middle of the intensity
range. histeq produces an output image having values evenly distributed
throughout the range.

I = imread('pout.tif');
J = histeq(I);
imshow(J)
figure, imhist(J,64)

Image Courtesy of Susan Cohen

Intensity Adjustment

10-27

Image After Histogram Equalization with Its Histogram

histeq can return a 1-by-256 vector that shows, for each possible input value,
the resulting output value. (The values in this vector are in the range [0,1],
regardless of the class of the input image.) You can plot this data to get the
transformation curve. For example:

I = imread('pout.tif');
[J,T] = histeq(I);
figure,plot((0:255)/255,T);

0 50 100 150 200 250

0

500

1000

1500

2000

2500

3000

10 Analyzing and Enhancing Images

10-28

Notice how this curve reflects the histograms in the previous figure, with the
input values mostly between 0.3 and 0.6, while the output values are
distributed evenly between 0 and 1.

For an interactive demonstration of intensity adjustment, try running
imadjdemo.

Contrast-Limited Adaptive Histogram Equalization
As an alternative to using histeq, you can perform contrast-limited adaptive
histogram equalization (CLAHE) using the adapthisteq function. While
histeq works on the entire image, adapthisteq operates on small regions in
the image, called tiles. Each tile's contrast is enhanced, so that the histogram
of the output region approximately matches a specified histogram. After
performing the equalization, adapthisteq combines neighboring tiles using
bilinear interpolation to eliminate artificially induced boundaries.

To avoid amplifying any noise that might be present in the image, you can use
adapthisteq optional parameters to limit the contrast, especially in
homogeneous areas.

Intensity Adjustment

10-29

To illustrate, this example uses adapthisteq to adjust the contrast in an
intensity image. The original image has low contrast, with most values in the
middle of the intensity range. adapthisteq produces an output image having
values evenly distributed throughout the range.

I = imread('pout.tif');
J = adapthisteq(I);
imshow(I)
figure, imshow(J)

Image After CLAHE Equalization with Its Histogram

Decorrelation Stretching
Decorrelation stretching enhances the color separation of an image with
significant band-band correlation. The exaggerated colors improve visual
interpretation and make feature discrimination easier. You apply
decorrelation stretching with the decorrstretch function. See “Adding a
Linear Contrast Stretch” on page 10-32 on how to add an optional linear
contrast stretch to the decorrelation stretch.

The number of color bands, NBANDS, in the image is usually three. But you
can apply decorrelation stretching regardless of the number of color bands.

The original color values of the image are mapped to a new set of color values
with a wider range. The color intensities of each pixel are transformed into the

0 50 100 150 200 250

0

500

1000

1500

2000

2500

3000

3500

10 Analyzing and Enhancing Images

10-30

color eigenspace of the NBANDS-by-NBANDS covariance or correlation
matrix, stretched to equalize the band variances, then transformed back to the
original color bands.

To define the bandwise statistics, you can use the entire original image or, with
the subset option, any selected subset of it. See the decorrstretch reference
page.

Simple Decorrelation Stretching
You can apply decorrelation and stretching operations on the library of images
available in the imdemos directory. The library includes a LANDSAT image of
the Little Colorado River. In this example, you perform a simple decorrelation
stretch on this image:

1 The image has seven bands, but just read in the three visible colors:

A = multibandread('littlecoriver.lan', [512, 512, 7], ...
'uint8=>uint8', 128, 'bil', 'ieee-le', ...
{'Band','Direct',[3 2 1]});

2 Then perform the decorrelation stretch:

B = decorrstretch(A);

3 Now view the results:

imshow(A); figure; imshow(B)

Compare the two images. The original has a strong violet (red-bluish) tint,
while the transformed image has a somewhat expanded color range.

Intensity Adjustment

10-31

Little Colorado River Before (left) and After (right) Decorrelation Stretch

A color band scatterplot of the images shows how the bands are decorrelated
and equalized:

rA = A(:,:,1); gA = A(:,:,2); bA = A(:,:,3);
figure, plot3(rA(:),gA(:),bA(:),'.'); grid('on')
xlabel('Red (Band 3)'); ylabel('Green (Band 2)'); ...

zlabel('Blue (Band 1)')
rB = B(:,:,1); gB = B(:,:,2); bB = B(:,:,3);
figure, plot3(rB(:),gB(:),bB(:),'.'); grid('on')
xlabel('Red (Band 3)'); ylabel('Green (Band 2)'); ...

zlabel('Blue (Band 1)')

10 Analyzing and Enhancing Images

10-32

Color Scatterplot Before (left) and After (right) Decorrelation Stretch

Adding a Linear Contrast Stretch
Now try the same transformation, but with a linear contrast stretch applied
after the decorrelation stretch:

imshow(A); C = decorrstretch(A,'Tol',0.01); figure; imshow(C)

Compare the transformed image to the original.

Intensity Adjustment

10-33

Little Colorado River After Decorrelation Stretch Followed by Linear Contrast
Stretch

Adding the linear contrast stretch enhances the resulting image by further
expanding the color range. In this case, the transformed color range is mapped
within each band to a normalized interval between 0.01 and 0.99, saturating
2%.

See the stretchlim function reference page for more about Tol. Without the
Tol option, decorrstretch applies no linear contrast stretch.

Note You can apply a linear contrast stretch as a separate operation after
performing a decorrelation stretch, using stretchlim and imadjust. This
alternative, however, often gives inferior results for uint8 and uint16 images,
because the pixel values must be clamped to [0 255] (or [0 65535]). The Tol
option in decorrstretch circumvents this limitation.

10 Analyzing and Enhancing Images

10-34

Noise Removal
Digital images are prone to a variety of types of noise. There are several ways
that noise can be introduced into an image, depending on how the image is
created. For example:

• If the image is scanned from a photograph made on film, the film grain is a
source of noise. Noise can also be the result of damage to the film, or be
introduced by the scanner itself.

• If the image is acquired directly in a digital format, the mechanism for
gathering the data (such as a CCD detector) can introduce noise.

• Electronic transmission of image data can introduce noise.

The toolbox provides a number of different ways to remove or reduce noise in
an image. Different methods are better for different kinds of noise. The
methods available include

• “Using Linear Filtering”

• “Using Median Filtering”

• “Using Adaptive Filtering” on page 10-37

To simulate the effects of some of the problems listed above, the toolbox
provides the imnoise function, which you can use to add various types of noise
to an image. The examples in this section use this function.

Using Linear Filtering
You can use linear filtering to remove certain types of noise. Certain filters,
such as averaging or Gaussian filters, are appropriate for this purpose. For
example, an averaging filter is useful for removing grain noise from a
photograph. Because each pixel gets set to the average of the pixels in its
neighborhood, local variations caused by grain are reduced.

See “Linear Filtering” on page 7-4 for more information.

Using Median Filtering
Median filtering is similar to using an averaging filter, in that each output
pixel is set to an average of the pixel values in the neighborhood of the
corresponding input pixel. However, with median filtering, the value of an
output pixel is determined by the median of the neighborhood pixels, rather

Noise Removal

10-35

than the mean. The median is much less sensitive than the mean to extreme
values (called outliers). Median filtering is therefore better able to remove
these outliers without reducing the sharpness of the image. The medfilt2
function implements median filtering.

Note Median filtering is a specific case of order-statistic filtering, also known
as rank filtering. For information about order-statistic filtering, see the
reference page for the ordfilt2 function.

The following example compares using an averaging filter and medfilt2 to
remove salt and pepper noise. This type of noise consists of random pixels’
being set to black or white (the extremes of the data range). In both cases the
size of the neighborhood used for filtering is 3-by-3.

1 Read in the image and display it.

I = imread('eight.tif');
imshow(I)

2 Add noise to it.

J = imnoise(I,'salt & pepper',0.02);
figure, imshow(J)

10 Analyzing and Enhancing Images

10-36

3 Filter the noisy image with an averaging filter and display the results.

K = filter2(fspecial('average',3),J)/255;
figure, imshow(K)

4 Now use a median filter to filter the noisy image and display the results.
Notice that medfilt2 does a better job of removing noise, with less blurring
of edges.

L = medfilt2(J,[3 3]);
figure, imshow(K)
figure, imshow(L)

Noise Removal

10-37

Using Adaptive Filtering
The wiener2 function applies a Wiener filter (a type of linear filter) to an image
adaptively, tailoring itself to the local image variance. Where the variance is
large, wiener2 performs little smoothing. Where the variance is small, wiener2
performs more smoothing.

This approach often produces better results than linear filtering. The adaptive
filter is more selective than a comparable linear filter, preserving edges and
other high-frequency parts of an image. In addition, there are no design tasks;
the wiener2 function handles all preliminary computations and implements
the filter for an input image. wiener2, however, does require more computation
time than linear filtering.

wiener2 works best when the noise is constant-power (“white”) additive noise,
such as Gaussian noise. The example below applies wiener2 to an image of
Saturn that has had Gaussian noise added. For an interactive demonstration
of filtering to remove noise, try running nrfiltdemo.

RGB = imread('saturn.png');
I = rgb2gray(RGB);
J = imnoise(I,'gaussian',0,0.005);
K = wiener2(J,[5 5]);
imshow(J)
figure, imshow(K)

10 Analyzing and Enhancing Images

10-38

Noisy Version (left) and Filtered Version (right)

Original Image Courtesy of NASA

11

Region-Based Processing

This chapter describes operations that you can perform on a selected region of an image.

Terminology (p. 11-2) Provides definitions of image processing terms used in
this section

Specifying a Region of Interest (p. 11-3) Describes how to specify a region of interest using the
roipoly function

Filtering a Region (p. 11-6) Describes how to apply a filter to a region using the
roifilt2 function

Filling a Region (p. 11-9) Describes how to fill a region of interest using the
roifill function

11 Region-Based Processing

11-2

Terminology
An understanding of the following terms will help you to use this section.

Term Definition

binary mask Binary image with the same size as the image you want to process.
The mask contains 1’s for all pixels that are part of the region of
interest, and 0’s everywhere else.

filling a region Process that fills a region of interest by interpolating the pixel
values from the borders of the region. This process can be used to
make objects in an image seem to disappear as they are replaced
with values that blend in with the background area.

filtering a region Process of applying a filter to a region of interest. For example,
you can apply an intensity adjustment filter to certain regions of
an image.

interpolation Method used to estimate an image value at a location in between
image pixels.

masked filtering Operation that applies filtering only to the regions of interest in
an image that are identified by a binary mask. Filtered values are
returned for pixels where the binary mask contains 1’s; unfiltered
values are returned for pixels where the binary mask contains 0’s.

region of interest Portion of an image that you want to filter or perform some other
operation on. You define a region of interest by creating a binary
mask. There can be more than one region defined in an image. The
regions can be geographic in nature, such as polygons that
encompass contiguous pixels, or they can be defined by a range of
intensities. In the latter case, the pixels are not necessarily
contiguous.

Specifying a Region of Interest

11-3

Specifying a Region of Interest
A region of interest is a portion of an image that you want to filter or perform
some other operation on. You define a region of interest by creating a binary
mask, which is a binary image with the same size as the image you want to
process. The mask contains 1’s for all pixels that are part of the region of
interest, and 0’s everywhere else.

The following subsections discuss methods for creating binary masks:

• “Selecting a Polygon” on page 11-3

• “Other Selection Methods” on page 11-4 (using any binary mask or the
roicolor function)

For an interactive demonstration of region-based processing, try running
roidemo.

Selecting a Polygon
You can use the roipoly function to specify a polygonal region of interest. If
you call roipoly with no input arguments, the cursor changes to crosshairs
when it is over the image displayed in the current axes. You can then specify
the vertices of the polygon by clicking points in the image with the mouse.
When you are done selecting vertices, press Return; roipoly returns a binary
image of the same size as the input image, containing 1’s inside the specified
polygon, and 0’s everywhere else.

The example below illustrates using the interactive syntax of roipoly to create
a binary mask. In the figure, the border of the selected region that was created
using a mouse is shown in red.

I = imread('pout.tif');
imshow(I)
BW = roipoly;

11 Region-Based Processing

11-4

Polygonal Region of Interest Selected Using roipoly

imshow(BW)

Binary Mask Created for the Region Shown in the Preceding Figure

You can also use roipoly noninteractively. See the reference page for roipoly
for more information.

Other Selection Methods
roipoly provides an easy way to create a binary mask. However, you can use
any binary image as a mask, provided that the binary image is the same size
as the image being filtered.

Specifying a Region of Interest

11-5

For example, suppose you want to filter the intensity image I, filtering only
those pixels whose values are greater than 0.5. You can create the appropriate
mask with this command.

BW = (I > 0.5);

You can also use the poly2mask function to create a binary mask. Unlike the
roipoly function, poly2mask does not require an input image. For more
information, see the poly2mask reference page.

You can also use the roicolor function to define the region of interest based on
a color or intensity range. For more information, see the reference page for
roicolor.

11 Region-Based Processing

11-6

Filtering a Region
You can use the roifilt2 function to process a region of interest. When you call
roifilt2, you specify an intensity image, a binary mask, and a filter. roifilt2
filters the input image and returns an image that consists of filtered values for
pixels where the binary mask contains 1’s and unfiltered values for pixels
where the binary mask contains 0’s. This type of operation is called masked
filtering.

Note roifilt2 is best suited to operations that return data in the same
range as in the original image, because the output image takes some of its
data directly from the input image. Certain filtering operations can result in
values outside the normal image data range (i.e., [0,1] for images of class
double, [0,255] for images of class uint8, and [0,65535] for images of class
uint16). For more information, see the reference page for roifilt2.

Example: Filtering a Region in an Image
This example uses masked filtering to increase the contrast of a specific region
of an image:

1 Read in the image.

I = imread('pout.tif');

2 Create the mask.

This example uses the mask BW created in “Selecting a Polygon” on
page 11-3. The region of interest specified by the mask is the logo on the
girl’s jacket.

3 Create the filter.

h = fspecial('unsharp');

4 Call roifilt2, specifying the image to be filtered, the mask, and the filter.

I2 = roifilt2(h,I,BW);
imshow(I)
figure, imshow(I2)

Filtering a Region

11-7

Image Before and After Using an Unsharp Filter on the Region of Interest

Specifying the Filtering Operation
roifilt2 also enables you to specify your own function to operate on the region
of interest. This example uses the imadjust function to lighten parts of an
image:

1 Read in the image.

I = imread('cameraman.tif');

2 Create the mask. In this example, the mask is a binary image containing
text. The mask image must be cropped to be the same size as the image to
be filtered.

BW = imread('text.png');
mask = BW(1:256,1:256);

3 Create the filter.

f = inline('imadjust(x,[],[],0.3)');

4 Call roifilt2, specifying the image to be filtered, the mask, and the filter.
The resulting image, I2, has the text imprinted on it.

I2 = roifilt2(I,mask,f);
imshow(I2)

11 Region-Based Processing

11-8

Image Brightened Using a Binary Mask Containing Text

Filling a Region

11-9

Filling a Region
You can use the roifill function to fill a region of interest, interpolating from
the borders of the region. This function is useful for image editing, including
removal of extraneous details or artifacts.

roifill performs the fill operation using an interpolation method based on
Laplace’s equation. This method results in the smoothest possible fill, given the
values on the boundary of the region.

As with roipoly, you select the region of interest with the mouse. When you
complete the selection, roifill returns an image with the selected region filled
in.

This example uses roifill to modify the trees image. The border of the
selected region is shown in red on the original image.

load trees
I = ind2gray(X,map);
imshow(I)
I2 = roifill;

Region of Interest Selected for Filling

imshow(I2)

11 Region-Based Processing

11-10

Region of Interest Shown in the Preceding Figure Has Been Filled

12

Image Deblurring

This chapter describes how to deblur an image using the toolbox deblurring functions.

Terminology (p. 12-2) Provides definitions of image processing terms used in
this section

Understanding Deblurring (p. 12-3) Defines deblurring and deconvolution

Using the Deblurring Functions
(p. 12-6)

Provides step-by-step examples of using deconvwnr,
deconvreg, deconvlucy, and deconvblind functions

Avoiding Ringing in Deblurred Images
(p. 12-23)

Describes how to use the edgetaper function to avoid
“ringing” in deblurred images

12 Image Deblurring

12-2

Terminology
An understanding of the following terms will help you to use this chapter.

Term MATLAB Definition

deconvolution Process of reversing the effect of convolution.

distortion operator Operator that describes a process causing
the acquired image to be different from the
original scene. Distortion caused by a point
spread function (see below) is just one type of
distortion.

optical transfer function
(OTF)

In the frequency domain, the OTF describes
the response of a linear, position-invariant
system to an impulse. The OTF is the
Fourier transform of the point spread
function (PSF).

point spread function
(PSF)

In the spatial domain, the PSF describes the
degree to which an optical system blurs
(spreads) a point of light. The PSF is the
inverse Fourier transform of the OTF.

Understanding Deblurring

12-3

Understanding Deblurring
This section provides some background on deblurring techniques. The section
includes these topics:

• “Causes of Blurring”

• “Deblurring Model”

Causes of Blurring
The blurring, or degradation, of an image can be caused by many factors:

• Movement during the image capture process, by the camera or, when long
exposure times are used, by the subject

• Out-of-focus optics, use of a wide-angle lens, atmospheric turbulence, or a
short exposure time, which reduces the number of photons captured

• Scattered light distortion in confocal microscopy

Deblurring Model
A blurred or degraded image can be approximately described by this equation
g = Hf + n, where

Note The image f really doesn’t exist. This image represents what you would
have if you had perfect image acquisition conditions.

g The blurred image

H The distortion operator, also called the point spread function (PSF).
This function, when convolved with the image, creates the distortion.

f The original true image

n Additive noise, introduced during image acquisition, that corrupts the
image

12 Image Deblurring

12-4

Importance of the PSF
Based on this model, the fundamental task of deblurring is to deconvolve the
blurred image with the PSF that exactly describes the distortion.

Note The quality of the deblurred image is mainly determined by knowledge
of the PSF.

To illustrate, this example takes a clear image and deliberately blurs it by
convolving it with a PSF. The example uses the fspecial function to create a
PSF that simulates a motion blur, specifying the length of the blur in pixels,
(LEN=31), and the angle of the blur in degrees (THETA=11). Once the PSF is
created, the example uses the imfilter function to convolve the PSF with the
original image, I, to create the blurred image, Blurred. (To see how deblurring
is the reverse of this process, using the same images, see “Deblurring with the
Wiener Filter” on page 12-7.)

I = imread('peppers.png');
I = I(60+[1:256],222+[1:256],:); % crop the image
figure; imshow(I); title('Original Image');

LEN = 31;
THETA = 11;
PSF = fspecial('motion',LEN,THETA); % create PSF
Blurred = imfilter(I,PSF,'circular','conv');
figure; imshow(Blurred); title('Blurred Image');

Understanding Deblurring

12-5

12 Image Deblurring

12-6

Using the Deblurring Functions
The toolbox includes four deblurring functions, listed here in order of
complexity:

All the functions accept a PSF and the blurred image as their primary
arguments. The deconvwnr function implements a least squares solution. The
deconvreg function implements a constrained least squares solution, where
you can place constraints on the output image (the smoothness requirement is
the default). With either of these functions, you should provide some
information about the noise to reduce possible noise amplification during
deblurring.

The deconvlucy function implements an accelerated, damped
Lucy-Richardson algorithm. This function performs multiple iterations, using
optimization techniques and Poisson statistics. With this function, you do not
need to provide information about the additive noise in the corrupted image.

The deconvblind function implements the blind deconvolution algorithm,
which performs deblurring without knowledge of the PSF. When you call
deconvblind, you pass as an argument your initial guess at the PSF. The
deconvblind function returns a restored PSF in addition to the restored image.
The implementation uses the same damping and iterative model as the
deconvlucy function.

deconvwnr Implements deblurring using the Wiener filter

deconvreg Implements deblurring using a regularized filter

deconvlucy Implements deblurring using the Lucy-Richardson algorithm

deconvblind Implements deblurring using the blind deconvolution
algorithm

Using the Deblurring Functions

12-7

Note You might need to perform many iterations of the deblurring process,
varying the parameters you specify to the deblurring functions with each
iteration, until you achieve an image that, based on the limits of your
information, is the best approximation of the original scene. Along the way,
you must make numerous judgments about whether newly uncovered features
in the image are features of the original scene or simply artifacts of the
deblurring process.

For information about creating your own deblurring functions, see “Creating
Your Own Deblurring Functions” on page 12-22. To avoid “ringing” in a
deblurred image, you can use the edgetaper function to preprocess your image
before passing it to the deblurring functions. See “Avoiding Ringing in
Deblurred Images” on page 12-23 for more information.

Deblurring with the Wiener Filter
Use the deconvwnr function to deblur an image using the Wiener filter. Wiener
deconvolution can be used effectively when the frequency characteristics of the
image and additive noise are known, to at least some degree. In the absence of
noise, the Wiener filter reduces to the ideal inverse filter.

This example deblurs the blurred image created in “Deblurring Model” on
page 12-3, specifying the same PSF function that was used to create the blur.
This example illustrates the importance of knowing the PSF, the function that
caused the blur. When you know the exact PSF, the results of deblurring can
be quite effective.

1 Read an image into the MATLAB workspace. (To speed the deblurring
operation, the example also crops the image.)

I = imread('peppers.png');
I = I(10+[1:256],222+[1:256],:);
figure;imshow(I);title('Original Image');

12 Image Deblurring

12-8

2 Create a PSF.

LEN = 31;
THETA = 11;
PSF = fspecial('motion',LEN,THETA);

3 Create a simulated blur in the image.

Blurred = imfilter(I,PSF,'circular','conv');
figure; imshow(Blurred);title('Blurred Image');

4 Deblur the image.

wnr1 = deconvwnr(Blurred,PSF);
figure;imshow(wnr1);
title('Restored, True PSF');

Using the Deblurring Functions

12-9

Refining the Result
You can affect the deconvolution results by providing values for the optional
arguments supported by the deconvwnr function. Using these arguments you
can specify the noise-to-signal power value and/or provide autocorrelation
functions to help refine the result of deblurring. To see the impact of these
optional arguments, view the Image Processing Toolbox deblurring demos.

Deblurring with a Regularized Filter
Use the deconvreg function to deblur an image using a regularized filter. A
regularized filter can be used effectively when limited information is known
about the additive noise.

To illustrate, this example simulates a blurred image by convolving a Gaussian
filter PSF with an image (using imfilter). Additive noise in the image is
simulated by adding Gaussian noise of variance V to the blurred image (using
imnoise):

1 Read an image into the MATLAB workspace. The example uses cropping to
reduce the size of the image to be deblurred. This is not a required step in
deblurring operations.

I = imread('tissue.png');
I = I(125+[1:256],1:256,:);
figure; imshow(I); title('Original Image');

12 Image Deblurring

12-10

Image Courtesy Alan W. Partin

2 Create the PSF.

PSF = fspecial('gaussian',11,5);

3 Create a simulated blur in the image and add noise.

Blurred = imfilter(I,PSF,'conv');

V = .02;
BlurredNoisy = imnoise(Blurred,'gaussian',0,V);
figure;imshow(BlurredNoisy);title('Blurred and Noisy Image');

4 Use deconvreg to deblur the image, specifying the PSF used to create the
blur and the noise power, NP.

NP = V*prod(size(I));

Using the Deblurring Functions

12-11

[reg1 LAGRA] = deconvreg(BlurredNoisy,PSF,NP);
figure,imshow(reg1),title('Restored Image');

Refining the Result
You can affect the deconvolution results by providing values for the optional
arguments supported by the deconvreg function. Using these arguments you
can specify the noise power value, the range over which deconvreg should
iterate as it converges on the optimal solution, and the regularization operator
to constrain the deconvolution. To see the impact of these optional arguments,
view the Image Processing Toolbox deblurring demos.

Deblurring with the Lucy-Richardson Algorithm
Use the deconvlucy function to deblur an image using the accelerated,
damped, Lucy-Richardson algorithm. The algorithm maximizes the likelihood
that the resulting image, when convolved with the PSF, is an instance of the
blurred image, assuming Poisson noise statistics. This function can be effective
when you know the PSF but know little about the additive noise in the image.

The deconvlucy function implements several adaptations to the original
Lucy-Richardson maximum likelihood algorithm that address complex image
restoration tasks. Using these adaptations, you can

• Reduce the effect of noise amplification on image restoration

• Account for nonuniform image quality (e.g., bad pixels, flat-field variation)

• Handle camera read-out and background noise

• Improve the restored image resolution by subsampling

12 Image Deblurring

12-12

The following sections provide more information about each of these
adaptations.

Reducing the Effect of Noise Amplification
Noise amplification is a common problem of maximum likelihood methods that
attempt to fit data as closely as possible. After many iterations, the restored
image can have a speckled appearance, especially for a smooth object observed
at low signal-to-noise ratios. These speckles do not represent any real structure
in the image, but are artifacts of fitting the noise in the image too closely.

To control noise amplification, the deconvlucy function uses a damping
parameter, DAMPAR. This parameter specifies the threshold level for the
deviation of the resulting image from the original image, below which damping
occurs. For pixels that deviate in the vicinity of their original values, iterations
are suppressed.

Damping is also used to reduce ringing, the appearance of high-frequency
structures in a restored image. Ringing is not necessarily the result of noise
amplification. See “Avoiding Ringing in Deblurred Images” on page 12-23 for
more information.

Accounting for Nonuniform Image Quality
Another complication of real-life image restoration is that the data might
include bad pixels, or that the quality of the receiving pixels might vary with
time and position. By specifying the WEIGHT array parameter with the
deconvlucy function, you can specify that certain pixels in the image be
ignored. To ignore a pixel, assign a weight of zero to the element in the WEIGHT
array that corresponds to the pixel in the image.

The algorithm converges on predicted values for the bad pixels based on the
information from neighborhood pixels. The variation in the detector response
from pixel to pixel (the so-called flat-field correction) can also be accommodated
by the WEIGHT array. Instead of assigning a weight of 1.0 to the good pixels, you
can specify fractional values and weight the pixels according to the amount of
the flat-field correction.

Handling Camera Read-Out Noise
Noise in charge coupled device (CCD) detectors has two primary components:

• Photon counting noise with a Poisson distribution

Using the Deblurring Functions

12-13

• Read-out noise with a Gaussian distribution

The Lucy-Richardson iterations intrinsically account for the first type of noise.
You must account for the second type of noise; otherwise, it can cause pixels
with low levels of incident photons to have negative values.

The deconvlucy function uses the READOUT input parameter to handle camera
read-out noise. The value of this parameter is typically the sum of the read-out
noise variance and the background noise (e.g., number of counts from the
background radiation). The value of the READOUT parameter specifies an offset
that ensures that all values are positive.

Handling Undersampled Images
The restoration of undersampled data can be improved significantly if it is done
on a finer grid. The deconvlucy function uses the SUBSMPL parameter to specify
the subsampling rate, if the PSF is known to have a higher resolution.

If the undersampled data is the result of camera pixel binning during image
acquisition, the PSF observed at each pixel rate can serve as a finer grid PSF.
Otherwise, the PSF can be obtained via observations taken at subpixel offsets
or via optical modeling techniques. This method is especially effective for
images of stars (high signal-to-noise ratio), because the stars are effectively
forced to be in the center of a pixel. If a star is centered between pixels, it is
restored as a combination of the neighboring pixels. A finer grid redirects the
consequent spreading of the star flux back to the center of the star's image.

Example: Using the deconvlucy Function to Deblur an Image
To illustrate a simple use of deconvlucy, this example simulates a blurred,
noisy image by convolving a Gaussian filter PSF with an image (using
imfilter) and then adding Gaussian noise of variance V to the blurred image
(using imnoise):

1 Read an image into the MATLAB workspace. (The example uses cropping to
reduce the size of the image to be deblurred. This is not a required step in
deblurring operations.)

12 Image Deblurring

12-14

I = imread('board.tif');
I = I(50+[1:256],2+[1:256],:);
figure;imshow(I);title('Original Image');

2 Create the PSF.

PSF = fspecial('gaussian',5,5);

3 Create a simulated blur in the image and add noise.

Blurred = imfilter(I,PSF,'symmetric','conv');

V = .002;
BlurredNoisy = imnoise(Blurred,'gaussian',0,V);
figure;imshow(BlurredNoisy);title('Blurred and Noisy Image');

Using the Deblurring Functions

12-15

4 Use deconvlucy to restore the blurred and noisy image, specifying the PSF
used to create the blur, and limiting the number of iterations to 5 (the
default is 10).

Note The deconvlucy function can return values in the output image that
are beyond the range of the input image.

luc1 = deconvlucy(BlurredNoisy,PSF,5);
figure; imshow(luc1);
title('Restored Image');

Refining the Result
The deconvlucy function, by default, performs multiple iterations of the
deblurring process. You can stop the processing after a certain number of
iterations to check the result, and then restart the iterations from the point
where processing stopped. To do this, pass in the input image as a cell array,
for example, {BlurredNoisy}. The deconvlucy function returns the output
image as a cell array that you can then pass as an input argument to
deconvlucy to restart the deconvolution.

12 Image Deblurring

12-16

The output cell array contains these four elements:

The deconvlucy function supports several other optional arguments you can
use to achieve the best possible result, such as specifying a damping parameter
to handle additive noise in the blurred image. To see the impact of these
optional arguments, view the Image Processing Toolbox deblurring demos.

Deblurring with the Blind Deconvolution Algorithm
Use the deconvblind function to deblur an image using the blind deconvolution
algorithm. The algorithm maximizes the likelihood that the resulting image,
when convolved with the resulting PSF, is an instance of the blurred image,
assuming Poisson noise statistics. The blind deconvolution algorithm can be
used effectively when no information about the distortion (blurring and noise)
is known. The deconvblind function restores the image and the PSF
simultaneously, using an iterative process similar to the accelerated, damped
Lucy-Richardson algorithm.

The deconvblind function, just like the deconvlucy function, implements
several adaptations to the original Lucy-Richardson maximum likelihood
algorithm that address complex image restoration tasks. Using these
adaptations, you can

• Reduce the effect of noise on the restoration

• Account for nonuniform image quality (e.g., bad pixels)

• Handle camera read-out noise

For more information about these adaptations, see “Deblurring with the
Lucy-Richardson Algorithm” on page 12-11. In addition, the deconvblind

Element Description

output{1} Original input image

output{2} Image produced by the last iteration

output{3} Image produced by the next to last iteration

output{4} Internal information used by deconvlucy to know
where to restart the process

Using the Deblurring Functions

12-17

function supports PSF constraints that can be passed in through a
user-specified function.

Example: Using the deconvblind Function to Deblur an Image
To illustrate blind deconvolution, this example creates a simulated blurred
image and then uses deconvblind to deblur it. The example makes two passes
at deblurring the image to show the effect of certain optional parameters on the
deblurring operation:

1 Read an image into the MATLAB workspace.

I = imread('cameraman.tif');
figure; imshow(I); title('Original Image');

2 Create the PSF.

PSF = fspecial('motion',13,45);
figure; imshow(PSF,[],'notruesize'); title('Original PSF');

Image Courtesy of MIT

12 Image Deblurring

12-18

3 Create a simulated blur in the image.

Blurred = imfilter(I,PSF,'circ','conv');
figure; imshow(Blurred); title('Blurred Image');

4 Deblur the image, making an initial guess at the size of the PSF.

To determine the size of the PSF, examine the blurred image and measure
the width of a blur (in pixels) around an obviously sharp object. In the
sample blurred image, you can measure the blur near the contour of the
man’s sleeve. Because the size of the PSF is more important than the values
it contains, you can typically specify an array of 1’s as the initial PSF.

The following figure shows a restoration where the initial guess at the PSF
is the same size as the PSF that caused the blur. In a real application, you

Original PSF

Using the Deblurring Functions

12-19

might need to rerun deconvblind, experimenting with PSFs of different
sizes, until you achieve a satisfactory result. The restored PSF returned by
each deconvolution can also provide valuable hints at the optimal PSF size.
See the Image Processing Toolbox deblurring demos for an example.

INITPSF = ones(size(PSF));
[J P]= deconvblind(Blurred,INITPSF,30);
figure; imshow(J); title('Restored Image');
figure; imshow(P,[],'notruesize');
title('Restored PSF');

Although deconvblind was able to deblur the image to a great extent, the
ringing around the sharp intensity contrast areas in the restored image is
unsatisfactory. (The example eliminated edge-related ringing by using the
'circular' option with imfilter when creating the simulated blurred
image in step 3.)

The next steps in the example repeat the deblurring process, attempting to
achieve a better result by

- Eliminating high-contrast areas from the processing

- Specifying a better PSF

Restored Image Restored PSF

12 Image Deblurring

12-20

5 Create a WEIGHT array to exclude areas of high contrast from the deblurring
operation. This can reduce contrast-related ringing in the result.

To exclude a pixel from processing, you create an array of the same size as
the original image, and assign the value 0 to the pixels in the array that
correspond to pixels in the original image that you want to exclude from
processing. (See “Accounting for Nonuniform Image Quality” on page 12-12
for information about WEIGHT arrays.)

To create a WEIGHT array, the example uses a combination of edge detection
and morphological processing to detect high-contrast areas in the image.
Because the blur in the image is linear, the example dilates the image twice.
(For more information about using these functions, see Chapter 9,
“Morphological Operations.”) To exclude the image boundary pixels (a
high-contrast area) from processing, the example uses padarray to assign
the value 0 to all border pixels.

WEIGHT = edge(I,'sobel',.28);
se1 = strel('disk',1);
se2 = strel('line',13,45);
WEIGHT = ~imdilate(WEIGHT,[se1 se2]);
WEIGHT = padarray(WEIGHT(2:end-1,2:end-1),[2 2]);
figure; imshow(WEIGHT); title('Weight Array');

6 Refine the guess at the PSF. The reconstructed PSF P returned by the first
pass at deconvolution shows a clear linearity, as shown in the figure in step

Weight Array

Using the Deblurring Functions

12-21

4. For the second pass, the example uses a new PSF, P1, which is the same
as the restored PSF but with the small amplitude pixels set to 0.

P1 = P;
P1(find(P1 < 0.01))=0;

7 Rerun the deconvolution, specifying the WEIGHT array and the modified PSF.
Note how the restored image has much less ringing around the sharp
intensity contrast areas than the result of the first pass (step 4).

[J2 P2] = deconvblind(Blurred,P1,50,[],WEIGHT);
figure; imshow(J2);
title('Newly Deblurred Image');
figure; imshow(P2,[],'notruesize');
title('Newly Reconstructed PSF');

Refining the Result
The deconvblind function, by default, performs multiple iterations of the
deblurring process. You can stop the processing after a certain number of
iterations to check the result, and then restart the iterations from the point
where processing stopped. To use this feature, you must pass in both the
blurred image and the PSF as cell arrays, for example, {Blurred} and
{INITPSF}.

Newly Deblurred Image Newly Reconstructed PSF

12 Image Deblurring

12-22

The deconvblind function returns the output image and the restored PSF as
cell arrays. The output image cell array contains these four elements:

The PSF output cell array contains similar elements.

The deconvblind function supports several other optional arguments you can
use to achieve the best possible result, such as specifying a damping parameter
to handle additive noise in the blurred image. To see the impact of these
optional arguments, as well as the functional option that allows you to place
additional constraints on the PSF reconstruction, see the Image Processing
Toolbox deblurring demos.

Creating Your Own Deblurring Functions
All the toolbox deblurring functions perform deconvolution in the frequency
domain, where the process becomes a simple matrix multiplication. To work in
the frequency domain, the deblurring functions must convert the PSF you
provide into an optical transfer function (OTF), using the psf2otf function.
The toolbox also provides a function to convert an OTF into a PSF, otf2psf.
The toolbox makes these functions available in case you want to create your
own deblurring functions. (In addition, to aid this conversion between PSFs
and OTFs, the toolbox also makes the padding function padarray available.)

Element Description

output{1} Original input image

output{2} Image produced by the last iteration

output{3} Image produced by the next to last iteration

output{4} Internal information used by deconvlucy to know
where to restart the process

Avoiding Ringing in Deblurred Images

12-23

Avoiding Ringing in Deblurred Images
The discrete Fourier transform (DFT), used by the deblurring functions,
assumes that the frequency pattern of an image is periodic. This assumption
creates a high-frequency drop-off at the edges of images. In the figure, the
shaded area represents the actual extent of the image; the unshaded area
represents the assumed periodicity.

This high-frequency drop-off can create an effect called boundary related
ringing in deblurred images. In this figure, note the horizontal and vertical
patterns in the image.

To avoid ringing, use the edgetaper function to preprocess your images before
passing them to the deblurring functions. The edgetaper function removes the
high-frequency drop-off at the edge of an image by blurring the entire image
and then replacing the center pixels of the blurred image with the original
image. In this way, the edges of the image taper off to a lower frequency.

Image

High-frequency drop-off

Assumed periodic repetition of the image

12 Image Deblurring

12-24

13

Color

This chapter describes the toolbox functions that help you work with color image data. Note that
“color” includes shades of gray; therefore much of the discussion in this chapter applies to grayscale
images as well as color images.

Terminology (p. 13-2) Provides definitions of image processing terms used in
this section

Working with Different Screen Bit
Depths (p. 13-3)

Describes how to determine the screen bit depth of your
system and provides recommendations if you can change
the bit depth

Reducing the Number of Colors in an
Image (p. 13-6)

Describes how to use imapprox and rgb2ind to reduce the
number of colors in an image, including information
about dithering

Converting Color Data Between Color
Spaces (p. 13-15)

Defines the concept of image color space and describes
how to convert images between color spaces

13 Color

13-2

Terminology
An understanding of the following terms will help you to use this chapter.

Term Definition

approximation Method by which the software chooses replacement colors in the
event that direct matches cannot be found. The methods of
approximation discussed in this chapter are colormap mapping,
uniform quantization, and minimum variance quantization.

indexed image Image whose pixel values are direct indices into an RGB colormap.
In MATLAB, an indexed image is represented by an array of class
uint8, uint16, or double. The colormap is always an m-by-3 array
of class double. This documentation often uses the variable name X
to represent an indexed image in memory, and map to represent the
colormap.

intensity image Image consisting of intensity (grayscale) values. In MATLAB,
intensity images are represented by an array of class uint8, uint16,
or double. While intensity images are not stored with colormaps,
MATLAB uses a system colormap to display them. This
documentation often uses the variable name I to represent an
intensity image in memory. This term is synonymous with the term
grayscale.

RGB image Image in which each pixel is specified by three values — one each
for the red, blue, and green components of the pixel’s color. In
MATLAB, an RGB image is represented by an m-by-n-by-3 array of
class uint8, uint16, or double. This documentation often uses the
variable name RGB to represent an RGB image in memory.

screen bit depth Number of bits per screen pixel.

screen color resolution Number of distinct colors that can be produced by the screen.

Working with Different Screen Bit Depths

13-3

Working with Different Screen Bit Depths
Most computer displays use 8, 16, or 24 bits per screen pixel. The number of
bits per screen pixel determines the display’s screen bit depth. The screen bit
depth determines the screen color resolution, which is how many distinct colors
the display can produce.

Regardless of the number of colors your system can display, MATLAB can store
and process images with very high bit depths: 224 colors for uint8 RGB images,
248 colors for uint16 RGB images, and 2159 for double RGB images. These
images are displayed best on systems with 24-bit color, but usually look fine on
16-bit systems as well. (For additional information about how MATLAB
handles color, see the MATLAB graphics documentation.)

This section

• Describes how to determine your system’s screen bit depth

• Provides guidelines for choosing a screen bit depth

Determining Screen Bit Depth
To determine the bit depth of your system’s screen, enter this command at the
MATLAB prompt.

get(0,'ScreenDepth')
ans =

32

13 Color

13-4

The integer MATLAB returns represents the number of bits per screen pixel:

Choosing a Screen Bit Depth
Depending on your system, you might be able to choose the screen bit depth you
want to use. (There might be tradeoffs between screen bit depth and screen
color resolution.) In general, 24-bit display mode produces the best results. If
you need to use a lower screen bit depth, 16-bit is generally preferable to 8-bit.
However, keep in mind that a 16-bit display has certain limitations, such as

Value Screen Bit Depth

8 8-bit displays support 256 colors. An 8-bit display can produce
any of the colors available on a 24-bit display, but only 256
distinct colors can appear at one time. (There are 256 shades of
gray available, but if all 256 shades of gray are used, they take
up all the available color slots.)

16 16-bit displays usually use 5 bits for each color component,
resulting in 32 (i.e., 25) levels each of red, green, and blue. This
supports 32,768 (i.e., 215) distinct colors (of which 32 are shades
of gray). Some systems use the extra bit to increase the number
of levels of green that can be displayed. In this case, the number
of different colors supported by a 16-bit display is actually
64,536 (i.e. 216).

24 24-bit displays use 8 bits for each of the three color components,
resulting in 256 (i.e., 28) levels each of red, green, and blue. This
supports 16,777,216 (i.e., 224) different colors. (Of these colors,
256 are shades of gray. Shades of gray occur where R=G=B.) The
16 million possible colors supported by 24-bit display can render
a lifelike image.

32 32-bit displays use 24 bits to store color information and use the
remaining 8 bits to store transparency data (alpha channel). For
information about how MATLAB supports the alpha channel,
see the section “Transparency” in the MATLAB graphics
documentation.

Working with Different Screen Bit Depths

13-5

• An image might have finer gradations of color than a 16-bit display can
represent. If a color is unavailable, MATLAB uses the closest approximation.

• There are only 32 shades of gray available. If you are working primarily with
grayscale images, you might get better display results using 8-bit display
mode, which provides up to 256 shades of gray.

For information about reducing the number of colors used by an image, see
“Reducing the Number of Colors in an Image” on page 13-6.

13 Color

13-6

Reducing the Number of Colors in an Image
This section describes how to reduce the number of colors in an indexed or RGB
image. A discussion is also included about dithering, which is used by the
toolbox’s color-reduction functions (see below). Dithering is used to increase the
apparent number of colors in an image.

The table below summarizes the Image Processing Toolbox functions for color
reduction.

On systems with 24-bit color displays, RGB (true-color) images can display up
to 16,777,216 (i.e., 224) colors. On systems with lower screen bit depths, RGB
images are still displayed reasonably well, because MATLAB automatically
uses color approximation and dithering if needed.

Indexed images, however, might cause problems if they have a large number of
colors. In general, you should limit indexed images to 256 colors for the
following reasons:

• On systems with 8-bit display, indexed images with more than 256 colors will
need to be dithered or mapped and, therefore, might not display well.

• On some platforms, colormaps cannot exceed 256 entries.

• If an indexed image has more than 256 colors, MATLAB cannot store the
image data in a uint8 array, but generally uses an array of class double
instead, making the storage size of the image much larger (each pixel uses
64 bits).

• Most image file formats limit indexed images to 256 colors. If you write an
indexed image with more than 256 colors (using imwrite) to a format that
does not support more than 256 colors, you will receive an error.

Function Purpose

imapprox Reduces the number of colors used by an indexed image,
enabling you specify the number of colors in the new
colormap.

rgb2ind Converts an RGB image to an indexed image, enabling
you to specify the number of colors to store in the new
colormap.

Reducing the Number of Colors in an Image

13-7

Using rgb2ind
rgb2ind converts an RGB image to an indexed image, reducing the number of
colors in the process. This function provides the following methods for
approximating the colors in the original image:

• Quantization

- Uniform quantization

- Minimum variance quantization

• Colormap mapping

The quality of the resulting image depends on the approximation method you
use, the range of colors in the input image, and whether or not you use
dithering. Note that different methods work better for different images. See
“Dithering” on page 13-13 for a description of dithering and how to enable or
disable it.

Quantization
Reducing the number of colors in an image involves quantization. The function
rgb2ind uses quantization as part of its color reduction algorithm. rgb2ind
supports two quantization methods: uniform quantization and minimum
variance quantization.

An important term in discussions of image quantization is RGB color cube,
which is used frequently throughout this section. The RGB color cube is a
three-dimensional array of all of the colors that are defined for a particular
data type. Since RGB images in MATLAB can be of type uint8, uint16, or
double, three possible color cube definitions exist. For example, if an RGB
image is of class uint8, 256 values are defined for each color plane (red, blue,
and green), and, in total, there will be 224 (or 16,777,216) colors defined by the
color cube. This color cube is the same for all uint8 RGB images, regardless of
which colors they actually use.

The uint8, uint16, and double color cubes all have the same range of colors.
In other words, the brightest red in a uint8 RGB image appears the same as
the brightest red in a double RGB image. The difference is that the double
RGB color cube has many more shades of red (and many more shades of all
colors). The following figure shows an RGB color cube for a uint8 image.

13 Color

13-8

RGB Color Cube for uint8 Images

Quantization involves dividing the RGB color cube into a number of smaller
boxes, and then mapping all colors that fall within each box to the color value
at the center of that box.

Uniform quantization and minimum variance quantization differ in the
approach used to divide up the RGB color cube. With uniform quantization, the
color cube is cut up into equal-sized boxes (smaller cubes). With minimum
variance quantization, the color cube is cut up into boxes (not necessarily
cubes) of different sizes; the sizes of the boxes depend on how the colors are
distributed in the image.

Uniform Quantization. To perform uniform quantization, call rgb2ind and specify
a tolerance. The tolerance determines the size of the cube-shaped boxes into
which the RGB color cube is divided. The allowable range for a tolerance
setting is [0,1]. For example, if you specify a tolerance of 0.1, the edges of the
boxes are one-tenth the length of the RGB color cube and the maximum total
number of boxes is

n = (floor(1/tol)+1)^3

B

G

R

White
(255,255,255)

255

255

255

Reducing the Number of Colors in an Image

13-9

The commands below perform uniform quantization with a tolerance of 0.1.

RGB = imread('peppers.png');
[x,map] = rgb2ind(RGB, 0.1);

The following figure illustrates uniform quantization of a uint8 image. For
clarity, the figure shows a two-dimensional slice (or color plane) from the color
cube where red=0 and green and blue range from 0 to 255. The actual pixel
values are denoted by the centers of the x’s.

Uniform Quantization on a Slice of the RGB Color Cube

After the color cube has been divided, all empty boxes are thrown out.
Therefore, only one of the boxes is used to produce a color for the colormap. As
shown earlier, the maximum length of a colormap created by uniform
quantization can be predicted, but the colormap can be smaller than the
prediction because rgb2ind removes any colors that do not appear in the input
image.

Minimum Variance Quantization. To perform minimum variance quantization, call
rgb2ind and specify the maximum number of colors in the output image’s
colormap. The number you specify determines the number of boxes into which

255

255

B

G

x
x

x

x

x

Center pixel value

13 Color

13-10

the RGB color cube is divided. These commands use minimum variance
quantization to create an indexed image with 185 colors.

RGB = imread('peppers.png');
[X,map] = rgb2ind(RGB,185);

Minimum variance quantization works by associating pixels into groups based
on the variance between their pixel values. For example, a set of blue pixels
might be grouped together because they have a small variance from the center
pixel of the group.

In minimum variance quantization, the boxes that divide the color cube vary
in size, and do not necessarily fill the color cube. If some areas of the color cube
do not have pixels, there are no boxes in these areas.

While you set the number of boxes, n, to be used by rgb2ind, the placement is
determined by the algorithm as it analyzes the color data in your image. Once
the image is divided into n optimally located boxes, the pixels within each box
are mapped to the pixel value at the center of the box, as in uniform
quantization.

The resulting colormap usually has the number of entries you specify. This is
because the color cube is divided so that each region contains at least one color
that appears in the input image. If the input image uses fewer colors than the
number you specify, the output colormap will have fewer than n colors, and the
output image will contain all of the colors of the input image.

The following figure shows the same two-dimensional slice of the color cube as
shown in the preceding figure (demonstrating uniform quantization). Eleven
boxes have been created using minimum variance quantization.

Reducing the Number of Colors in an Image

13-11

Minimum Variance Quantization on a Slice of the RGB Color Cube

For a given number of colors, minimum variance quantization produces better
results than uniform quantization, because it takes into account the actual
data. Minimum variance quantization allocates more of the colormap entries to
colors that appear frequently in the input image. It allocates fewer entries to
colors that appear infrequently. As a result, the accuracy of the colors is higher
than with uniform quantization. For example, if the input image has many
shades of green and few shades of red, there will be more greens than reds in
the output colormap. Note that the computation for minimum variance
quantization takes longer than that for uniform quantization.

Colormap Mapping
If you specify an actual colormap to use, rgb2ind uses colormap mapping
(instead of quantization) to find the colors in the specified colormap that best
match the colors in the RGB image. This method is useful if you need to create
images that use a fixed colormap. For example, if you want to display multiple
indexed images on an 8-bit display, you can avoid color problems by mapping
them all to the same colormap. Colormap mapping produces a good
approximation if the specified colormap has similar colors to those in the RGB
image. If the colormap does not have similar colors to those in the RGB image,
this method produces poor results.

255

255

B

G

x
x

x

x

x

Center pixel value

x

xx
x

x

x

x x
x

xx

x
x

x
x

x

x

x
x

x

x

xx

xx

x

x
x

x

x

13 Color

13-12

This example illustrates mapping two images to the same colormap. The
colormap used for the two images is created on the fly using the MATLAB
function colorcube, which creates an RGB colormap containing the number of
colors that you specify. (colorcube always creates the same colormap for a
given number of colors.) Because the colormap includes colors all throughout
the RGB color cube, the output images can reasonably approximate the input
images.

RGB1 = imread('autumn.tif');
RGB2 = imread('peppers.png');
X1 = rgb2ind(RGB1,colorcube(128));
X2 = rgb2ind(RGB2,colorcube(128));

Note The function subimage is also helpful for displaying multiple indexed
images. For more information, see “Displaying Multiple Images in the Same
Figure” on page 3-20 or the reference page for subimage.

Reducing Colors in an Indexed Image
Use imapprox when you need to reduce the number of colors in an indexed
image. imapprox is based on rgb2ind and uses the same approximation
methods. Essentially, imapprox first calls ind2rgb to convert the image to RGB
format, and then calls rgb2ind to return a new indexed image with fewer
colors.

For example, these commands create a version of the trees image with 64
colors, rather than the original 128.

load trees
[Y,newmap] = imapprox(X,map,64);
imshow(Y, newmap);

The quality of the resulting image depends on the approximation method you
use, the range of colors in the input image, and whether or not you use
dithering. Note that different methods work better for different images. See
“Dithering” on page 13-13 for a description of dithering and how to enable or
disable it.

Reducing the Number of Colors in an Image

13-13

Dithering
When you use rgb2ind or imapprox to reduce the number of colors in an image,
the resulting image might look inferior to the original, because some of the
colors are lost. rgb2ind and imapprox both perform dithering to increase the
apparent number of colors in the output image. Dithering changes the colors of
pixels in a neighborhood so that the average color in each neighborhood
approximates the original RGB color.

For an example of how dithering works, consider an image that contains a
number of dark orange pixels for which there is no exact match in the colormap.
To create the appearance of this shade of orange, the Image Processing Toolbox
selects a combination of colors from the colormap, that, taken together as a
six-pixel group, approximate the desired shade of pink. From a distance, the
pixels appear to be the correct shade, but if you look up close at the image, you
can see a blend of other shades. This example loads a 24-bit image, and then
use rgb2ind to create two indexed images with just eight colors each:

1 Read image and display it.

rgb=imread('onion.png');
imshow(rgb);

2 Create an indexed image with eight colors and without dithering.

[X_no_dither,map]=rgb2ind(rgb,8,'nodither');
figure, imshow(X_no_dither,map);

13 Color

13-14

3 Create an indexed image using eight colors with dithering.

[X_dither,map]=rgb2ind(rgb,8,'dither');
figure, imshow(X_dither,map);

Notice that the dithered image has a larger number of apparent colors but is
somewhat fuzzy-looking. The image produced without dithering has fewer
apparent colors, but an improved spatial resolution when compared to the
dithered image. One risk in doing color reduction without dithering is that the
new image can contain false contours.

Converting Color Data Between Color Spaces

13-15

Converting Color Data Between Color Spaces
The Image Processing Toolbox represents colors as RGB values, either directly
(in an RGB image) or indirectly (in an indexed image, where the colormap is
stored in RGB format). However, there are other models besides RGB for
representing colors numerically. The various models are referred to as color
spaces because most of them can be mapped into a 2-D, 3-D, or 4-D coordinate
system; thus, a color specification is made up of coordinates in a 2-D, 3-D, or
4-D space.

The various color spaces exist because they present color information in ways
that make certain calculations more convenient or because they provide a way
to identify colors that is more intuitive. For example, the RGB color space
defines a color as the percentages of red, green, and blue hues mixed together.
Other color models describe colors by their hue (green), saturation (dark
green), and luminance, or intensity.

The toolbox supports these color spaces by providing a means for converting
color data from one color space to another through a mathematical
transformation.

This section

• Describes how to convert color data between these color spaces

• Describes how to perform color space conversions using ICC profiles

• Describes some toolbox functions for converting between the RGB color space
and three commonly used color spaces: YIQ, HSV, and YCbCr

Converting Between Device-Independent Color
Spaces
The standard terms used to describe colors, such as hue, brightness, and
intensity, are subjective and make comparisons difficult.

In 1931, the International Commission on Illumination, known by the acronym
CIE, for Commission Internationale de l’Éclairage, studied human color
perception and developed a standard, called the CIE XYZ. This standard
defined a three-dimensional space where three values, called tristimulus
values, define a color. This standard is still widely used today.

In the decades since that initial specification, the CIE has developed several
additional color space specifications that attempt to provide alternative color

13 Color

13-16

representations that are better suited to some purposes than XYZ. For
example, in 1976, in an effort to get a perceptually uniform color space that
could be correlated with the visual appearance of colors, the CIE created the
L*a*b* color space.

The toolbox supports conversions between members of the CIE family of
device-independent color spaces. In addition, the toolbox also supports
conversions between these CIE color spaces and the sRGB color space. This
color space was defined by an industry group to describe the characteristics of
a typical PC monitor.

This section

• Lists the supported device-independent color spaces

• Provides an example of how to perform a conversion

• Provides guidelines about data type support of the various conversions

Supported Conversions
This table lists all the device-independent color spaces that the toolbox
supports.

Color
Space

Description Supported
Conversions

 The original, 1931 CIE color space
specification.

, , ,
and

 CIE specification that provides
normalized chromaticity values. The
capital Y value represents luminance
and is the same as in XYZ.

 CIE specification that attempts to
make the chromaticity plane more
visually uniform. is luminance and is
the same as Y in XYZ.

 CIE specification in which u and v are
rescaled to improve uniformity.

XYZ xyY uvl u ′v ′L
L∗ a∗ b∗

xyY XYZ

uvL

l

XYZ

u ′v ′L XYZ

Converting Color Data Between Color Spaces

13-17

Example: Performing a Color Space Conversion
To illustrate a conversion between two device-independent color spaces, this
example reads an RGB color image into the MATLAB workspace and converts
the color data to the XYZ color space:

1 Import color space data. This example reads an RGB color image into the
MATLAB workspace.

I_rgb = imread('peppers.png');

2 Create a color transformation structure. A color transformation structure
defines the conversion between two color spaces. You use the makecform
function to create the structure, specifying a transformation type string as
an argument.

This example creates a color transformation structure that defines a
conversion from RGB color data to XYZ color data.

C = makecform('srgb2xyz');

3 Perform the conversion. You use the applycform function to perform the
conversion, specifying as arguments the color data you want to convert and

 CIE specification that attempts to
make the luminance scale more
perceptually uniform. is a
nonlinear scaling of L, normalized to a
reference white point.

 CIE specification where c is chroma
and h is hue. These values are a polar
coordinate conversion of a* and b* in

.

 Standard adopted by major
manufacturers that characterizes the
average PC monitor.

and

Color
Space

Description Supported
Conversions

L∗ a∗ b∗

L∗

XYZ

L∗ ch

L∗ a∗ b∗

L∗ a∗ b∗

sRGB XYZ L∗ a∗ b∗

13 Color

13-18

the color transformation structure that defines the conversion. The
applycform function returns the converted data.

I_xyz = applycform(I_rgb,C);

whos
 Name Size Bytes Class

 C 1x1 7744 struct array
 I_xyz 384x512x3 1179648 uint16 array
I_rgb 384x512x3 589824 uint8 array

Color Space Data Encodings
When you convert between two device-independent color spaces, the data type
used to encode the color data can sometimes change, depending on what
encodings the color spaces support. In the preceding example, the original
image is uint8 data. The XYZ conversion is uint16 data. The XYZ color space
does not define a uint8 encoding. The following table lists the data types that
can be used to represent values in all the device-independent color spaces.

As the table indicates, certain color spaces have data type limitations. For
example, the XYZ color space does not define a uint8 encoding. If you convert
8-bit CIE LAB data into the XYZ color space, the data is returned in uint16
format. If you want the returned XYZ data to be in the same format as the
input LAB data, you can use one of the following toolbox color space format
conversion functions.

Color Space Encodings

XYZ uint16 or double

xyY double

uvL double

u'v'L double

L*a*b* uint8, uint16, or double

L*ch double

sRGB double

Converting Color Data Between Color Spaces

13-19

• lab2double

• lab2uint8

• lab2uint16

• xyz2double

• xyz2uint16

Performing Profile-Based Conversions
If two colors have the same CIE colorimetry, they will match if viewed under
the same conditions. However, because color images are typically produced for
a wide variety of viewing environments, it is necessary to go beyond simple
application of the CIE system.

For this reason, the International Color Consortium (ICC) has defined a Color
Management System (CMS) that provides a means for communicating color
data among input, output, and display devices. The CMS uses device profiles
that contain color information specific to a particular device. Vendors that
support CMS provide profiles that characterize the color reproduction of their
devices, and methods, called Color Management Modules (CMM), that
interpret the contents of each profile and perform the necessary image
processing.

Device profiles contain the information that color management systems need
to translate color data between devices. Any conversion between color spaces is
a mathematical transformation from some domain space to a range space. With
profile-based conversions, the domain space is often called the source space and
the range space is called the destination space. In the ICC color management
model, profiles are used to represent the source and destination spaces.

The Image Processing Toolbox can read ICC profiles and perform the
transformations and image processing they specify. This section includes the
following topics:

• Reading a profile into MATLAB

• Using ICC profiles with a color transformation structure

• Specifying the rendering intent

For more information about color management systems, go to the International
Color Consortium Web site, www.color.org. There you can download the ICC
profile specification (ICC.1:2001-04).

13 Color

13-20

Reading ICC Profiles
To read an ICC profile into the MATLAB workspace, use the iccread function.
In this example, the function reads in the profile for the color space that
describes color monitors.

prof = iccread('sRGB.icm');

iccread returns the contents of the profile in a structure. All profiles contain a
header, a tag table, and a series of tagged elements. The header contains
general information about the profile, such as the device class, the device color
space, and the file size. The tagged elements, or tags, are the data constructs
that contain the information used by the CMM.

For more information about the contents of a profile, see the iccread function
reference page and the ICC specification.

Example: Performing a Profile-Based Conversion
To illustrate a profile-based color space conversion, this section presents an
example that converts color data from the RGB space of a monitor to the CMYK
space of a printer. This conversion requires two profiles: a monitor profile and
a printer profile. The source color space in this example is monitor RGB and
the destination color space is printer CMYK:

1 Import RGB color space data. This example imports an RGB color image into
the MATLAB workspace.

I_rgb = imread('peppers.png');

2 Read ICC profiles. Read the source and destination profiles into the
MATLAB workspace. This example uses the sRGB profile as the source
profile. The sRGB profile is an industry-standard color space that describes
a color monitor.

inprof = iccread('sRGB.icm');

For the destination profile, the example uses a profile that describes a
particular color printer. The printer vendor supplies this profile. (The
following profile and several other useful profiles can be obtained as
downloads from www.adobe.com.)

outprof = iccread('USSheetfedCoated.icc');

Converting Color Data Between Color Spaces

13-21

3 Create a color transformation structure. You must create a color
transformation structure to define the conversion between the color spaces
in the profiles. You use the makecform function to create the structure,
specifying a transformation type string as an argument.

Note The color space conversion might involve an intermediate conversion
into a device-independent color space, called the Profile Connection Space
(PCS), but this is transparent to the user.

This example creates a color transformation structure that defines a
conversion from RGB color data to CMYK color data.

C = makecform('icc',inprof,outprof);

4 Perform the conversion. You use the applycform function to perform the
conversion, specifying as arguments the color data you want to convert and
the color transformation structure that defines the conversion. The function
returns the converted data.

I_cmyk = applycform(I_rgb,C);

Specifying the Rendering Intent
For most devices, the range of reproducible colors is much smaller than the
range of colors represented by the PCS. It is for this reason that four rendering
intents (or gamut mapping techniques) are defined in the profile format. Each
one has distinct aesthetic and color-accuracy tradeoffs.

When you create a profile-based color transformation structure, you can specify
the rendering intent for the source as well as the destination profiles. For more
information, see the makecform reference information.

Converting Between Device-Dependent Color
Spaces
The toolbox includes functions that you can use to convert RGB data to several
common device-dependent color spaces, and vice versa:

• YIQ

• YCbCr

13 Color

13-22

• Hue, saturation, value (HSV)

YIQ Color Space
The National Television Systems Committee (NTSC) defines a color space
known as YIQ. This color space is used in televisions in the United States. One
of the main advantages of this format is that grayscale information is
separated from color data, so the same signal can be used for both color and
black and white sets.

In the NTSC color space, image data consists of three components: luminance
(Y), hue (I), and saturation (Q). The first component, luminance, represents
grayscale information, while the last two components make up chrominance
(color information).

The function rgb2ntsc converts colormaps or RGB images to the NTSC color
space. ntsc2rgb performs the reverse operation.

For example, these commands convert an RGB image to NTSC format.

RGB = imread('peppers.png');
YIQ = rgb2ntsc(RGB);

Because luminance is one of the components of the NTSC format, the RGB to
NTSC conversion is also useful for isolating the gray level information in an
image. In fact, the toolbox functions rgb2gray and ind2gray use the rgb2ntsc
function to extract the grayscale information from a color image.

For example, these commands are equivalent to calling rgb2gray.

YIQ = rgb2ntsc(RGB);
I = YIQ(:,:,1);

Note In the YIQ color space, I is one of the two color components, not the
grayscale component.

YCbCr Color Space
The YCbCr color space is widely used for digital video. In this format,
luminance information is stored as a single component (Y), and chrominance
information is stored as two color-difference components (Cb and Cr). Cb

Converting Color Data Between Color Spaces

13-23

represents the difference between the blue component and a reference value.
Cr represents the difference between the red component and a reference value.

YCbCr data can be double precision, but the color space is particularly well
suited to uint8 data. For uint8 images, the data range for Y is [16, 235], and
the range for Cb and Cr is [16, 240]. YCbCr leaves room at the top and bottom
of the full uint8 range so that additional (nonimage) information can be
included in a video stream.

The function rgb2ycbcr converts colormaps or RGB images to the YCbCr color
space. ycbcr2rgb performs the reverse operation.

For example, these commands convert an RGB image to YCbCr format.

RGB = imread('peppers.png');
YCBCR = rgb2ycbcr(RGB);

HSV Color Space
The HSV color space (hue, saturation, value) is often used by people who are
selecting colors (e.g., of paints or inks) from a color wheel or palette, because it
corresponds better to how people experience color than the RGB color space
does. The functions rgb2hsv and hsv2rgb convert images between the RGB and
HSV color spaces.

As hue varies from 0 to 1.0, the corresponding colors vary from red through
yellow, green, cyan, blue, magenta, and back to red, so that there are actually
red values both at 0 and 1.0. As saturation varies from 0 to 1.0, the
corresponding colors (hues) vary from unsaturated (shades of gray) to fully
saturated (no white component). As value, or brightness, varies from 0 to 1.0,
the corresponding colors become increasingly brighter.

The following figure illustrates the HSV color space.

13 Color

13-24

.

Illustration of the HSV Color Space

The rgb2hsv function converts colormaps or RGB images to the HSV color
space. hsv2rgb performs the reverse operation. These commands convert an
RGB image to the HSV color space.

RGB = imread('peppers.png');
HSV = rgb2hsv(RGB);

For closer inspection of the HSV color space, the next block of code displays the
separate color planes (hue, saturation, and value) of an HSV image.

RGB=reshape(ones(64,1)*reshape(jet(64),1,192),[64,64,3]);
HSV=rgb2hsv(RGB);
H=HSV(:,:,1);
S=HSV(:,:,2);
V=HSV(:,:,3);
imshow(H)
figure, imshow(S);
figure, imshow(V);
figure, imshow(RGB);

1
0

0.2

0.4

0.6

0.8

1

Hue

Saturation

Value

0

1

1

Hue

0

Converting Color Data Between Color Spaces

13-25

The Separated Color Planes of an HSV Image

As the hue plane image in the preceding figure illustrates, hue values make a
linear transition from high to low. If you compare the hue plane image against
the original image, you can see that shades of deep blue have the highest
values, and shades of deep red have the lowest values. (As stated previously,
there are values of red on both ends of the hue scale. To avoid confusion, the
sample image uses only the red values from the beginning of the hue range.)

Saturation can be thought of as the purity of a color. As the saturation plane
image shows, the colors with the highest saturation have the highest values
and are represented as white. In the center of the saturation image, notice the
various shades of gray. These correspond to a mixture of colors; the cyans,
greens, and yellow shades are mixtures of true colors. Value is roughly
equivalent to brightness, and you will notice that the brightest areas of the
value plane correspond to the brightest colors in the original image.

Hue plane Saturation plane

Value plane Original image

13 Color

13-26

14

Function Reference

This section describes the Image Processing Toolbox functions.

Functions – By Category (p. 14-2) Contains a group of tables that organize the toolbox
functions into category groups

Functions – Alphabetical List
(p. 14-15)

Contains separate reference pages for each toolbox
function

14 Function Reference

14-2

Functions – By Category
This section provides brief descriptions of all the functions in the Image
Processing Toolbox. The functions are listed in tables in the following broad
categories.

If you know the name of a function, use “Functions — Alphabetical List” to find
the reference page.

Image Input, Output, and Display
• Image Display (p. 14-3)

• Image File I/O (p. 14-3)

• Image Types and Type Conversions (p. 14-3)

Image Input, Output, and
Display (p. 14-2)

Functions for importing, exporting, and
displaying images and converting between
image formats

Spatial Transformation and
Registration (p. 14-4)

Functions for performing spatial
transformations and image registration

Image Analysis and Statistics
(p. 14-5)

Functions for performing image analysis
and getting pixel values and statistics

Image Enhancement and
Restoration (p. 14-6)

Functions for image enhancement and
restoration, such as deblurring

Linear Filtering and
Transforms (p. 14-7)

Functions for creating and using linear
filters and transforms

Morphological Operations
(p. 14-9)

Functions for performing morphological
image processing

Region-Based, Neighborhood,
and Block Processing (p. 14-11)

Functions to define regions of interest and
operate on these regions

Colormap and Color Space
Functions (p. 14-12)

Functions for working with image color

Miscellaneous Functions
(p. 14-13)

Functions that perform image arithmetic,
array operations, and set and get Image
Processing Toolbox preferences

Functions – By Category

14-3

Image Display

Image File I/O

Image Types and Type Conversions

colorbar Display color bar (MATLAB function)

getimage Get image data from axes

image Create and display image object (MATLAB function)

imagesc Scale data and display as image (MATLAB function)

immovie Make movie from multiframe indexed image

imshow Display image in a MATLAB figure window

imview Display image in the Image Viewer

montage Display multiple image frames as rectangular montage

subimage Display multiple images in single figure

truesize Adjust display size of image

warp Display image as texture-mapped surface

zoom Zoom in and out of image or 2-D plot (MATLAB function)

dicominfo Read metadata from a DICOM message

dicomread Read a DICOM image

dicomuid Generate DICOM unique identifier

dicomwrite Write a DICOM image

imfinfo Return information about image file (MATLAB function)

imread Read image file (MATLAB function)

imwrite Write image file (MATLAB function)

dither Convert image using dithering

double Convert data to double precision (MATLAB function)

gray2ind Convert intensity image to indexed image

14 Function Reference

14-4

Spatial Transformation and Registration
• Spatial Transformations (p. 14-5)

• Image Registration (p. 14-5)

grayslice Create indexed image from intensity image by
thresholding

graythresh Compute global image threshold using Otsu's method

im2bw Convert image to binary image by thresholding

im2double Convert image array to double precision

im2java Convert image to instance of Java image object
(MATLAB function)

im2java2d Convert image to instance of Java buffered image object

im2uint16 Convert image array to 16-bit unsigned integers

im2uint8 Convert image array to 8-bit unsigned integers

ind2gray Convert indexed image to intensity image

ind2rgb Convert indexed image to RGB image

isbw Return true for binary image

isgray Return true for intensity image

isind Return true for indexed image

isrgb Return true for RGB image

label2rgb Convert a label matrix to an RGB image

mat2gray Convert matrix to intensity image

rgb2gray Convert RGB image or colormap to grayscale

rgb2ind Convert RGB image to indexed image

uint16 Convert data to unsigned 16-bit integers (MATLAB
function)

uint8 Convert data to unsigned 8-bit integers (MATLAB
function)

Functions – By Category

14-5

Spatial Transformations

Image Registration

Image Analysis and Statistics
• Image Analysis (p. 14-6)

• Pixel Values and Statistics (p. 14-6)

checkerboard Create checkerboard image

findbounds Find output bounds for spatial transformation

fliptform Flip the input and output roles of a TFORM structure

imcrop Crop image

imresize Resize image

imrotate Rotate image

interp2 2-D data interpolation (MATLAB function)

imtransform Apply 2-D spatial transformation to image

makeresampler Create resampling structure

maketform Create geometric transformation structure

tformarray Geometric transformation of a multidimensional array

tformfwd Apply forward geometric transformation

tforminv Apply inverse geometric transformation

cp2tform Infer geometric transformation from control point pairs

cpcorr Tune control point locations using cross-correlation

cpselect Control point selection tool

cpstruct2pairs Convert CPSTRUCT to valid pairs of control points

normxcorr2 Normalized two-dimensional cross-correlation

14 Function Reference

14-6

Image Analysis

Pixel Values and Statistics

Image Enhancement and Restoration
• Image Enhancement (p. 14-7)

• Image Restoration (Deblurring) (p. 14-7)

edge Find edges in intensity image

qtdecomp Perform quadtree decomposition

qtgetblk Get block values in quadtree decomposition

qtsetblk Set block values in quadtree decomposition

corr2 Compute 2-D correlation coefficient

imcontour Create contour plot of image data

imhist Display histogram of image data

impixel Determine pixel color values

improfile Compute pixel-value cross-sections along line segments

mean2 Compute mean of matrix elements

pixval Display information about image pixels

regionprops Measure properties of image regions

std2 Compute standard deviation of matrix elements

Functions – By Category

14-7

Image Enhancement

Image Restoration (Deblurring)

Linear Filtering and Transforms
• Linear Filtering (p. 14-8)

• Linear 2-D Filter Design (p. 14-8)

• Image Transforms (p. 14-8)

adapthisteq Perform adaptive histogram equalization using CLAHE

decorrstretch Apply a decorrelation stretch to a multichannel image

histeq Enhance contrast using histogram equalization

imadjust Adjust image intensity values or colormap

imnoise Add noise to an image

medfilt2 Perform 2-D median filtering

ordfilt2 Perform 2-D order-statistic filtering

stretchlim Return a pair of intensities that can be used to increase the
contrast of an image

uintlut Compute new array values based on lookup table

wiener2 Perform 2-D adaptive noise-removal filtering

deconvblind Restore image using blind deconvolution

deconvlucy Restore image using accelerated Richardson-Lucy
algorithm

deconvreg Restore image using regularized filter

deconvwnr Restore image using Wiener filter

edgetaper Taper the discontinuities along the image edges

otf2psf Convert optical transfer function to point spread function

psf2otf Convert point spread function to optical transfer function

14 Function Reference

14-8

Linear Filtering

Linear 2-D Filter Design

Image Transforms

conv2 Perform 2-D convolution (MATLAB function)

convmtx2 Compute 2-D convolution matrix

convn Perform N-D convolution (MATLAB function)

filter2 Perform 2-D filtering (MATLAB function)

fspecial Create predefined filters

imfilter Multidimensional image filtering

freqspace Determine 2-D frequency response spacing (MATLAB
function.)

freqz2 Compute 2-D frequency response

fsamp2 Design 2-D FIR filter using frequency sampling

ftrans2 Design 2-D FIR filter using frequency transformation

fwind1 Design 2-D FIR filter using 1-D window method

fwind2 Design 2-D FIR filter using 2-D window method

dct2 Compute 2-D discrete cosine transform

dctmtx Compute discrete cosine transform matrix

fan2para Convert fan-beam projection data to parallel-beam

fanbeam Compute fan-beam transform

fft2 Compute 2-D fast Fourier transform (MATLAB function)

fftn Compute N-D fast Fourier transform (MATLAB function)

fftshift Reverse quadrants of output of FFT (MATLAB function)

idct2 Compute 2-D inverse discrete cosine transform

ifft2 Compute 2-D inverse fast Fourier transform (MATLAB
function)

Functions – By Category

14-9

Morphological Operations
• Intensity and Binary Images (p. 14-9)

• Binary Images (p. 14-10)

• Structuring Element (STREL) Creation and Manipulation (p. 14-11)

Intensity and Binary Images

ifftn Compute N-D inverse fast Fourier transform (MATLAB
function)

ifanbeam Compute inverse fan-beam transform

iradon Compute inverse Radon transform

para2fan Convert parallel-beam projections to fan-beam

phantom Generate a head phantom image

radon Compute Radon transform

conndef Default connectivity array

imbothat Perform bottom-hat filtering

imclearborder Suppress light structures connected to image border

imclose Close image

imdilate Dilate image

imerode Erode image

imextendedmax Find extended-maxima transform

imextendedmin Find extended-minima transform

imfill Fill image regions

imhmax Calculate H-maxima transform

imhmin Calculate H-minima transform

imimposemin Impose minima

imopen Open image

14 Function Reference

14-10

Binary Images

imreconstruct Perform morphological reconstruction

imregionalmax Find regional maxima of image

imregionalmin Find regional minima of image

imtophat Perform tophat filtering

watershed Find image watershed regions

applylut Perform neighborhood operations using lookup tables

bwarea Area of objects in binary image

bwareaopen Binary area open; remove small objects

bwdist Distance transform

bweuler Euler number of binary image

bwhitmiss Binary hit-and-miss operation

bwlabel Label connected components in 2-D binary image

bwlabeln Label connected components in N-D binary image

bwmorph Perform morphological operations on binary image

bwpack Pack binary image

bwperim Find perimeter of objects in binary image

bwselect Select objects in binary image

bwulterode Ultimate erosion

bwunpack Unpack a packed binary image

imregionalmin Regional minima of image

imtophat Perform tophat filtering

makelut Construct lookup table for use with applylut

Functions – By Category

14-11

Structuring Element (STREL) Creation and Manipulation

Region-Based, Neighborhood, and Block
Processing
• Region-Based Processing (p. 14-11)

• Neighborhood and Block Processing (p. 14-12)

Region-Based Processing

getheight Get the height of a structuring element

getneighbors Get structuring element neighbor locations and heights

getnhood Get structuring element neighborhood

getsequence Extract sequence of decomposed structuring elements

isflat Return true for flat structuring element

reflect Reflect structuring element

strel Create morphological structuring element

translate Translate structuring element

bwboundaries Trace region boundaries in binary image

bwtraceboundary Trace object in binary image

poly2mask Convert region-of-interest polygon to mask

roicolor Select region of interest, based on color

roifill Smoothly interpolate within arbitrary region

roifilt2 Filter a region of interest

roipoly Select polygonal region of interest

14 Function Reference

14-12

Neighborhood and Block Processing

Colormap and Color Space Functions
• Colormap Manipulation (p. 14-12)

• Color Space Conversions (p. 14-13)

Colormap Manipulation

bestblk Choose block size for block processing

blkproc Implement distinct block processing for image

col2im Rearrange matrix columns into blocks

colfilt Perform neighborhood operations using columnwise
functions

im2col Rearrange image blocks into columns

nlfilter Perform general sliding-neighborhood operations

brighten Brighten or darken colormap (MATLAB function)

cmpermute Rearrange colors in colormap

cmunique Find unique colormap colors and corresponding image

colormap Set or get color lookup table (MATLAB function)

imapprox Approximate indexed image by one with fewer colors

rgbplot Plot RGB colormap components (MATLAB function)

Functions – By Category

14-13

Color Space Conversions

Miscellaneous Functions
• Image Arithmetic (p. 14-14)

• Toolbox Preferences (p. 14-14)

• Interactive Mouse Utility Functions (p. 14-14)

• Array Operations (p. 14-14)

• Demos (p. 14-14)

applycform Apply device-independent color space transformation

hsv2rgb Convert HSV values to RGB color space (MATLAB function)

iccread Read ICC color profile

lab2double Convert color values to double

lab2uint16 Convert color values to uint16

lab2uint8 Convert color values to uint8

makecform Create device-independent color space transform structure

ntsc2rgb Convert NTSC values to RGB color space

rgb2hsv Convert RGB values to HSV color space (MATLAB function)

rgb2ntsc Convert RGB values to NTSC color space

rgb2ycbcr Convert RGB values to YCbCr color space

whitepoint Returns XYZ values of standard illuminants

xyz2double Convert XYZ color values to double

xyz2uint16 Convert XYZ color values to uint16

ycbcr2rgb Convert YCbCr values to RGB color space

L∗ a∗ b∗

L∗ a∗ b∗

L∗ a∗ b∗

14 Function Reference

14-14

Image Arithmetic

Toolbox Preferences

Interactive Mouse Utility Functions

Array Operations

Demos

imabsdiff Compute absolute difference of two images

imadd Add two images, or add constant to image

imcomplement Complement image

imdivide Divide two images, or divide image by constant

imlincomb Compute linear combination of images

immultiply Multiply two images, or multiply image by constant

imsubtract Subtract two images, or subtract constant from image

ippl Check for presence of Intel Performance Primitives
Library (IPPL)

iptgetpref Get value of Image Processing Toolbox preference

iptsetpref Set value of Image Processing Toolbox preference

getline Select polyline with mouse

getpts Select points with mouse

getrect Select rectangle with mouse

circshift Shift array circularly (MATLAB function)

padarray Pad an array

iptdemos Display index of Image Processing Toolbox demos

Functions – Alphabetical List

14-15

Functions – Alphabetical List
This section contains detailed descriptions of all toolbox functions. Each
function reference page contains some or all of this information:

• The function name

• The purpose of the function

• The function syntax

All valid input argument and output argument combinations are shown. In
some cases, an ellipsis (. . .) is used for the input arguments. This means that
all preceding input argument combinations are valid for the specified output
argument(s).

• A description of each argument

• A description of the function

• Additional remarks about usage

• An example of usage

• Related functions

adapthisteq

14-16

14adapthisteqPurpose Perform contrast-limited adaptive histogram equalization (CLAHE)

Syntax J = adapthisteq(I)
J = adapthisteq(I,param1,val1,param2,val2...)

Description J = adapthisteq(I) enhances the contrast of the intensity image I by
transforming the values using contrast-limited adaptive histogram
equalization (CLAHE).

CLAHE operates on small regions in the image, called tiles, rather than the
entire image. Each tile's contrast is enhanced, so that the histogram of the
output region approximately matches the histogram specified by the
'Distribution' parameter. The neighboring tiles are then combined using
bilinear interpolation to eliminate artificially induced boundaries. The
contrast, especially in homogeneous areas, can be limited to avoid amplifying
any noise that might be present in the image.

J = adapthisteq(I,param1,val1,param2,val2...) specifies any of the
additional parameter/value pairs listed in the following table. Parameter
names can be abbreviated, and case does not matter.

Parameter Value

'NumTiles' Two-element vector of positive integers specifying
the number of tiles by row and column, [M N]. Both
M and N must be at least 2. The total number of tiles
is equal to M*N.

Default: [8 8]

'ClipLimit' Real scalar in the range [0 1] that specifies a contrast
enhancement limit. Higher numbers result in more
contrast.

Default: 0.01

adapthisteq

14-17

Class Support Intensity image I can be of class uint8, uint16, or double. The output image
J has the same class as I.

'NBins' Positive integer scalar specifying the number of bins
for the histogram used in building a contrast
enhancing transformation. Higher values result in
greater dynamic range at the cost of slower
processing speed.

Default: 256

'Range' String specifying the range of the output image data.

'original' — Range is limited to the range of the
original image, [min(I(:)) max(I(:))].

'full' — Full range of the output image class is
used. For example, for uint8 data, range is [0 255].

Default: 'full'

'Distribution' String specifying the desired histogram shape for
the image tiles.

'uniform' — Flat histogram

'rayleigh' — Bell-shaped histogram

'exponential' — Curved histogram

Default: 'uniform'

'Alpha' Nonnegative real scalar specifying a distribution
parameter.

Default: 0.4

Note: Only used when 'Distribution' is set to
either 'rayleigh' or 'exponential'.

Parameter Value

adapthisteq

14-18

Example 1
Apply Contrast-Limited Adaptive Histogram Equalization to an image and
display the results.

I = imread('tire.tif');
A = adapthisteq(I,'clipLimit',0.02,'Distribution','rayleigh');
imview(I);
imview(A);

Example 2
Apply Contrast-Limited Adaptive Histogram Equalization to a color
photograph.

[I MAP] = imread('shadow.tif');
RGB = ind2rgb(I,MAP);
YIQ = rgb2ntsc(RGB); %convert to YIQ image
Y = YIQ(:,:,1);
YIQ(:,:,1) = adapthisteq(Y,'Divisions',[8 8],'ClipLimit',0.005);
J = ntsc2rgb(YIQ); %convert back to RGB
imview(RGB); %display the results

See Also histeq

applycform

14-19

14applycformPurpose Apply color space transformation

Syntax out = applycform(I,C)

Description out = applycform(I,C) converts the color values in I to the color space
specified in the color transformation structure C. The color transformation
structure specifies various parameters of the transformation. See makecform
for details.

If I is two-dimensional, each row is interpreted as a color. I typically has either
three or four columns, depending on the input color space. out has the same
number of rows and either three or four columns, depending on the output color
space.

If I is three-dimensional, each row-column location is interpreted as a color,
and size(I,3) is typically either three or four, depending on the input color
space. out has the same number of rows and columns as I, and size(out,3) is
either three or four, depending on the output color space.

Class Support I must be a real, nonsparse, finite array of class uint8, uint16, or double. The
output array out has the same class and size as the input array, unless the
output color space is XYZ. If the input is XYZ data of class uint8, the output is
of class uint16, because there is no standard 8-bit encoding defined for XYZ
color values.

Example Read in a color image that uses the RGB color space.

I = imread('peppers.png');

Create a color transformation structure that defines an RGB to XYZ
conversion.

C = makecform('srgb2xyz');

Perform the transformation with applycform.

I_xyz = applycform(I,C);

See Also makecform

applylut

14-20

14applylutPurpose Perform neighborhood operations on binary images using lookup tables

Syntax A = applylut(BW,LUT)

Description A = applylut(BW,LUT) performs a 2-by-2 or 3-by-3 neighborhood operation on
binary image BW by using a lookup table (LUT). LUT is either a 16-element or
512-element vector returned by makelut. The vector consists of the output
values for all possible 2-by-2 or 3-by-3 neighborhoods.

Class Support BW can be numeric or logical, and it must be real, two-dimensional, and
nonsparse. LUT can be numeric or logical, and it must be a real vector with 16
or 512 elements. If all the elements of LUT are 0 or 1, then A is logical. If all the
elements of LUT are integers between 0 and 255, then A is uint8. For all other
cases, A is double.

Algorithm applylut performs a neighborhood operation on a binary image by producing
a matrix of indices into lut, and then replacing the indices with the actual
values in lut. The specific algorithm used depends on whether you use 2-by-2
or 3-by-3 neighborhoods.

2-by-2 Neighborhoods
For 2-by-2 neighborhoods, length(lut) is 16. There are four pixels in each
neighborhood, and two possible states for each pixel, so the total number of
permutations is 24 = 16.

To produce the matrix of indices, applylut convolves the binary image BW with
this matrix.

8 2
4 1

The resulting convolution contains integer values in the range [0,15]. applylut
uses the central part of the convolution, of the same size as BW, and adds 1 to
each value to shift the range to [1,16]. It then constructs A by replacing the
values in the cells of the index matrix with the values in lut that the indices
point to.

applylut

14-21

3-by-3 Neighborhoods
For 3-by-3 neighborhoods, length(lut) is 512. There are nine pixels in each
neighborhood, and two possible states for each pixel, so the total number of
permutations is 29 = 512.

To produce the matrix of indices, applylut convolves the binary image BW with
this matrix.

256 32 4
128 16 2
64 8 1

The resulting convolution contains integer values in the range [0,511].
applylut uses the central part of the convolution, of the same size as BW, and
adds 1 to each value to shift the range to [1,512]. It then constructs A by
replacing the values in the cells of the index matrix with the values in lut that
the indices point to.

Example In this example, you perform erosion using a 2-by-2 neighborhood. An output
pixel is on only if all four of the input pixel’s neighborhood pixels are on.

lut = makelut('sum(x(:)) == 4',2);
BW = imread('text.png');
BW2 = applylut(BW,lut);
imview(BW), imview(BW2)

See Also makelut

bestblk

14-22

14bestblkPurpose Determine block size for block processing

Syntax siz = bestblk([m n],k)
[mb,nb] = bestblk([m n],k)

Description siz = bestblk([m n],k) returns, for an m-by-n image, the optimal block size
for block processing. k is a scalar specifying the maximum row and column
dimensions for the block; if the argument is omitted, it defaults to 100. The
return value siz is a 1-by-2 vector containing the row and column dimensions
for the block.

[mb,nb] = bestblk([m n],k) returns the row and column dimensions for the
block in mb and nb, respectively.

Algorithm bestblk returns the optimal block size given m, n, and k. The algorithm for
determining siz is

• If m is less than or equal to k, return m.

• If m is greater than k, consider all values between min(m/10,k/2) and k.
Return the value that minimizes the padding required.

The same algorithm is then repeated for n.

Example siz = bestblk([640 800],72)

siz =

64 50

See Also blkproc

blkproc

14-23

14blkprocPurpose Implement distinct block processing for an image

Syntax B = blkproc(A,[m n],fun)
B = blkproc(A,[m n],fun,P1,P2,...)
B = blkproc(A,[m n],[mborder nborder],fun,...)
B = blkproc(A,'indexed',...)

Description B = blkproc(A,[m n],fun) processes the image A by applying the function fun
to each distinct m-by-n block of A, padding A with 0’s if necessary. fun is a
function that accepts an m-by-n matrix, x, and returns a matrix, vector, or
scalar y.

y = fun(x)

blkproc does not require that y be the same size as x. However, B is the same
size as A only if y is the same size as x.

B = blkproc(A,[m n],fun,P1,P2,...) passes the additional parameters
P1,P2,... to fun.

B = blkproc(A,[m n],[mborder nborder],fun,...) defines an overlapping
border around the blocks. blkproc extends the original m-by-n blocks by
mborder on the top and bottom, and nborder on the left and right, resulting in
blocks of size (m+2*mborder)-by-(n+2*nborder). The blkproc function pads
the border with 0’s, if necessary, on the edges of A. The function fun should
operate on the extended block.

The line below processes an image matrix as 4-by-6 blocks, each having a row
border of 2 and a column border of 3. Because each 4-by-6 block has this 2-by-3
border, fun actually operates on blocks of size 8-by-12.

B = blkproc(A,[4 6],[2 3],fun,...)

B = blkproc(A,'indexed',...) processes A as an indexed image, padding
with 0’s if the class of A is uint8 or uint16, or 1’s if the class of A is double.

Class Support The input image A can be of any class supported by fun. The class of B depends
on the class of the output from fun.

blkproc

14-24

Example This example uses blkproc to compute the 2-D DCT of each 8-by-8 block to the
standard deviation of the elements in that block. In this example, fun is
specified as a function_handle created using @.

I = imread('cameraman.tif');
fun = @dct2;
J = blkproc(I,[8 8],fun);
imagesc(J), colormap(hot)

This example uses blkproc to set the pixels in each 16-by-16 block to the
standard deviation of the elements in that block. In this example, fun is
specified as an inline object.

I = imread('liftingbody.png');
fun = inline('std2(x)*ones(size(x))');
I2 = blkproc(I,[16 16],fun);
imview(I), imview(I2,[])

50 100 150 200 250

50

100

150

200

250

blkproc

14-25

See Also colfilt, nlfilter, inline

Image Courtesy of NASA

brighten

14-26

14brightenPurpose Brighten or darken a colormap

brighten is a MATLAB function. To get help for this function, select MATLAB
Help from the Help menu and view the online function reference page.

bwarea

14-27

14bwareaPurpose Compute the area of the objects in a binary image

Syntax total = bwarea(BW)

Description total = bwarea(BW) estimates the area of the objects in binary image BW.
total is a scalar whose value corresponds roughly to the total number of on
pixels in the image, but might not be exactly the same because different
patterns of pixels are weighted differently.

Class Support BW can be numeric or logical. For numeric input, any nonzero pixels are
considered to be on. The return value total is of class double.

Algorithm bwarea estimates the area of all of the on pixels in an image by summing the
areas of each pixel in the image. The area of an individual pixel is determined
by looking at its 2-by-2 neighborhood. There are six different patterns, each
representing a different area:

• Patterns with zero on pixels (area = 0)

• Patterns with one on pixel (area = 1/4)

• Patterns with two adjacent on pixels (area = 1/2)

• Patterns with two diagonal on pixels (area = 3/4)

• Patterns with three on pixels (area = 7/8)

• Patterns with all four on pixels (area = 1)

Keep in mind that each pixel is part of four different 2-by-2 neighborhoods.
This means, for example, that a single on pixel surrounded by off pixels has a
total area of 1.

Example This example computes the area in the objects of a 256-by-256 binary image.

BW = imread('circles.png');
imview(BW);

bwarea

14-28

bwarea(BW)

ans =

 1.4187e+004

See Also bweuler, bwperim

References Pratt, William K., Digital Image Processing, New York, John Wiley & Sons,
Inc., 1991, p. 634.

bwareaopen

14-29

14bwareaopenPurpose Binary area open; remove small objects

Syntax BW2 = bwareaopen(BW,P)
BW2 = bwareaopen(BW,P,CONN)

Description BW2 = bwareaopen(BW,P) removes from a binary image all connected
components (objects) that have fewer than P pixels, producing another binary
image, BW2. The default connectivity is 8 for two dimensions, 26 for three
dimensions, and conndef(ndims(BW),'maximal') for higher dimensions.

BW2 = bwareaopen(BW,P,CONN) specifies the desired connectivity. CONN can
have any of the following scalar values.

Connectivity can be defined in a more general way for any dimension by using
for CONN a 3-by-3-by-...-by-3 matrix of 0’s and 1’s. The 1-valued elements define
neighborhood locations relative to the center element of CONN. Note that CONN
must be symmetric about its center element.

Class Support BW can be a logical or numeric array of any dimension, and it must be
nonsparse. The return value BW2 is of class logical.

Algorithm The basic steps are

1 Determine the connected components.
L = bwlabeln(BW, CONN);

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

bwareaopen

14-30

2 Compute the area of each component.
S = regionprops(L, 'Area');

3 Remove small objects.
bw2 = ismember(L, find([S.Area] >= P));

Example Read in the image and display it.

originalBW = imread('text.png');
imview(originalBW)

Remove all objects smaller than 50 pixels. Note the missing letters.

bwAreaOpenBW = bwareaopen(originalBW,50);
imview(bwAreaOpenBW)

See Also bwlabel, bwlabeln, conndef, regionprops

bwboundaries

14-31

14bwboundariesPurpose Trace region boundaries in a binary image

Syntax B = bwboundaries(BW)
B = bwboundaries(BW,CONN)
B = bwboundaries(BW,CONN,options)
[B L] = bwboundaries(...)
[B L N A] = bwboundaries()

Description B = bwboundaries(BW) traces the exterior boundaries of objects, as well as
boundaries of holes inside these objects, in the binary image BW. bwboundaries
also descends into the outermost objects (parents) and traces their children
(objects completely enclosed by the parents). BW must be a binary image where
nonzero pixels belong to an object and 0 pixels constitute the background. The
following figure illustrates these components.

bwboundaries returns B, a P-by-1 cell array, where P is the number of objects
and holes. Each cell in the cell array contains a Q-by-2 matrix. Each row in the
matrix contains the row and column coordinates of a boundary pixel. Q is the
number of boundary pixels for the corresponding region.

Hole

ParentParent
object

Child

bwboundaries

14-32

B = bwboundaries(BW,CONN) specifies the connectivity to use when tracing
parent and child boundaries. CONN can have either of the following scalar
values.

B = bwboundaries(BW,CONN,options) specifies an optional argument, where
options can have either of the following values:

[B,L] = bwboundaries(...) returns the label matrix L as the second output
argument. Objects and holes are labeled. L is a two-dimensional array of
nonnegative integers that represent contiguous regions. The kth region
includes all elements in L that have value k. The number of objects and holes
represented by L is equal to max(L(:)). The zero-valued elements of L make up
the background.

[B,L,N,A] = bwboundaries(...) returns N, the number of objects found, and
A, an adjacency matrix. The first N cells in B are object boundaries. A represents
the parent-child-hole dependencies. A is a square, sparse, logical matrix with
side of length max(L(:)), whose rows and columns correspond to the positions
of boundaries stored in B.

The boundaries enclosed by a B{m} as well as the boundary enclosing B{m} can
both be found using A as follows:

enclosing_boundary = find(A(m,:));
enclosed_boundaries = find(A(:,m));

Value Meaning

4 4-connected neighborhood

8 8-connected neighborhood. This is the default.

Value Meaning

'holes' Search for both object and hole boundaries. This is the
default.

'noholes' Search only for object (parent and child) boundaries.
This can provide better performance.

bwboundaries

14-33

Class Support BW can be logical or numeric and it must be real, 2-D, and nonsparse. L and N
are double. A is sparse logical.

Examples Example 1
Read in and threshold an intensity image. Display the labeled objects using the
jet colormap, on a gray background, with region boundaries outlined in white.

I = imread('rice.png');
BW = im2bw(I, graythresh(I));
[B,L] = bwboundaries(BW,'noholes');
imshow(label2rgb(L, @jet, [.5 .5 .5]))
hold on
for k = 1:length(B)
 boundary = B{k};
 plot(boundary(:,2), boundary(:,1), 'w', 'LineWidth', 2)
end

Example 2
Read in and display a binary image. Overlay the region boundaries on the
image. Display text showing the region number (based on the label matrix)
next to every boundary. Additionally, display the adjacency matrix using the
MATLAB spy function.

After the image is displayed, use the zoom tool to read individual labels.

BW = imread('blobs.png');
[B,L,N,A] = bwboundaries(BW);
imshow(BW); hold on;
colors=['b' 'g' 'r' 'c' 'm' 'y'];
for k=1:length(B),
 boundary = B{k};
 cidx = mod(k,length(colors))+1;
 plot(boundary(:,2), boundary(:,1), colors(cidx),'LineWidth',2);
 %randomize text position for better visibility
 rndRow = ceil(length(boundary)/(mod(rand*k,7)+1));
 col = boundary(rndRow,2); row = boundary(rndRow,1);
 h = text(col+1, row-1, num2str(L(row,col)));
 set(h,'Color',colors(cidx),'FontSize',14,'FontWeight','bold');
end
figure; spy(A);

bwboundaries

14-34

Example 3
Display object boundaries in red and hole boundaries in green.

BW = imread('blobs.png');
[B,L,N] = bwboundaries(BW);
imshow(BW); hold on;
for k=1:length(B),
 boundary = B{k};
 if(k > N)
 plot(boundary(:,2), boundary(:,1), 'g','LineWidth',2);
 else
 plot(boundary(:,2), boundary(:,1), 'r','LineWidth',2);
 end
end

Example 4
Display parent boundaries in red (any empty row of the adjacency matrix
belongs to a parent) and their holes in green.

BW = imread('blobs.png');
[B,L,N,A] = bwboundaries(BW);
imshow(BW); hold on;
for k=1:length(B),
 if(~sum(A(k,:)))
 boundary = B{k};
 plot(boundary(:,2), boundary(:,1), 'r','LineWidth',2);
 for l=find(A(:,k))'
 boundary = B{l};
 plot(boundary(:,2), boundary(:,1), 'g','LineWidth',2);
 end
 end
end

 See Also bwtraceboundary, bwlabel, bwlabeln

bwdist

14-35

14bwdistPurpose Distance transform

Syntax D = bwdist(BW)
[D,L] = bwdist(BW)
[D,L] = bwdist(BW,METHOD)

Description D = bwdist(BW) computes the Euclidean distance transform of the binary
image BW. For each pixel in BW, the distance transform assigns a number that
is the distance between that pixel and the nearest nonzero pixel of BW. bwdist
uses the Euclidean distance metric by default. BW can have any dimension. D is
the same size as BW.

[D,L] = bwdist(BW) also computes the nearest-neighbor transform and
returns it as label matrix L, which has the same size as BW and D. Each element
of L contains the linear index of the nearest nonzero pixel of BW.

[D,L] = bwdist(BW,METHOD) computes the distance transform, where METHOD
specifies an alternate distance metric. METHOD can take any of these values:

'chessboard' In 2-D, the chessboard distance between (x1,y1)
and (x2,y2) is

'cityblock' In 2-D, the cityblock distance between (x1,y1) and
(x2,y2) is

max x1 x2– y1 y2–,()

x1 x2– y1 y2–+

bwdist

14-36

The METHOD string can be abbreviated.

Note bwdist uses fast algorithms to compute the true Euclidean distance
transform, especially in the 2-D case. The other methods are provided
primarily for pedagogical reasons. However, the alternative distance
transforms are sometimes significantly faster for multidimensional input
images, particularly those that have many nonzero elements.

Class Support BW can be numeric or logical, and it must be nonsparse. D and L are double
matrices with the same size as BW.

Example Here is a simple example of the Euclidean distance transform.

bw = zeros(5,5); bw(2,2) = 1; bw(4,4) = 1
bw =
 0 0 0 0 0
 0 1 0 0 0
 0 0 0 0 0
 0 0 0 1 0
 0 0 0 0 0

[D,L] = bwdist(bw)

'euclidean' In 2-D, the Euclidean distance between (x1,y1)
and (x2,y2) is

This is the default method.

'quasi-euclidean' In 2-D, the quasi-Euclidean distance between
(x1,y1) and (x2,y2) is

x1 x2–()2 y1 y2–()2
+

x1 x2– 2 1–() y1 y2– x1 x2– y1 y2–>,+

2 1–() x1 x2– y1 y2– otherwise,+

bwdist

14-37

D =
 1.4142 1.0000 1.4142 2.2361 3.1623
 1.0000 0 1.0000 2.0000 2.2361
 1.4142 1.0000 1.4142 1.0000 1.4142
 2.2361 2.0000 1.0000 0 1.0000
 3.1623 2.2361 1.4142 1.0000 1.4142

L =
 7 7 7 7 7
 7 7 7 7 19
 7 7 7 19 19
 7 7 19 19 19
 7 19 19 19 19

In the nearest-neighbor matrix L the values 7 and 19 represent the position of
the nonzero elements using linear matrix indexing. If a pixel contains a 7, its
closest nonzero neighbor is at linear position 7.

This example compares the 2-D distance transforms for each of the supported
distance methods. In the figure, note how the quasi-Euclidean distance
transform best approximates the circular shape achieved by the Euclidean
distance method.

bw = zeros(200,200); bw(50,50) = 1; bw(50,150) = 1;
bw(150,100) = 1;
D1 = bwdist(bw,'euclidean');
D2 = bwdist(bw,'cityblock');
D3 = bwdist(bw,'chessboard');
D4 = bwdist(bw,'quasi-euclidean');
figure
subplot(2,2,1), subimage(mat2gray(D1)), title('Euclidean')
hold on, imcontour(D1)
subplot(2,2,2), subimage(mat2gray(D2)), title('City block')
hold on, imcontour(D2)
subplot(2,2,3), subimage(mat2gray(D3)), title('Chessboard')
hold on, imcontour(D3)
subplot(2,2,4), subimage(mat2gray(D4)), title('Quasi-Euclidean')
hold on, imcontour(D4)

bwdist

14-38

This example compares isosurface plots for the distance transforms of a 3-D
image containing a single nonzero pixel in the center.

bw = zeros(50,50,50); bw(25,25,25) = 1;
D1 = bwdist(bw);
D2 = bwdist(bw,'cityblock');
D3 = bwdist(bw,'chessboard');
D4 = bwdist(bw,'quasi-euclidean');
figure
subplot(2,2,1), isosurface(D1,15), axis equal, view(3)
camlight, lighting gouraud, title('Euclidean')
subplot(2,2,2), isosurface(D2,15), axis equal, view(3)
camlight, lighting gouraud, title('City block')
subplot(2,2,3), isosurface(D3,15), axis equal, view(3)
camlight, lighting gouraud, title('Chessboard')
subplot(2,2,4), isosurface(D4,15), axis equal, view(3)
camlight, lighting gouraud, title('Quasi-Euclidean')

bwdist

14-39

Algorithm For two-dimensional Euclidean distance transforms, bwdist uses the second
algorithm described in

Breu, Heinz, Joseph Gil, David Kirkpatrick, and Michael Werman, “Linear
Time Euclidean Distance Transform Algorithms,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 17, No. 5, May 1995, pp.
529-533.

For higher dimensional Euclidean distance transforms, bwdist uses a
nearest-neighbor search on an optimized kd-tree, as described in

Friedman, Jerome H., Jon Louis Bentley, and Raphael Ari Finkel, “An
Algorithm for Finding Best Matches in Logarithmic Expected Time,” ACM
Transactions on Mathematics Software, Vol. 3, No. 3, September 1997, pp.
209-226.

For cityblock, chessboard, and quasi-Euclidean distance transforms, bwdist
uses the two-pass, sequential scanning algorithm described in

Rosenfeld, A. and J. Pfaltz, “Sequential operations in digital picture
processing,” Journal of the Association for Computing Machinery, Vol. 13,
No. 4, 1966, pp. 471-494.

bwdist

14-40

The different distance measures are achieved by using different sets of weights
in the scans, as described in

Paglieroni, David, “Distance Transforms: Properties and Machine Vision
Applications,” Computer Vision, Graphics, and Image Processing: Graphical
Models and Image Processing, Vol. 54, No. 1, January 1992, pp. 57-58.

See Also watershed

bweuler

14-41

14bweulerPurpose Compute the Euler number of a binary image

Syntax eul = bweuler(BW,n)

Description eul = bweuler(BW,n) returns the Euler number for the binary image BW. The
return value eul is a scalar whose value is the total number of objects in the
image minus the total number of holes in those objects. The argument n can
have a value of either 4 or 8, where 4 specifies 4-connected objects and 8
specifies 8-connected objects; if the argument is omitted, it defaults to 8.

Class Support BW can be numeric or logical and it must be real, nonsparse, and
two-dimensional. The return value eul is of class double.

Example BW = imread('circles.png');
imview(BW);

bweuler(BW)

ans =

 3

Algorithm bweuler computes the Euler number by considering patterns of convexity and
concavity in local 2-by-2 neighborhoods. See [2] for a discussion of the
algorithm used.

See Also bwmorph, bwperim

bweuler

14-42

References [1] Horn, Berthold P. K., Robot Vision, New York, McGraw-Hill, 1986, pp.
73-77.

[2] Pratt, William K., Digital Image Processing, New York, John Wiley & Sons,
Inc., 1991, p. 633.

bwhitmiss

14-43

14bwhitmissPurpose Binary hit-and-miss operation

Syntax BW2 = bwhitmiss(BW1,SE1,SE2)
BW2 = bwhitmiss(BW1,INTERVAL)

Description BW2 = bwhitmiss(BW1,SE1,SE2) performs the hit-and-miss operation defined
by the structuring elements SE1 and SE2. The hit-and-miss operation preserves
pixels whose neighborhoods match the shape of SE1 and don't match the shape
of SE2. SE1 and SE2 can be flat structuring element objects, created by strel,
or neighborhood arrays. The neighborhoods of SE1 and SE2 should not have any
overlapping elements. The syntax bwhitmiss(BW1,SE1,SE2) is equivalent to
imerode(BW1,SE1) & imerode(~BW1,SE2).

BW2 = bwhitmiss(BW1,INTERVAL) performs the hit-and-miss operation
defined in terms of a single array, called an interval. An interval is an array
whose elements can contain 1, 0, or -1. The 1-valued elements make up the
domain of SE1, the -1-valued elements make up the domain of SE2, and the
0-valued elements are ignored. The syntax bwhitmiss(INTERVAL) is equivalent
to bwhitmiss(BW1,INTERVAL == 1, INTERVAL == -1).

Class Support BW1 can be a logical or numeric array of any dimension, and it must be
nonsparse. BW2 is always a logical array with the same size as BW1. SE1 and SE2
must be flat STREL objects or they must be logical or numeric arrays containing
1’s and 0’s. INTERVAL must be an array containing 1 s, 0 s, and -1 s.

Example This example performs the hit-and-miss operation on a binary image using an
interval.

bw = [0 0 0 0 0 0
0 0 1 1 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 1 1 0 0
0 0 1 0 0 0]

interval = [0 -1 -1
1 1 -1
0 1 0];

bwhitmiss

14-44

bw2 = bwhitmiss(bw,interval)

bw2 =

 0 0 0 0 0 0
 0 0 0 1 0 0
 0 0 0 0 1 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0

See Also imdilate, imerode, strel

bwlabel

14-45

14bwlabelPurpose Label connected components in a binary image

Syntax L = bwlabel(BW,n)
[L,num] = bwlabel(BW,n)

Description L = bwlabel(BW,n) returns a matrix L, of the same size as BW, containing labels
for the connected objects in BW. n can have a value of either 4 or 8, where 4
specifies 4-connected objects and 8 specifies 8-connected objects; if the
argument is omitted, it defaults to 8.

The elements of L are integer values greater than or equal to 0. The pixels
labeled 0 are the background. The pixels labeled 1 make up one object, the
pixels labeled 2 make up a second object, and so on.

[L,num] = bwlabel(BW,n) returns in num the number of connected objects
found in BW.

Remarks bwlabel supports 2-D inputs only; bwlabeln supports inputs of any dimension.
In some cases, you might prefer to use bwlabeln even for 2-D problems because
it can be faster. If you have a 2-D input whose objects are relatively thick in the
vertical direction, bwlabel is probably faster; otherwise bwlabeln is probably
faster.

Class Support BW can be logical or numeric, and it must be real, 2-D, and nonsparse. L is of
class double.

Remarks You can use the MATLAB find function in conjunction with bwlabel to return
vectors of indices for the pixels that make up a specific object. For example, to
return the coordinates for the pixels in object 2,

[r,c] = find(bwlabel(BW)==2)

You can display the output matrix as a pseudocolor indexed image. Each object
appears in a different color, so the objects are easier to distinguish than in the
original image. See label2rgb for more information.

Example This example illustrates using 4-connected objects. Notice objects 2 and 3; with
8-connected labeling, bwlabel would consider these a single object rather than
two separate objects.

bwlabel

14-46

BW = [1 1 1 0 0 0 0 0
1 1 1 0 1 1 0 0
1 1 1 0 1 1 0 0
1 1 1 0 0 0 1 0
1 1 1 0 0 0 1 0
1 1 1 0 0 0 1 0
1 1 1 0 0 1 1 0
1 1 1 0 0 0 0 0];

L = bwlabel(BW,4)

L =

 1 1 1 0 0 0 0 0
 1 1 1 0 2 2 0 0
 1 1 1 0 2 2 0 0
 1 1 1 0 0 0 3 0
 1 1 1 0 0 0 3 0
 1 1 1 0 0 0 3 0
 1 1 1 0 0 3 3 0
 1 1 1 0 0 0 0 0

[r,c] = find(L==2);
rc = [r c]

rc =

 2 5
 3 5
 2 6
 3 6

Algorithm bwlabel uses the general procedure outlined in reference [1], pp. 40-48:

1 Run-length encode the input image.

2 Scan the runs, assigning preliminary labels and recording label
equivalences in a local equivalence table.

3 Resolve the equivalence classes.

4 Relabel the runs based on the resolved equivalence classes.

bwlabel

14-47

See Also bweuler, bwlabeln, bwselect, label2rgb

Reference [1] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision,
Volume I, Addison-Wesley, 1992, pp. 28-48.

bwlabeln

14-48

14bwlabelnPurpose Label connected components in N-D binary image

Syntax L = bwlabeln(BW)
[L,NUM] = bwlabeln(BW)
[L,NUM] = bwlabeln(BW,CONN)

Description L = bwlabeln(BW) returns a label matrix L containing labels for the connected
components in BW. BW can have any dimension; L is the same size as BW. The
elements of L are integer values greater than or equal to 0. The pixels labeled
0 are the background. The pixels labeled 1 make up one object, the pixels
labeled 2 make up a second object, and so on. The default connectivity is 8 for
two dimensions, 26 for three dimensions, and conndef(ndims(BW),
'maximal') for higher dimensions.

[L,NUM] = bwlabeln(BW) returns in NUM the number of connected objects found
in BW.

[L,NUM] = bwlabeln(BW,CONN) specifies the desired connectivity. CONN can
have any of the following scalar values.

Connectivity can also be defined in a more general way for any dimension by
using for CONN a 3-by-3-by- ...-by-3 matrix of 0’s and 1’s. The 1-valued elements
define neighborhood locations relative to the center element of CONN. Note that
CONN must be symmetric about its center element.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

bwlabeln

14-49

Remarks bwlabel supports 2-D inputs only; bwlabeln supports inputs of any dimension.
In some cases, you might prefer to use bwlabeln even for 2-D problems because
it can be faster. If you have a 2-D input whose objects are relatively thick in the
vertical direction, bwlabel is probably faster; otherwise bwlabeln is probably
faster.

Class Support BW can be numeric or logical, and it must be real and nonsparse. L is of class
double.

Example BW = cat(3,[1 1 0; 0 0 0; 1 0 0],...
[0 1 0; 0 0 0; 0 1 0],...
[0 1 1; 0 0 0; 0 0 1])

bwlabeln(BW)

ans(:,:,1) =

 1 1 0
 0 0 0
 2 0 0

ans(:,:,2) =

 0 1 0
 0 0 0
 0 2 0

ans(:,:,3) =

 0 1 1
 0 0 0
 0 0 2

Algorithm bwlabeln uses the following general procedure:

1 Scan all image pixels, assigning preliminary labels to nonzero pixels and
recording label equivalences in a union-find table.

bwlabeln

14-50

2 Resolve the equivalence classes using the union-find algorithm [1].

3 Relabel the pixels based on the resolved equivalence classes.

See Also bwlabel, label2rgb

Reference [1] Sedgewick, Robert, Algorithms in C, 3rd Ed., Addison-Wesley, 1998, pp.
11-20.

bwmorph

14-51

14bwmorphPurpose Perform morphological operations on binary images

Syntax BW2 = bwmorph(BW,operation)
BW2 = bwmorph(BW,operation,n)

Description BW2 = bwmorph(BW,operation) applies a specific morphological operation to
the binary image BW.

BW2 = bwmorph(BW,operation,n) applies the operation n times. n can be Inf,
in which case the operation is repeated until the image no longer changes.

operation is a string that can have one of the values listed below.

'bothat' (“bottom hat”) performs morphological closing (dilation followed by
erosion) and subtracts the original image.

'bridge' bridges unconnected pixels, that is, sets 0-valued pixels to 1 if they
have two nonzero neighbors that are not connected. For example:

1 0 0 1 1 0
1 0 1 becomes 1 1 1
0 0 1 0 1 1

'clean' removes isolated pixels (individual 1’s that are surrounded by 0’s),
such as the center pixel in this pattern.

0 0 0
0 1 0
0 0 0

'close' performs morphological closing (dilation followed by erosion).

'bothat' 'erode' 'shrink'

'bridge' 'fill' 'skel'

'clean' 'hbreak' 'spur'

'close' 'majority' 'thicken'

'diag' 'open' 'thin'

'dilate' 'remove' 'tophat'

bwmorph

14-52

'diag' uses diagonal fill to eliminate 8-connectivity of the background. For
example:

0 1 0 0 1 0
1 0 0 becomes 1 1 0
0 0 0 0 0 0

'dilate' performs dilation using the structuring element ones(3).

'erode' performs erosion using the structuring element ones(3).

'fill' fills isolated interior pixels (individual 0’s that are surrounded by 1’s),
such as the center pixel in this pattern.

1 1 1
1 0 1
1 1 1

'hbreak' removes H-connected pixels. For example:

1 1 1 1 1 1
0 1 0 becomes 0 0 0
1 1 1 1 1 1

'majority' sets a pixel to 1 if five or more pixels in its 3-by-3 neighborhood are
1’s; otherwise, it sets the pixel to 0.

'open' implements morphological opening (erosion followed by dilation).

'remove' removes interior pixels. This option sets a pixel to 0 if all its
4-connected neighbors are 1, thus leaving only the boundary pixels on.

'shrink', with n = Inf, shrinks objects to points. It removes pixels so that
objects without holes shrink to a point, and objects with holes shrink to a
connected ring halfway between each hole and the outer boundary. This option
preserves the Euler number.

'skel', with n = Inf, removes pixels on the boundaries of objects but does not
allow objects to break apart. The pixels remaining make up the image skeleton.
This option preserves the Euler number.

'spur' removes spur pixels. For example:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

bwmorph

14-53

0 0 1 0 becomes 0 0 0 0
0 1 0 0 0 1 0 0
1 1 0 0 1 1 0 0

'thicken', with n = Inf, thickens objects by adding pixels to the exterior of
objects until doing so would result in previously unconnected objects being
8-connected. This option preserves the Euler number.

'thin', with n = Inf, thins objects to lines. It removes pixels so that an object
without holes shrinks to a minimally connected stroke, and an object with holes
shrinks to a connected ring halfway between each hole and the outer boundary.
This option preserves the Euler number.

'tophat' (“top hat”) returns the image minus the morphological opening of the
image.

Class Support The input image BW can be numeric or logical. It must be 2-D, real and
nonsparse. The output image BW2 is of class logical.

Example BW = imread('circles.png');
imview(BW);

BW2 = bwmorph(BW,'remove');
imview(BW2)

bwmorph

14-54

BW3 = bwmorph(BW,'skel',Inf);
imview(BW3)

See Also bweuler, bwperim, imdilate, imerode

References [1] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision,
Volume I, Addison-Wesley, 1992.

[2] Pratt, William K., Digital Image Processing, John Wiley & Sons, Inc., 1991.

bwpack

14-55

14bwpackPurpose Pack binary image

Syntax BWP = bwpack(BW)

Description BWP = bwpack(BW) packs the uint8 binary image BW into the uint32 array BWP,
which is known as a packed binary image. Because each 8-bit pixel value in the
binary image has only two possible values, 1 and 0, bwpack can map each pixel
to a single bit in the packed output image.

bwpack processes the image pixels by column, mapping groups of 32 pixels into
the bits of a uint32 value. The first pixel in the first row corresponds to the
least significant bit of the first uint32 element of the output array. The first
pixel in the 32nd input row corresponds to the most significant bit of this same
element. The first pixel of the 33rd row corresponds to the least significant bit
of the second output element, and so on. If BW is M-by-N, then BWP is
ceil(M/32)-by-N. This figure illustrates how bwpack maps the pixels in a
binary image to the bits in a packed binary image.

0

0

1

1

0

1

Input Image (each pixel is uint8 value)

32
 ro

ws

1

0

0

1

0

0

0

1

1

1

0

1

0

1

1

0

0

0

0

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

0

1

1

0

0

1

1

0

1

0

0

1

1

0

1

0

1

0

1

1

0

1

Output Array 32 bits

0 0 1 1 0 1 1 0 0

. . .

. .
 .

. . .

bwpack

14-56

Binary image packing is used to accelerate some binary morphological
operations, such as dilation and erosion. If the input to imdilate or imerode is
a packed binary image, the functions use a specialized routine to perform the
operation faster.

bwunpack is used to unpack packed binary images.

Class Support BW can be logical or numeric, and it must be 2-D, real, and nonsparse. BWP is of
class uint32.

Example Pack, dilate, and unpack a binary image:

BW = imread('text.png');
BWp = bwpack(BW);
BWp_dilated = imdilate(BWp,ones(3,3),'ispacked');
BW_dilated = bwunpack(BWp_dilated, size(BW,1));

See Also bwunpack, imdilate, imerode

bwperim

14-57

14bwperimPurpose Find perimeter pixels in binary image

Syntax BW2 = bwperim(BW1)
BW2 = bwperim(BW1,CONN)

Description BW2 = bwperim(BW1) returns a binary image containing only the perimeter
pixels of objects in the input image BW1. A pixel is part of the perimeter if it is
nonzero and it is connected to at least one zero-valued pixel. The default
connectivity is 4 for two dimensions, 6 for three dimensions, and
conndef(ndims(BW), 'minimal') for higher dimensions.

BW2 = bwperim(BW1,CONN) specifies the desired connectivity. CONN can have
any of the following scalar values.

Connectivity can also be defined in a more general way for any dimension by
using for CONN a 3-by-3-by-...-by-3 matrix of 0’s and 1’s. The 1-valued elements
define neighborhood locations relative to the center element of CONN. Note that
CONN must be symmetric about its center element.

Class Support BW1 must be logical or numeric, and it must be nonsparse. BW2 is of class
logical.

Example BW1 = imread('circbw.tif');
BW2 = bwperim(BW1,8);
imview(BW1)

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

bwperim

14-58

imview(BW2)

See Also bwarea, bweuler, conndef, imfill

bwselect

14-59

14bwselectPurpose Select objects in a binary image

Syntax BW2 = bwselect(BW,c,r,n)
BW2 = bwselect(BW,n)
[BW2,idx] = bwselect(...)

BW2 = bwselect(x,y,BW,xi,yi,n)
[x,y,BW2,idx,xi,yi] = bwselect(...)

Description BW2 = bwselect(BW,c,r,n) returns a binary image containing the objects that
overlap the pixel (r,c). r and c can be scalars or equal-length vectors. If r and
c are vectors, BW2 contains the sets of objects overlapping with any of the pixels
(r(k),c(k)). n can have a value of either 4 or 8 (the default), where 4 specifies
4-connected objects and 8 specifies 8-connected objects. Objects are connected
sets of on pixels (i.e., pixels having a value of 1).

BW2 = bwselect(BW,n) displays the image BW on the screen and lets you select
the (r,c) coordinates using the mouse. If you omit BW, bwselect operates on the
image in the current axes. Use normal button clicks to add points. Pressing
Backspace or Delete removes the previously selected point. A shift-click,
right-click, or double-click selects the final point; pressing Return finishes the
selection without adding a point.

[BW2,idx] = bwselect(...) returns the linear indices of the pixels belonging
to the selected objects.

BW2 = bwselect(x,y,BW,xi,yi,n) uses the vectors x and y to establish a
nondefault spatial coordinate system for BW1. xi and yi are scalars or
equal-length vectors that specify locations in this coordinate system.

[x,y,BW2,idx,xi,yi] = bwselect(...) returns the XData and YData in x and
y, the output image in BW2, linear indices of all the pixels belonging to the
selected objects in idx, and the specified spatial coordinates in xi and yi.

If bwselect is called with no output arguments, the resulting image is
displayed in a new figure.

Class Support The input image BW can be logical or numeric and must be 2-D and nonsparse.
The output image BW2 is of class logical.

bwselect

14-60

Example BW1 = imread('text.png');
c = [43 185 212];
r = [38 68 181];
BW2 = bwselect(BW1,c,r,4);
imview(BW1), imview(BW2)

See Also bwlabel, imfill, impixel, roipoly, roifill

bwtraceboundary

14-61

14bwtraceboundaryPurpose Trace object in a binary image

Syntax B = bwtraceboundary(BW,P,fstep)
B = bwtraceboundary(BW,P,fstep,CONN)
B = bwtraceboundary(...,N,dir)

Description B = bwtraceboundary(BW,P,fstep) traces the outline of an object in binary
image bw. Nonzero pixels belong to an object and 0 pixels constitute the
background. P is a two-element vector specifying the row and column
coordinates of the point on the object boundary where you want the tracing to
begin. fstep is a string specifying the initial search direction for the next object
pixel connected to P. You use strings such as 'N' for north, 'NE' for northeast,
to specify the direction. The following figure illustrates all the possible values
for fstep.

bwtraceboundary returns B, a Q-by-2 matrix, where Q is the number of
boundary pixels for the region. B holds the row and column coordinates of the
boundary pixels.

'N' 'NE'

'E'

'SE''S''SW'

'W'

'NW'

= P, starting point of trace

bwtraceboundary

14-62

B = bwtraceboundary(bw,P,fstep,CONN) specifies the connectivity to use
when tracing the boundary. CONN can have either of the following scalar values.

B = bwtraceboundary(...,N,dir) specifies n, the maximum number of
boundary pixels to extract, and dir, the direction in which to trace the
boundary. When N is set to Inf, the default value, the algorithm identifies all
the pixels on the boundary. dir can have either of the following values:

 Class Support BW can be logical or numeric and it must be real, 2-D, and nonsparse. B, P, CONN,
and N are of class double. dir and fstep are strings.

Example Read in and display a binary image. Starting from the top left, project a beam
across the image searching for the first nonzero pixel. Use the location of that
pixel as the starting point for the boundary tracing. Including the starting
point, extract 50 pixels of the boundary and overlay them on the image. Mark
the starting points with a green x. Mark beams that missed their targets with
a red x.

BW = imread('blobs.png');
imshow(BW,[]);
s=size(BW);
for row = 2:55:s(1)

for col=1:s(2)

Value Meaning

4 4-connected neighborhood

Note: With this connectivity, fstep is limited to the
following values: 'N', 'E', 'S', and 'W'.

8 8-connected neighborhood. This is the default.

Value Meaning

'clockwise' Search in a clockwise direction. This is the
default.

'counterclockwise' Search in counterclockwise direction.

bwtraceboundary

14-63

if BW(row,col),
break;

end
end

contour = bwtraceboundary(BW, [row, col], 'W', 8, 50,...
 'counterclockwise');

if(~isempty(contour))
hold on;
plot(contour(:,2),contour(:,1),'g','LineWidth',2);
hold on;
plot(col, row,'gx','LineWidth',2);

else
hold on; plot(col, row,'rx','LineWidth',2);

end
end

 See Also bwboundaries

bwulterode

14-64

14bwulterodePurpose Ultimate erosion

Syntax BW2 = bwulterode(BW)
BW2 = bwulterode(BW,METHOD,CONN)

Description BW2 = bwulterode(BW) computes the ultimate erosion of the binary image BW.
The ultimate erosion of BW consists of the regional maxima of the Euclidean
distance transform of the complement of BW. The default connectivity for
computing the regional maxima is 8 for two dimensions, 26 for three
dimensions, and conndef(ndims(BW), 'maximal') for higher dimensions.

BW2 = bwulterode(BW,METHOD,CONN) specifies the distance transform method
and the regional maxima connectivity. METHOD can be one of the strings
'euclidean', 'cityblock', 'chessboard', and 'quasi-euclidean'.

CONN can have any of the following scalar values.

Connectivity can be defined in a more general way for any dimension by using
for CONN a 3-by-3-by... - by-3 matrix of 0’s and 1’s. The 1-valued elements define
neighborhood locations relative to the center element of CONN. Note that CONN
must be symmetric about its center element.

Class Support BW can be numeric or logical and it must be nonsparse. It can have any
dimension. The return value BW2 is always a logical array.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

bwulterode

14-65

Example originalBW = imread('circles.png');
imview(originalBW)
ultimateErosion = bwulterode(originalBW);
imview(ultimateErosion)

See Also bwdist, conndef, imregionalmax

bwunpack

14-66

14bwunpackPurpose Unpack binary image

Syntax BW = bwunpack(BWP,M)

Description BW = bwunpack(BWP,M) unpacks the packed binary image BWP. BWP is a uint32
array. When it unpacks BWP, bwunpack maps the least significant bit of the first
row of BWP to the first pixel in the first row of BW. The most significant bit of the
first element of BWP maps to the first pixel in the 32nd row of BW, and so on. BW
is M-by-N, where N is the number of columns of BWP. If M is omitted, its default
value is 32*size(BWP,1).

Binary image packing is used to accelerate some binary morphological
operations, such as dilation and erosion. If the input to imdilate or imerode is
a packed binary image, the functions use a specialized routine to perform the
operation faster.

bwpack is used to create packed binary images.

Class Support BWP is of class uint32 and must be real, 2-D, and nonsparse. The return value
BW is of class uint8.

Example Pack, dilate, and unpack a binary image.

bw = imread('text.png');
bwp = bwpack(bw);
bwp_dilated = imdilate(bwp,ones(3,3),'ispacked');
bw_dilated = bwunpack(bwp_dilated, size(bw,1));

See Also bwpack, imdilate, imerode

checkerboard

14-67

14checkerboardPurpose Create checkerboard image

Syntax I = checkerboard
I = checkerboard(N)
I = checkerboard(N,P,Q)

Description I = checkerboard creates an 8-by-8 square checkerboard image that has four
identifiable corners. Each square has 10 pixels per side. The light squares on
the left half of the checkerboard are white. The light squares on the right half
of the checkerboard are gray.

I = checkerboard(N) creates a checkerboard image where each square has N
pixels per side.

I = checkerboard(N,P,Q) creates a rectangular checkerboard where P
specifies the number of rows and Q specifies the number of columns. If you omit
Q, it defaults to P and the checkerboard is square.

Each row and column is made up of tiles. Each tile contains four squares, N
pixels per side, defined as

TILE = [DARK LIGHT; LIGHT DARK]

The light squares on the left half of the checkerboard are white. The light
squares on the right half of the checkerboard are gray.

Example Create a checkerboard where the side of every square is 20 pixels in length.

I = checkerboard(20);
imview(I)

Create a rectangular checkerboard that is 2 tiles in height and 3 tiles wide.

J = checkerboard(10,2,3);

checkerboard

14-68

imview(J)

Create a black and white checkerboard.

K = (checkerboard > 0.5);
figure, imshow(K)

See Also cp2tform, imtransform, maketform

cmpermute

14-69

14cmpermutePurpose Rearrange the colors in a colormap

Syntax [Y,newmap] = cmpermute(X,map)
[Y,newmap] = cmpermute(X,map,index)

Description [Y,newmap] = cmpermute(X,map) randomly reorders the colors in map to
produce a new colormap newmap. The cmpermute function also modifies the
values in X to maintain correspondence between the indices and the colormap,
and returns the result in Y. The image Y and associated colormap newmap
produce the same image as X and map.

[Y,newmap] = cmpermute(X,map,index) uses an ordering matrix (such as the
second output of sort) to define the order of colors in the new colormap.

Class Support The input image X can be of class uint8 or double. Y is returned as an array of
the same class as X.

Example To arrange a colormap in order by luminance, use

ntsc = rgb2ntsc(map);
[dum,index] = sort(ntsc(:,1));
[Y,newmap] = cmpermute(X,map,index);

See Also randperm, sort in the MATLAB Function Reference

cmunique

14-70

14cmuniquePurpose Find unique colormap colors and the corresponding image

Syntax [Y,newmap] = cmunique(X,map)
[Y,newmap] = cmunique(RGB)
[Y,newmap] = cmunique(I)

Description [Y,newmap] = cmunique(X,map) returns the indexed image Y and associated
colormap newmap that produce the same image as (X,map) but with the
smallest possible colormap. The cmunique function removes duplicate rows
from the colormap and adjusts the indices in the image matrix accordingly.

[Y,newmap] = cmunique(RGB) converts the true-color image RGB to the indexed
image Y and its associated colormap newmap. The return value newmap is the
smallest possible colormap for the image, containing one entry for each unique
color in RGB. (Note that newmap might be very large, because the number of
entries can be as many as the number of pixels in RGB.)

[Y,newmap] = cmunique(I) converts the intensity image I to an indexed image
Y and its associated colormap newmap. The return value newmap is the smallest
possible colormap for the image, containing one entry for each unique intensity
level in I.

Class Support The input image can be of class uint8, uint16, or double. The class of the
output image Y is uint8 if the length of newmap is less than or equal to 256. If
the length of newmap is greater than 256, Y is of class double.

See Also gray2ind, rgb2ind

col2im

14-71

14col2imPurpose Rearrange matrix columns into blocks

Syntax A = col2im(B,[m n],[mm nn], block_type)
A = col2im(B,[m n],[mm nn])

Description col2im rearranges matrix columns into blocks. block_type is a string with one
of these values:

• 'distinct' for m-by-n distinct blocks

• 'sliding' for m-by-n sliding blocks (default)

A = col2im(B,[m n],[mm nn],'distinct') rearranges each column of B
into a distinct m-by-n block to create the matrix A of size mm-by-nn. If
B = [A11(:) A12(:) A21(:) A22(:)], where each column has length m*n,
then A = [A11 A12;A21 A22] where each Aij is m-by-n.

A = col2im(B,[m n],[mm nn],'sliding') rearranges the row vector B
into a matrix of size (mm-m+1)-by-(nn-n+1). B must be a vector of size
1-by-(mm-m+1)*(nn-n+1). B is usually the result of processing the output of
im2col(...,'sliding') using a column compression function (such as sum).

A = col2im(B,[m n],[mm nn]) uses the default block_type of 'sliding'.

Class Support B can be logical or numeric. The return value A is of the same class as B.

See Also blkproc, colfilt, im2col, nlfilter

colfilt

14-72

14colfiltPurpose Perform neighborhood operations using columnwise functions

Syntax B = colfilt(A,[m n],block_type,fun)
B = colfilt(A,[m n],block_type,fun,P1,P2,...)
B = colfilt(A,[m n],[mblock nblock],block_type,fun,...)
B = colfilt(A,'indexed',...)

Description colfilt processes distinct or sliding blocks as columns. colfilt can perform
operations similar to blkproc and nlfilter, but often executes much faster.

B = colfilt(A,[m n],block_type,fun) processes the image A by rearranging
each m-by-n block of A into a column of a temporary matrix, and then applying
the function fun to this matrix. fun can be a function_handle, created using
@, or an inline object. colfilt zero-pads A, if necessary.

Before calling fun, colfilt calls im2col to create the temporary matrix. After
calling fun, colfilt rearranges the columns of the matrix back into m-by-n
blocks using col2im.

block_type is a string that can have one of the values listed in this table.

Value Description

'distinct' Rearranges each m-by-n distinct block of A into a column
in a temporary matrix, and then applies the function fun
to this matrix. fun must return a matrix the same size as
the temporary matrix. colfilt then rearranges the
columns of the matrix returned by fun into m-by-n distinct
blocks.

'sliding' Rearranges each m-by-n sliding neighborhood of A into a
column in a temporary matrix, and then applies the
function fun to this matrix. fun must return a row vector
containing a single value for each column in the
temporary matrix. (Column compression functions such
as sum return the appropriate type of output.) colfilt
then rearranges the vector returned by fun into a matrix
the same size as A.

colfilt

14-73

B = colfilt(A,[m n],block_type,fun,P1,P2,...) passes the additional
parameters P1,P2,... to fun. The colfilt function calls fun using

y = fun(x,P1,P2,...)

where x is the temporary matrix before processing, and y is the temporary
matrix after processing.

B = colfilt(A,[m n],[mblock nblock],block_type,fun,...) processes the
matrix A as above, but in blocks of size mblock-by-nblock to save memory. Note
that using the [mblock nblock] argument does not change the result of the
operation.

B = colfilt(A,'indexed',...) processes A as an indexed image, padding
with 0’s if the class of A is uint8 or uint16, or 1’s if the class of A is double.

Note To save memory, the colfilt function might divide A into subimages
and process one subimage at a time. This might require colfilt to call the
function fun multiple times. In addition, the first argument to fun can have a
different number of columns each time.

Class Support The input image A can be of any class supported by fun. The class of B depends
on the class of the output from fun.

Example This example sets each output pixel to the mean value of the input pixel’s
5-by-5 neighborhood.

I = imread('tire.tif');
imview(I)
I2 = uint8(colfilt(I,[5 5],'sliding',@mean));
imview(I2)

See Also blkproc, col2im, im2col, nlfilter

colorbar

14-74

14colorbarPurpose Display a color bar

colorbar is a MATLAB function. To get help for this function, select MATLAB
Help from the Help menu and view the online function reference page.

conndef

14-75

14conndefPurpose Create connectivity array

Syntax CONN = conndef(NUM_DIMS,TYPE)

Description CONN = conndef(NUM_DIMS,TYPE) returns the connectivity array defined by
TYPE for NUM_DIMS dimensions. TYPE can have either of the values listed in this
table.

Several Image Processing Toolbox functions use conndef to create the default
connectivity input argument.

Examples The minimal connectivity array for two dimensions includes the neighbors
touching the central element along a line.

conn1 = conndef(2,'minimal')

conn1 =
 0 1 0
 1 1 1
 0 1 0

The minimal connectivity array for three dimensions includes all the neighbors
touching the central element along a face.

conndef(3,'minimal')

ans(:,:,1) =
 0 0 0
 0 1 0
 0 0 0

Value Description

'minimal' Defines a neighborhood whose neighbors are touching the
central element on an (N-1)-dimensional surface, for the
N-dimensional case.

'maximal' Defines a neighborhood including neighbors that touch the
central element in any way; it is
ones(repmat(3,1,NUM_DIMS)).

conndef

14-76

ans(:,:,2) =
 0 1 0
 1 1 1
 0 1 0

ans(:,:,3) =
 0 0 0
 0 1 0
 0 0 0

The maximal connectivity array for two dimensions includes all the neighbors
touching the central element in any way.

conn2 = conndef(2,'maximal')

conn2 =
 1 1 1
 1 1 1
 1 1 1

conv2

14-77

14conv2Purpose Perform two-dimensional convolution

conv2 is a function in MATLAB. To get help for this function, select MATLAB
Help from the Help menu and view the online function reference page.

convmtx2

14-78

14convmtx2Purpose Compute two-dimensional convolution matrix

Syntax T = convmtx2(H,m,n)
T = convmtx2(H,[m n])

Description T = convmtx2(H,m,n) or T = convmtx2(H,[m n]) returns the
convolution matrix T for the matrix H. If X is an m-by-n matrix, then
reshape(T*X(:),size(H)+[m n]-1) is the same as conv2(X,H).

Class Support The inputs are all of class double. The output matrix T is of class sparse. The
number of nonzero elements in T is no larger than prod(size(H))*m*n.

See Also conv2

convmtx in the Signal Processing Toolbox User’s Guide documentation

convn

14-79

14convnPurpose Perform N-dimensional convolution

convn is a MATLAB function. To get help for this function, select MATLAB
Help from the Help menu and view the online function reference page.

corr2

14-80

14corr2Purpose Compute the two-dimensional correlation coefficient between two matrices

Syntax r = corr2(A,B)

Description r = corr2(A,B) computes the correlation coefficient between A and B, where A
and B are matrices or vectors of the same size.

Class Support A and B can be numeric or logical. The return value r is a scalar double.

Algorithm corr2 computes the correlation coefficient using

where = mean2(A), and = mean2(B).

See Also std2

corrcoef in the MATLAB Function Reference

r

Amn A–() Bmn B–()
n
∑

m
∑

Amn A–()
2

n
∑

m
∑

Bmn B–()
2

n
∑

m
∑

---=

A B

cp2tform

14-81

14cp2tformPurpose Infer geometric transformation from control point pairs

Syntax TFORM = cp2tform(input_points,base_points,transformtype)
TFORM = cp2tform(CPSTRUCT,transformtype)
TFORM = cp2tform(input_points,base_points,transformtype,parameter)
TFORM = cp2tform(CPSTRUCT,transformtype,parameter)
[TFORM,input_points,base_points] = cp2tform(CPSTRUCT,...)
[TFORM,input_points,base_points,input_points_bad,base_points_bad]

= cp2tform(...,'piecewise linear')

Description TFORM = cp2tform(input_points,base_points,transformtype) takes pairs
of control points and uses them to infer a spatial transformation. The function
returns a TFORM structure containing the spatial transformation. input_points
is an m-by-2 double matrix containing the x- and y-coordinates of control points
in the image you want to transform. base_points is an m-by-2 double matrix
containing the x- and y-coordinates of control points specified in the base
image.

TFORM = cp2tform(CPSTRUCT,transformtype) takes pairs of control points
and uses them to infer a spatial transformation. The function returns a TFORM
structure containing the spatial transformation. CPSTRUCT is a structure that
contains the control point matrices for the input and base images. You use the
Control Point Selection Tool to create the CPSTRUCT.

transformtype specifies the type of spatial transformation to infer. This table
lists all the transformation types supported by cp2tform in order of complexity.

cp2tform

14-82

The 'lwm' and 'polynomial' transform types can each take an optional,
additional parameter. See the syntax descriptions that follow for details.

Transformation Type Description Minimum
Control Points

Example

'linear conformal' Use this transformation when
shapes in the input image are
unchanged, but the image is
distorted by some combination
of translation, rotation, and
scaling. Straight lines remain
straight, and parallel lines are
still parallel.

2 pairs

'affine' Use this transformation when
shapes in the input image
exhibit shearing. Straight
lines remain straight, and
parallel lines remain parallel,
but rectangles become
parallelograms.

3 pairs

'projective' Use this transformation when
the scene appears tilted.
Straight lines remain
straight, but parallel lines
converge toward vanishing
points that might or might not
fall within the image.

4 pairs

'polynomial' Use this transformation when
objects in the image are
curved. The higher the order
of the polynomial, the better
the fit, but the result can
contain more curves than the
base image.

6 pairs
(order 2)

10 pairs
(order 3)

16 pairs
(order 4)

cp2tform

14-83

Note When transformtype is 'linear conformal', 'affine',
'projective', or 'polynomial', and input_points and base_points (or
CPSTRUCT) have the minimum number of control points needed for a particular
transformation, cp2tform finds the coefficients exactly. If input_points and
base_points include more than the minimum number of points, cp2tform
uses a least squares solution. For more information, see mldivide.

TFORM = cp2tform(input_points,base_points,'polynomial',order)
returns a TFORM structure specifying a 'polynomial' transformation, where
order specifies the order of the polynomial to use. order can be the scalar value
2, 3, or 4. If you omit order, it defaults to 3.

TFORM = cp2tform(CPSTRUCT,'polynomial',order) same as the previous
syntax except that the control points are specified in a CPSTRUCT.

TFORM = cp2tform(input_points,base_points,'lwm',N) returns a TFORM
structure specifying a 'lwm' transformation, where N specifies the number of
points used to infer each polynomial. The radius of influence extends out to the
furthest control point used to infer that polynomial. The N closest points are
used to infer a polynomial of order 2 for each control point pair. If you omit N,
it defaults to 12. N can be as small as 6, but making N small risks generating
ill-conditioned polynomials.

'piecewise linear' Use this transformation when
parts of the image appear
distorted differently.

4 pairs

'lwm' Use this transformation (local
weighted mean), when the
distortion varies locally and
piecewise linear is not
sufficient.

6 pairs
(12 pairs
recommended)

Transformation Type Description Minimum
Control Points

Example

cp2tform

14-84

TFORM = cp2tform(CPSTRUCT,'lwm',N) same as the previous syntax except
that the control points are specified in a CPSTRUCT.

[TFORM,input_points,base_points] = cp2tform(CPSTRUCT,...) returns
the control points that were actually used in the return values input_points
and base_points. Unmatched and predicted points are not used. For more
information, see cpstruct2pairs.

[TFORM,input_points,base_points,input_points_bad,base_points_bad]=
 cp2tform(input_points,base_points,'piecewise linear') returns a
TFORM structure specifying a 'piecewise linear' transformation. Returns the
control points that were actually used in input_points and base_points, and
returns the control points that were eliminated because they were middle
vertices of degenerate fold-over triangles, in input_points_bad and
base_points_bad.

[TFORM,input_points,base_points,input_points_bad,base_points_bad]=
 cp2tform(CPSTRUCT,'piecewise linear') same as the previous syntax
except that the control points are specified in a CPSTRUCT.

Algorithms cp2tform uses the following general procedure:

1 Use valid pairs of control points to infer a spatial transformation or an
inverse mapping from output space (x,y) to input space (u,v) according to
transformtype.

2 Return TFORM structure containing spatial transformation.

The procedure varies depending on the transformtype.

Linear Conformal
Linear conformal transformations can include a rotation, a scaling, and a
translation. Shapes and angles are preserved. Parallel lines remain parallel.
Straight lines remain straight.

Let

sc = scale*cos(angle)
ss = scale*sin(angle)

[u v] = [x y 1] * [sc -ss

cp2tform

14-85

 ss sc
 tx ty]

Solve for sc, ss, tx, ty.

t_lc = cp2tform(input_points,base_points,'linear conformal');

The coefficients of the inverse mapping are stored in t_lc.tdata.Tinv.

Since linear conformal transformations are a subset of affine transformations,
t_lc.forward_fcn is @affine_fwd and t_lc.inverse_fcn is @affine_inv.

At least two control-point pairs are needed to solve for the four unknown
coefficients.

Affine
In an affine transformation, the x and y dimensions can be scaled or sheared
independently and there can be a translation. Parallel lines remain parallel.
Straight lines remain straight. Linear conformal transformations are a subset
of affine transformations.

For an affine transformation,

[u v] = [x y 1] * Tinv

Tinv is a 3-by-2 matrix. Solve for the six elements of Tinv.

t_affine = cp2tform(input_points,base_points,'affine');

The coefficients of the inverse mapping are stored in t_affine.tdata.Tinv.

At least three control-point pairs are needed to solve for the six unknown
coefficients.

Projective
In a projective transformation, quadrilaterals map to quadrilaterals. Straight
lines remain straight. Affine transformations are a subset of projective
transformations.

For a projective transformation

[up vp wp] = [x y w] * Tinv

where

cp2tform

14-86

u = up/wp
v = vp/wp

Tinv is a 3-by-3 matrix.

Assuming

Tinv = [A D G;
 B E H;
 C F I];

u = (Ax + By + C)/(Gx + Hy + I)
v = (Dx + Ey + F)/(Gx + Hy + I)

Solve for the nine elements of Tinv.

t_proj = cp2tform(input_points,base_points,'projective');

The coefficients of the inverse mapping are stored in t_proj.tdata.Tinv.

At least four control-point pairs are needed to solve for the nine unknown
coefficients.

Polynomial
In a polynomial transformation, polynomial functions of x and y determine the
mapping.

Second-Order Polynomials

For a second-order polynomial transformation,

[u v] = [1 x y x*y x^2 y^2] * Tinv

Both u and v are second-order polynomials of x and y. Each second-order
polynomial has six terms. To specify all coefficients, Tinv has size 6-by-2.

t_poly_ord2 =
cp2tform(input_points,base_points,'polynomial');

The coefficients of the inverse mapping are stored in t_poly_ord2.tdata.

At least six control-point pairs are needed to solve for the 12 unknown
coefficients.

cp2tform

14-87

Piecewise Linear
In a piecewise linear transformation, linear (affine) transformations are
applied separately to each triangular region of the image [1].

1 Find a Delaunay triangulation of the base control points.

Third-Order Polynomials

For a third-order polynomial transformation:

[u v] = [1 x y x*y x^2 y^2 y*x^2 x*y^2 x^3 y^3] * Tinv

Both u and v are third-order polynomials of x and y. Each third-order
polynomial has ten terms. To specify all coefficients, Tinv has size 10-by-2.

t_poly_ord3 = cp2tform(input_points, base_points,
 'polynomial',3);

The coefficients of the inverse mapping are stored in t_poly_ord3.tdata.

At least ten control-point pairs are needed to solve for the 20 unknown
coefficients.

Fourth-Order Polynomials

For a fourth-order polynomial transformation:

[u v] = [1 x y x*y x^2 y^2 y*x^2 x*y^2 x^3 y^3] * Tinv

Both u and v are fourth-order polynomials of x and y. Each fourth-order
polynomial has 15 terms. To specify all coefficients, Tinv has size 15-by-2.

t_poly_ord4 = cp2tform(input_points, base_points,
 'polynomial',4);

The coefficients of the inverse mapping are stored in t_poly_ord4.tdata.

At least 15 control-point pairs are needed to solve for the 30 unknown
coefficients.

cp2tform

14-88

2 Using the three vertices of each triangle, infer an affine mapping from base
to input coordinates.

Note At least four control-point pairs are needed. Four pairs result in two
triangles with distinct mappings.

Local Weighted Mean
For each control point in base_points:

1 Find the N closest control points.

2 Use these N points and their corresponding points in input_points to infer
a second-order polynomial.

3 Calculate the radius of influence of this polynomial as the distance from the
center control point to the farthest point used to infer the polynomial (using
base_points). [2]

Note At least six control-point pairs are needed to solve for the second-order
polynomial. Ill-conditioned polynomials might result if too few pairs are used.

Example I = checkerboard;
J = imrotate(I,30);
base_points = [11 11; 41 71];
input_points = [14 44; 70 81];
cpselect(J,I,input_points,base_points);

t = cp2tform(input_points,base_points,'linear conformal');

To recover angle and scale,

ss = t.tdata.Tinv(2,1); % ss = scale * sin(angle)
sc = t.tdata.Tinv(1,1); % sc = scale * cos(angle)
angle = atan2(ss,sc)*180/pi
scale = sqrt(ss*ss + sc*sc)

cp2tform

14-89

See Also cpcorr, cpselect, cpstruct2pairs, imtransform

References [1] Goshtasby, Ardeshir, “Piecewise linear mapping functions for image
registration,” Pattern Recognition, Vol. 19, 1986, pp. 459-466.

[2] Goshtasby, Ardeshir, “Image registration by local approximation methods,”
Image and Vision Computing, Vol. 6, 1988, pp. 255-261.

cpcorr

14-90

14cpcorrPurpose Tune control-point locations using cross correlation

Syntax input_points = cpcorr(input_points_in,base_points_in,input,base)

Description input_points = cpcorr(input_points_in,base_points_in,input,base)
uses normalized cross-correlation to adjust each pair of control points specified
in input_points_in and base_points_in.

input_points_in must be an M-by-2 double matrix containing the coordinates
of control points in the input image. base_points_in is an M-by-2 double
matrix containing the coordinates of control points in the base image.

cpcorr returns the adjusted control points in input_points, a double matrix
the same size as input_points_in. If cpcorr cannot correlate a pair of control
points, input_points contains the same coordinates as input_points_in for
that pair.

cpcorr only moves the position of a control point by up to four pixels. Adjusted
coordinates are accurate to one-tenth of a pixel. cpcorr is designed to get
subpixel accuracy from the image content and coarse control-point selection.

Note input and base images must have the same scale for cpcorr to be
effective.

cpcorr cannot adjust a point if any of the following occur:

• Points are too near the edge of either image.

• Regions of images around points contain Inf or NaN.

• Region around a point in input image has zero standard deviation.

• Regions of images around points are poorly correlated.

Class Support The images input and base can be of class logical, uint8, uint16, or double
and must contain finite values. The control-point pairs are of class double.

Algorithm cpcorr uses the following general procedure.

For each control-point pair,

cpcorr

14-91

1 Extract an 11-by-11 template around the input control point and a 21-by-21
region around the base control point.

2 Calculate the normalized cross-correlation of the template with the region.

3 Find the absolute peak of the cross-correlation matrix.

4 Use the position of the peak to adjust the coordinates of the input control
point.

Example This example uses cpcorr to fine-tune control points selected in an image. Note
the difference in the values of the input_points matrix and the
input_points_adj matrix.

input = imread('onion.png');
base = imread('peppers.png');
input_points = [127 93; 74 59];
base_points = [323 195; 269 161];
input_points_adj = cpcorr(input_points,base_points,...
 input(:,:,1),base(:,:,1))
input_points_adj =

127.0000 93.0000
71.0000 59.6000

See Also cp2tform, cpselect, imtransform, normxcorr2

cpselect

14-92

14cpselectPurpose Control Point Selection Tool

Syntax cpselect(input,base)
cpselect(input,base,CPSTRUCT_IN)
cpselect(input,base,xyinput_in,xybase_in)
H = cpselect(input,base,...)

Description cpselect(input,base) starts the Control Point Selection Tool, a graphical
user interface that enables you to select control points in two related images.
input is the image that needs to be warped to bring it into the coordinate
system of the base image. input and base can be either variables that contain
images or strings that identify files containing grayscale images. The Control
Point Selection Tool returns the control points in a CPSTRUCT structure. (For
more information, see “Using the Control Point Selection Tool” in Chapter 5.)

cpselect(input,base,CPSTRUCT_IN) starts cpselect with an initial set of
control points that are stored in CPSTRUCT_IN. This syntax allows you to restart
cpselect with the state of control points previously saved in CPSTRUCT_IN.

cpselect(input,base,xyinput_in,xybase_in) starts cpselect with a set of
initial pairs of control points. xyinput_in and xybase_in are m-by-2 matrices
that store the input and base coordinates, respectively.

H = cpselect(input,base,...) returns a handle H to the tool. You can use the
close(H) or H.close syntax to close the tool from the command line.

Class Support The input images can be of class uint8, uint16, double, or logical.

Algorithm cpselect uses the following general procedure for control-point prediction.

1 Find all valid pairs of control points.

2 Infer a spatial transformation between input and base control points using
method that depends on the number of valid pairs, as follows:

2 pairs Linear conformal

3 pairs Affine

4 or more pairs Projective

cpselect

14-93

3 Apply spatial transformation to the new point to generate the predicted
point.

4 Display predicted point.

Notes To increase the amount of memory available to cpselect, you must put a file
called 'java.opts' in your start-up directory. See imview for details.

Example Start tool with saved images.

aerial = imread('westconcordaerial.png');
cpselect(aerial(:,:,1),'westconcordorthophoto.png')

Start tool with workspace images and points.

I = checkerboard;
J = imrotate(I,30);
base_points = [11 11; 41 71];
input_points = [14 44; 70 81];
cpselect(J,I,input_points,base_points);

See Also cpcorr, cp2tform, cpstruct2pairs, imtransform

cpstruct2pairs

14-94

14cpstruct2pairsPurpose Convert CPSTRUCT to valid pairs of control points

Syntax [input_points, base_points] = cpstruct2pairs(CPSTRUCT)

Description [input_points, base_points] = cpstruct2pairs(CPSTRUCT) takes a
CPSTRUCT (produced by cpselect) and returns the arrays of coordinates of valid
control point pairs in input_points and base_points. cpstruct2pairs
eliminates unmatched points and predicted points.

Example Start the Control Point Selection Tool, cpselect, with saved images.

aerial = imread('westconcordaerial.png');
cpselect(aerial(:,:,1),'westconcordorthophoto.png')

Using cpselect, pick control points in the images. Select Save to Workspace
from the File menu to save the points to the workspace. On the Save dialog
box, check the Structure with all points check box and clear Input points of
valid pairs and Base points of valid pairs. Click OK. Use cpstruct2pairs to
extract the input and base points from the CPSTRUCT.

[input_points,base_points] = cpstruct2pairs(cpstruct);

See Also cp2tform, cpselect, imtransform

dct2

14-95

14dct2Purpose Compute two-dimensional discrete cosine transform

Syntax B = dct2(A)
B = dct2(A,m,n)
B = dct2(A,[m n])

Description B = dct2(A) returns the two-dimensional discrete cosine transform of A. The
matrix B is the same size as A and contains the discrete cosine transform
coefficients B(k1,k2).

B = dct2(A,m,n) or B = dct2(A,[m n]) pads the matrix A with 0’s to size
m-by-n before transforming. If m or n is smaller than the corresponding
dimension of A, dct2 truncates A.

Class Support A can be numeric or logical. The returned matrix B is of class double.

Algorithm The discrete cosine transform (DCT) is closely related to the discrete Fourier
transform. It is a separable linear transformation; that is, the two-dimensional
transform is equivalent to a one-dimensional DCT performed along a single
dimension followed by a one-dimensional DCT in the other dimension. The
definition of the two-dimensional DCT for an input image A and output image
B is

where M and N are the row and column size of A, respectively. If you apply the
DCT to real data, the result is also real. The DCT tends to concentrate
information, making it useful for image compression applications.

This transform can be inverted using idct2.

Example The commands below compute the discrete cosine transform for the autumn
image. Notice that most of the energy is in the upper left corner.

Bpq αpαq Amn
π 2m 1+()p

2M
------------------------------- π 2n 1+()q

2N
-----------------------------,

0 p M 1–≤ ≤
0 q N 1–≤ ≤

coscos

n 0=

N 1–

∑
m 0=

M 1–

∑=

αp
1 M, p⁄ 0=

2 M⁄ , 1 p M 1–≤ ≤

= αq
1 N, q⁄ 0=

2 N⁄ , 1 q N 1–≤ ≤

=

dct2

14-96

RGB = imread('autumn.tif');
I = rgb2gray(RGB);
J = dct2(I);
imshow(log(abs(J)),[]), colormap(jet(64)), colorbar

Now set values less than magnitude 10 in the DCT matrix to zero, and then
reconstruct the image using the inverse DCT function idct2.

J(abs(J) < 10) = 0;
K = idct2(J);
imview(I)
imview(K,[0 255])

dct2

14-97

See Also fft2, idct2, ifft2

References [1] Jain, Anil K., Fundamentals of Digital Image Processing, Englewood Cliffs,
NJ, Prentice Hall, 1989, pp. 150-153.

[2] Pennebaker, William B., and Joan L. Mitchell, JPEG: Still Image Data
Compression Standard, Van Nostrand Reinhold, 1993.

dctmtx

14-98

14dctmtxPurpose Compute discrete cosine transform matrix

Syntax D = dctmtx(n)

Description D = dctmtx(n) returns the n-by-n DCT (discrete cosine transform) matrix. D*A
is the DCT of the columns of A and D'*A is the inverse DCT of the columns of A
(when A is n-by-n).

Class Support n is an integer scalar of class double. D is returned as a matrix of class double.

Remarks If A is square, the two-dimensional DCT of A can be computed as D*A*D'. This
computation is sometimes faster than using dct2, especially if you are
computing a large number of small DCTs, because D needs to be determined
only once.

For example, in JPEG compression, the DCT of each 8-by-8 block is computed.
To perform this computation, use dctmtx to determine D, and then calculate
each DCT using D*A*D' (where A is each 8-by-8 block). This is faster than
calling dct2 for each individual block.

See Also dct2

deconvblind

14-99

14deconvblindPurpose Restore image using the blind deconvolution algorithm

Syntax [J,PSF] = deconvblind(I,INITPSF)
[J,PSF] = deconvblind(I,INITPSF,NUMIT)
[J,PSF] = deconvblind(I,INITPSF,NUMIT,DAMPAR)
[J,PSF] = deconvblind(I,INITPSF,NUMIT,DAMPAR,WEIGHT)
[J,PSF] = deconvblind(I,INITPSF,NUMIT,DAMPAR,WEIGHT,READOUT)
[J,PSF] = deconvblind(...,FUN,P1,P2,...,PN)

Description [J,PSF] = deconvblind(I,INITPSF) deconvolves image I using the maximum
likelihood algorithm, returning both the deblurred image J and a restored
point-spread function PSF. The input array I and your initial guess at the PSF
INITPSF can be numeric arrays or cell arrays. (Use cell arrays when you want
to be able to perform additional deconvolutions that start where your initial
deconvolution finished. The restored PSF is a positive array that is the same
size as INITPSF, normalized so its sum adds up to 1.

Note The PSF restoration is affected strongly by the size of the initial guess
INITPSF and less by the values it contains. For this reason, specify an array of
1’s as your INITPSF.

To improve the restoration, deconvblind supports several optional
parameters, described below. Use [] as a placeholder if you do not specify an
intermediate parameter.

[J,PSF] = deconvblind(I,INITPSF,NUMIT) specifies the number of iterations
(default is 10).

[J,PSF] = deconvblind(I,INITPSF,NUMIT,DAMPAR) specifies the threshold
deviation of the resulting image from the input image I (in terms of the
standard deviation of Poisson noise) below which damping occurs. The
iterations are suppressed for the pixels that deviate within the DAMPAR value
from their original value. This suppresses the noise generation in such pixels,
preserving necessary image details elsewhere. The default value is 0 (no
damping).

deconvblind

14-100

[J,PSF] = deconvblind(I,INITPSF,NUMIT,DAMPAR,WEIGHT) specifies which
pixels in the input image I are considered in the restoration. By default, WEIGHT
is a unit array, the same size as the input image. You can assign a value
between 0.0 and 1.0 to elements in the WEIGHT array. The value of an element
in the WEIGHT array determines how much the pixel at the corresponding
position in the input image is considered. For example, to exclude a pixel from
consideration, assign it a value of 0 in the WEIGHT array. You can adjust the
weight value assigned to each pixel according to the amount of flat-field
correction.

[J,PSF] = deconvblind(I,INITPSF,NUMIT,DAMPAR,WEIGHT,READOUT), where
READOUT is an array (or a value) corresponding to the additive noise (e.g.,
background, foreground noise) and the variance of the read-out camera noise.
READOUT has to be in the units of the image. The default value is 0.

[J,PSF] = deconvblind(...,FUN,P1,P2,...,PN), where FUN is a function
describing additional constraints on the PSF. There are four ways to specify
FUN:

• Function handle (@)

• Inline object

• String containing function name

• String containing a MATLAB expression

FUN is called at the end of each iteration. FUN must accept the PSF as its first
argument and can accept additional parameters P1, P2,..., PN. The FUN
function should return one argument, PSF, that is the same size as the original
PSF and that satisfies the positivity and normalization constraints.

Note The output image J could exhibit ringing introduced by the discrete
Fourier transform used in the algorithm. To reduce the ringing, use I =
edgetaper(I,PSF) before calling deconvblind.

Resuming
Deconvolution

You can use deconvblind to perform a deconvolution that starts where a
previous deconvolution stopped. To use this feature, pass the input image I and
the initial guess at the PSF, INITPSF, as cell arrays: {I} and {INITPSF}. When
you do, the deconvblind function returns the output image J and the restored

deconvblind

14-101

point-spread function, PSF, as cell arrays, which can then be passed as the
input arrays into the next deconvblind call. The output cell array J contains
four elements:

J{1} contains I, the original image.

J{2} contains the result of the last iteration.

J{3} contains the result of the next-to-last iteration.

J{4} is an array generated by the iterative algorithm.

 Class Support I can be of class uint8, uint16, or double. The DAMPAR and READOUT arguments
have to be of the same class as the input image. Other inputs have to be of class
double. The output image J, or the first array of the output cell array, is of the
same class as the input image.

Example I = checkerboard(8);
PSF = fspecial('gaussian',7,10);
V = .0001;
BlurredNoisy = imnoise(imfilter(I,PSF),'gaussian',0,V);
WT = zeros(size(I));
WT(5:end-4,5:end-4) = 1;
INITPSF = ones(size(PSF));
FUN = inline('PSF + P1','PSF','P1');
[J P]= deconvblind(BlurredNoisy,INITPSF,20,10*sqrt(V),WT,FUN,0);

subplot(221);imshow(BlurredNoisy);
title('A = Blurred and Noisy');
subplot(222);imshow(PSF,[]);
title('True PSF');
subplot(223);imshow(J);
title('Deblured Image');
subplot(224);imshow(P,[]);
title('Recovered PSF');

See Also deconvlucy, deconvreg, deconvwnr, otf2psf, padarray, psf2otf

deconvlucy

14-102

14deconvlucyPurpose Restore image using the Lucy-Richardson algorithm

Syntax J = deconvlucy(I,PSF)
J = deconvlucy(I,PSF,NUMIT)
J = deconvlucy(I,PSF,NUMIT,DAMPAR)
J = deconvlucy(I,PSF,NUMIT,DAMPAR,WEIGHT)
J = deconvlucy(I,PSF,NUMIT,DAMPAR,WEIGHT,READOUT)
J = deconvlucy(I,PSF,NUMIT,DAMPAR,WEIGHT,READOUT,SUBSMPL)

Description J = deconvlucy(I,PSF) restores image I that was degraded by convolution
with a point-spread function PSF and possibly by additive noise. The algorithm
is based on maximizing the likelihood of the resulting image J’s being an
instance of the original image I under Poisson statistics. The input array I can
be a numeric array (the blurred image) or a cell array.

If I is a cell array, it can contain a single numerical array (the blurred image)
or it can be the output from a previous run of deconvlucy.

When you pass a cell array to deconvlucy as input, it returns a 1-by-4 cell array
J, where

J{1} contains I, the original image.

J{2} contains the result of the last iteration.

J{3} contains the result of the next-to-last iteration.

J{4} is an array generated by the iterative algorithm.

To improve the restoration, deconvlucy supports several optional parameters.
Use [] as a placeholder if you do not specify an intermediate parameter.

J = deconvlucy(I,PSF,NUMIT) specifies the number of iterations the
deconvlucy function performs. If this value is not specified, the default is 10.

J = deconvlucy(I,PSF,NUMIT,DAMPAR) specifies the threshold deviation of the
resulting image from the image I (in terms of the standard deviation of Poisson
noise) below which damping occurs. Iterations are suppressed for pixels that
deviate beyond the DAMPAR value from their original value. This suppresses the
noise generation in such pixels, preserving necessary image details elsewhere.
The default value is 0 (no damping).

deconvlucy

14-103

J = deconvlucy(I,PSF,NUMIT,DAMPAR,WEIGHT) specifies the weight to be
assigned to each pixel to reflect its recording quality in the camera. A bad pixel
is excluded from the solution by assigning it zero weight value. Instead of
giving a weight of unity for good pixels, you can adjust their weight according
to the amount of flat-field correction. The default is a unit array of the same
size as input image I.

J = deconvlucy(I,PSF,NUMIT,DAMPAR,WEIGHT,READOUT) specifies a value
corresponding to the additive noise (e.g., background, foreground noise) and
the variance of the readout camera noise. READOUT has to be in the units of the
image. The default value is 0.

J = deconvlucy(I,PSF,NUMIT,DAMPAR,WEIGHT,READOUT,SUBSMPL), where
SUBSMPL denotes subsampling and is used when the PSF is given on a grid that
is SUBSMPL times finer than the image. The default value is 1.

Note The output image J could exhibit ringing introduced by the discrete
Fourier transform used in the algorithm. To reduce the ringing, use I =
edgetaper(I,PSF) before calling deconvlucy.

 Class Support I can be of class uint8, uint16, or double. The DAMPAR and READOUT arguments
have to be of the same class as the input image. Other inputs have to be of class
double. Output image (or the first array of the output cell) is of the same class
as the input image.

Example I = checkerboard(8);
PSF = fspecial('gaussian',7,10);
V = .0001;
BlurredNoisy = imnoise(imfilter(I,PSF),'gaussian',0,V);
WT = zeros(size(I));
WT(5:end-4,5:end-4) = 1;
J1 = deconvlucy(BlurredNoisy,PSF);
J2 = deconvlucy(BlurredNoisy,PSF,20,sqrt(V));
J3 = deconvlucy(BlurredNoisy,PSF,20,sqrt(V),WT);

subplot(221);imshow(BlurredNoisy);
title('A = Blurred and Noisy');

deconvlucy

14-104

subplot(222);imshow(J1);
title('deconvlucy(A,PSF)');
subplot(223);imshow(J2);
title('deconvlucy(A,PSF,NI,DP)');
subplot(224);imshow(J3);
title('deconvlucy(A,PSF,NI,DP,WT)');

See Also deconvblind, deconvreg, deconvwnr, otf2psf, padarray, psf2otf

deconvreg

14-105

14deconvregPurpose Restore image using a regularized filter

Syntax J = deconvreg(I,PSF)
J = deconvreg(I,PSF,NOISEPOWER)
J = deconvreg(I,PSF,NOISEPOWER,LRANGE)
J = deconvreg(I,PSF,NOISEPOWER,LRANGE,REGOP)
[J, LAGRA] = deconvreg(I,PSF,...)

Description J = deconvreg(I,PSF) restores image I that was degraded by convolution with
a point-spread function PSF and possibly by additive noise. The algorithm is a
constrained optimum in a sense of least square error between the estimated
and the true images under the requirement of preserving image smoothness.

J = deconvreg(I,PSF,NOISEPOWER), where NOISEPOWER is the additive noise
power. The default value is 0.

J = deconvreg(I,PSF,NOISEPOWER,LRANGE), where LRANGE is a vector
specifying range where the search for the optimal solution is performed. The
algorithm finds an optimal Lagrange multiplier LAGRA within the LRANGE
range. If LRANGE is a scalar, the algorithm assumes that LAGRA is given and
equal to LRANGE; the NP value is then ignored. The default range is between
[1e-9 and 1e9].

J = deconvreg(I,PSF,NOISEPOWER,LRANGE,REGOP), where REGOP is the
regularization operator to constrain the deconvolution. The default
regularization operator is the Laplacian operator, to retain the image
smoothness. The REGOP array dimensions must not exceed the image
dimensions; any nonsingleton dimensions must correspond to the nonsingleton
dimensions of PSF.

[J, LAGRA] = deconvreg(I,PSF,...) outputs the value of the Lagrange
multiplier LAGRA in addition to the restored image J.

Note The output image J could exhibit ringing introduced by the discrete
Fourier transform used in the algorithm. To reduce the ringing, process the
image with the edgetaper function prior to calling the deconvreg function.
For example, I = edgetaper(I,PSF).

deconvreg

14-106

Class Support I can be of class uint8, uint16, or double. Other inputs have to be of class
double. J is of the same class as I.

Example I = checkerboard(8);
PSF = fspecial('gaussian',7,10);
V = .01;
BlurredNoisy = imnoise(imfilter(I,PSF),'gaussian',0,V);
NOISEPOWER = V*prod(size(I));
[J LAGRA] = deconvreg(BlurredNoisy,PSF,NOISEPOWER);

subplot(221); imshow(BlurredNoisy);
title('A = Blurred and Noisy');
subplot(222); imshow(J);
title('[J LAGRA] = deconvreg(A,PSF,NP)');
subplot(223); imshow(deconvreg(BlurredNoisy,PSF,[],LAGRA/10));
title('deconvreg(A,PSF,[],0.1*LAGRA)');
subplot(224); imshow(deconvreg(BlurredNoisy,PSF,[],LAGRA*10));
title('deconvreg(A,PSF,[],10*LAGRA)');

See Also deconvblind, deconvlucy, deconvwnr, otf2psf, padarray, psf2otf

deconvwnr

14-107

14deconvwnrPurpose Restore image using the Wiener filter

Syntax J = deconvwnr(I,PSF)
J = deconvwnr(I,PSF,NSR)
J = deconvwnr(I,PSF,NCORR,ICORR)

Description J = deconvwnr(I,PSF) restores image I that was degraded by convolution with
a point-spread function PSF and possibly by additive noise. The algorithm is
optimal in a sense of least mean square error between the estimated and the
true image, and uses the correlation matrixes of image and noise. In the
absence of noise, the Wiener filter reduces to the ideal inverse filter.

J = deconvwnr(I,PSF,NSR), where NSR is the noise-to-signal power ratio. NSR
could be a scalar or an array of the same size as I. The default value is 0.

J = deconvwnr(I,PSF,NCORR,ICORR), where NCORR and ICORR are the
autocorrelation functions of the noise and the original image, respectively.
NCORR and ICORR can be of any size or dimension not exceeding the original
image. An N-dimensional NCORR or ICORR array corresponds to the
autocorrelation within each dimension. A vector NCORR or ICORR represents an
autocorrelation function in the first dimension if PSF is a vector. If PSF is an
array, the 1-D autocorrelation function is extrapolated by symmetry to all
nonsingleton dimensions of PSF. A scalar NCORR or ICORR represents the power
of the noise or the image.

Note The output image J could exhibit ringing introduced by the discrete
Fourier transform used in the algorithm. To reduce the ringing, process the
image with the edgetaper function prior to calling the deconvwnr function.
For example, I = edgetaper(I,PSF)

Class Support I can be of class uint8, uint16, or double. Other inputs must be of class
double. J is of the same class as I.

Example I = checkerboard(8);
noise = 0.1*randn(size(I));
PSF = fspecial('motion',21,11);
Blurred = imfilter(I,PSF,'circular');

deconvwnr

14-108

BlurredNoisy = im2uint8(Blurred + noise);

NSR = sum(noise(:).^2)/sum(I(:).^2);% noise-to-power ratio

NP = abs(fftn(noise)).^2;% noise power
NPOW = sum(NP(:))/prod(size(noise));
NCORR = fftshift(real(ifftn(NP)));% noise autocorrelation
function, centered

IP = abs(fftn(I)).^2;% original image power
IPOW = sum(IP(:))/prod(size(I));
ICORR = fftshift(real(ifftn(IP)));% image autocorrelation
function, centered
ICORR1 = ICORR(:,ceil(size(I,1)/2));

NSR = NPOW/IPOW;
subplot(221);imshow(BlurredNoisy,[]);
title('A = Blurred and Noisy');
subplot(222);imshow(deconvwnr(BlurredNoisy,PSF,NSR),[]);
title('deconvwnr(A,PSF,NSR)');
subplot(223);imshow(deconvwnr(BlurredNoisy,PSF,NCORR,ICORR),[]);
title('deconvwnr(A,PSF,NCORR,ICORR)');
subplot(224);imshow(deconvwnr(BlurredNoisy,PSF,NPOW,ICORR1),[]);
title('deconvwnr(A,PSF,NPOW,ICORR_1_D)');

See Also deconvblind, deconvlucy, deconvreg, otf2psf, padarray, psf2otf

decorrstretch

14-109

14decorrstretchPurpose Apply a decorrelation stretch to a multichannel image

Syntax S = decorrstretch(I)
S = decorrstretch(I,TOL)

Description S = decorrstretch(I) applies a decorrelation stretch to a multichannel
image I and returns the result in S. S has the same size and class as I. The
mean and variance in each band are the same as in I.

S = decorrstretch(I,TOL) applies a contrast following the decorrelation
stretch. The contrast stretch is controlled by TOL:

• TOL = [LOW_FRACT HIGH_FRACT] specifies the fraction of the image to
saturate at low and high intensities.

• If TOL is a scalar, LOW_FRACT = TOL, and HIGH_FRACT = 1 - TOL, which
saturates equal fractions at low and high intensities.

Notes The decorrelation stretch is normally applied to three band images (ordinary
RGB images or RGB multispectral composite images), but decorrstretch
works on an arbitrary number of bands.

The primary purpose of decorrelation stretch is visual enhancement. Small
adjustments to TOL can strongly affect the visual appearance of the output.

Class Support The input image must be of class uint8, uint16, or double.

Example [I col] = imread('forest.tif');
S = decorrstretch(ind2rgb(I,col));
subplot(2,1,1), imshow(I,col)
subplot(2,1,2), imshow(S)

See Also imadjust, stretchlim

dicominfo

14-110

14dicominfoPurpose Read metadata from a DICOM message

Syntax info = dicominfo(filename)
info = dicominfo(filename,'dictionary', D)

Description info = dicominfo(filename) reads the metadata from the compliant Digital
Imaging and Communications in Medicine (DICOM) file specified in the string
filename.

info = dicominfo(filename,'dictionary', D) uses the data dictionary file
given in the string D to read the DICOM message. The file in D must be on the
MATLAB search path. The default dictionary file is dicom-dict.txt.

Examples info = dicominfo('CT-MONO2-16-ankle.dcm')

info =
 Filename: [1x47 char]
 FileModDate: '24-Dec-2000 19:54:47'
 FileSize: 525436
 Format: 'DICOM'
 FormatVersion: 3
 Width: 512
 Height: 512
 BitDepth: 16
 ColorType: 'grayscale'
 .
 .
 .

See Also dicomread, dicomwrite

dicomread

14-111

14dicomreadPurpose Read a DICOM image

Syntax X = dicomread(filename)
X = dicomread(info)
[X,map] = dicomread(...)
[X,map,alpha] = dicomread(...)
[X,map,alpha,overlays] = dicomread(...)
[...] = dicomread(filename, param1, val1, param2, val2, ...)
[...] = dicomread(info, param1, val1, param2, val2, ...)

Description X = dicomread(filename) reads the image data from the compliant Digital
Imaging and Communications in Medicine (DICOM) file filename. For
single-frame grayscale images, X is an M-by-N array. For single-frame
true-color images, X is an M-by-N-by-3 array. Multiframe images are always
4-D arrays.

X = dicomread(info) reads the image data from the message referenced in
the DICOM metadata structure info. The info structure is produced by the
dicominfo function.

[X,map] = dicomread(...) returns the image X and the colormap map. If X is
a grayscale or true-color image, map is empty.

[X,map,alpha] = dicomread(...) returns the image X, the colormap map, and
an alpha channel matrix for X. The values of alpha are 0 if the pixel is opaque;
otherwise they are row indices into map. The RGB value in map should be
substituted for the value in X to use alpha. alpha has the same height and
width as X and is 4-D for a multiframe image.

[X,map,alpha,overlays] = dicomread(...) returns the image X, the
colormap map, an alpha channel matrix for X, and any overlays from the
DICOM file. Each overlay is a 1-bit black and white image with the same
height and width as X. If multiple overlays are present in the file, overlays is
a 4-D multiframe image. If no overlays are in the file, overlays is empty.

The first input argument, either filename or info, can be followed by a set of
parameter name/value pairs.

[...] = dicomread(filename,param1, value1, param2, value2, ...)
[...] = dicomread(info, param1, value1, param2, value2, ...)

dicomread

14-112

Supported parameter names and values include the following:

Examples Example 1
Use dicomread to retrieve the data matrix X and colormap matrix map needed
to create a montage.

[X, map] = dicomread('US-PAL-8-10x-echo.dcm');
montage(X, map);

Parameter Description

'Frames' Integer scalar, vector of integers, or the string 'all'
specifying frame, or frames, to read from the image. The
default value is 'all'.

'Dictionary' String specifying the data dictionary file. The default
value is 'dicom-dict.txt'.

'Raw' Integer scalar specifying whether dicomread performs
any pixel-level transformations on the image data.

1 (the default) — Do not perform any pixel-level
transformations.

0 — Rescale the image to use the full dynamic range and
automatically convert color images to the RGB color
space.

Note 1: Because the HSV color space is inadequately
defined in the DICOM standard, dicomread does not
automatically convert data in this color space to RGB.

Note 2: dicomread never rescales or changes the color
spaces of images containing signed data.

Note 3: Rescaling values and applying color space
conversions does not change the metadata in any way.
Consequently, metadata values that refer to pixel values
(such as window center/width or LUTs) might not be
correct when pixels are scaled or converted.

dicomread

14-113

Example 2
Call dicomread with the information retrieved from the DICOM file using
dicominfo. Display the image with imview using its autoscaling syntax.

info = dicominfo('CT-MONO2-16-ankle.dcm');
Y = dicomread(info);
imview(Y, []);

See Also dicominfo, dicomwrite

dicomuid

14-114

14dicomuidPurpose Generate a DICOM unique identifier

Syntax UID = dicomuid

Description UID = dicomuid creates a string UID containing a new DICOM unique
identifier.

Multiple calls to dicomuid produce globally unique values. Two calls to
dicomuid always return different values.

See Also dicominfo, dicomwrite

dicomwrite

14-115

14dicomwritePurpose Write images as DICOM files

Syntax dicomwrite(X, filename)
dicomwrite(X, map, filename)
dicomwrite(...,param1,value1,param2,value2,...)
dicomwrite(...,'ObjectType',IOD,...)
dicomwrite(...,'SOPClassUID',UID,...)
dicomwrite(...,meta_struct,...)
dicomwrite(...,info,...)
status = dicomwrite(...)

Description dicomwrite(X, filename) writes the binary, grayscale, or true color image X
to the file filename, where filename is a string specifying the name of the
Digital Imaging and Communications in Medicine (DICOM) file to create.

dicomwrite(X,map,filename) writes the indexed image X with colormap map.

dicomwrite(...,param1,value1,param2,value2,...) specifies additional
metadata to write to the DICOM file. The parameters (param1, param2, etc.) are
either names of DICOM file attributes or options that affect how the file is
written. Each attribute or option has a corresponding value (value1, value2,
etc.). This table lists the options supported by the dicomwrite function. Default
values are enclosed in braces ({}). To find a list of the DICOM attributes, see
the data dictionary file, dicom-dict.txt, included with the Image Processing
Toolbox.

Option Name Description

'CompressionMode' String specifying the type of compression to use
when storing the image.

{'None'}
'JPEG lossless'
'JPEG lossy'
'RLE'

'Endian' String specifying the byte ordering of the file.

'Big'
'Little' [Default]

dicomwrite

14-116

dicomwrite(...,'ObjectType',IOD,...) writes a file containing the
necessary metadata for a particular type of DICOM Information Object (IOD).
Supported IODs are

• 'Secondary Capture Image Storage' (default)

• 'CT Image Storage'

• 'MR Image Storage'

dicomwrite(...,'SOPClassUID',UID,...) provides an alternate method for
specifying the IOD to create. UID is the DICOM unique identifier
corresponding to one of the IODs listed above.

dicomwrite(...,meta_struct,...) specifies optional metadata or file options
in structure meta_struct. The structure's field names must be the names of
DICOM file attributes or options. The field's value is the value of that attribute
or option.

'TransferSyntax' A DICOM UID specifying the DICOM transfer
syntax.

Note: If you specify the 'TransferSyntax'
option, dicomwrite ignores the other three
options, if they are specified. The
'TransferSyntax' option encodes the settings
for the 'Endian', 'VR', and 'CompressionMode'
options in a single value.

'VR' String specifying whether the two-letter value
representation (VR) code should be written to
the file.

'explicit' — Write VR to file.
{'implicit'} — Infer from data dictionary.

Note: If you specify the 'Endian' value 'Big',
you must specify 'Explicit'.

Option Name Description

dicomwrite

14-117

dicomwrite(...,info,...) specifies metadata in the metadata structure
info, which is produced by the dicominfo function. For more information
about this structure, see dicominfo.

status = dicomwrite(...) returns information about the metadata and the
descriptions used to generate the DICOM file. This syntax can be useful when
you specify an info structure that was created by dicominfo to the dicomwrite
function. An info structure can contain many fields. If no metadata was
specified, dicomwrite returns an empty matrix ([]).

The structure returned by dicomwrite contains these fields:

Example This example uses dicominfo to retrieve information about the contents of the
sample DICOM file included with the Image Processing Toolbox. The example
uses dicomread to read the data from the file and then writes the data into a
new DICOM file, including the metadata from the original file.

info = dicominfo('CT-MONO2-16-ankle.dcm');
Y = dicomread(info);
status = dicomwrite(Y,'my_dicomfile.dcm',info);
status =

 dicominfo_fields: {12x1 cell}
 wrong_IOD: {21x1 cell}
 not_modifiable: {23x1 cell}

Field Description

'BadAttribute' The attribute's internal description is bad. It
might be missing from the data dictionary or have
incorrect data in its description.

'MissingCondition' The attribute is conditional but no condition has
been provided for when to use it.

'MissingData' No data was provided for an attribute that must
appear in the file.

'SuspectAttribute' Data in the attribute does not match a list of
enumerated values in the DICOM specification.

dicomwrite

14-118

status.dicominfo_fields
ans =

 'BitDepth'
 'ColorType'
 'FileModDate'
 'FileSize'
 'FileStruct'
 'Filename'
 'Format'
 'FormatVersion'
 'Height'
 'SelectedFrames'
 'StartOfPixelData'
 'Width'

See Also dicomread, dicominfo

dither

14-119

14ditherPurpose Convert an image, increasing apparent color resolution by dithering

Syntax X = dither(RGB,map)
BW = dither(I)

Description X = dither(RGB,map) creates an indexed image approximation of the RGB
image in the array RGB by dithering the colors in colormap map. map cannot have
more than 65,536 colors.

X = dither(RGB,map,Qm,Qe) creates an indexed image from RGB, specifying the
parameters Qm and Qe. Qm specifies the number of quantization bits to use along
each color axis for the inverse color map, and Qe specifies the number of
quantization bits to use for the color space error calculations. If Qe < Qm,
dithering cannot be performed, and an undithered indexed image is returned
in X. If you omit these parameters, dither uses the default values Qm = 5, Qe = 8.

BW = dither(I) converts the intensity image in the matrix I to the binary
(black and white) image BW by dithering.

Class Support The input image, RGB or I, can be of class uint8, uint16, or double. All other
input arguments must be of class double. The output indexed image X is of
class uint8 if it is an indexed image with 256 or fewer colors; otherwise its class
is uint16. The output binary image BW is of class logical.

Algorithm dither increases the apparent color resolution of an image by applying
Floyd-Steinberg’s error diffusion dither algorithm.

References [1] Floyd, R. W., and L. Steinberg, “An Adaptive Algorithm for Spatial Gray
Scale,” International Symposium Digest of Technical Papers, Society for
Information Displays, 1975, p. 36.

[2] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood
Cliffs, NJ, Prentice Hall, 1990, pp. 469-476.

See Also rgb2ind

double

14-120

14doublePurpose Convert data to double precision

double is a MATLAB built-in function. To get help for this function, select
MATLAB Help from the Help menu and view the online function reference
page.

edge

14-121

14edgePurpose Find edges in an intensity image

Syntax BW = edge(I,'sobel')
BW = edge(I,'sobel',thresh)
BW = edge(I,'sobel',thresh,direction)
[BW,thresh] = edge(I,'sobel',...)

BW = edge(I,'prewitt')
BW = edge(I,'prewitt',thresh)
BW = edge(I,'prewitt',thresh,direction)
[BW,thresh] = edge(I,'prewitt',...)

BW = edge(I,'roberts')
BW = edge(I,'roberts',thresh)
[BW,thresh] = edge(I,'roberts',...)

BW = edge(I,'log')
BW = edge(I,'log',thresh)
BW = edge(I,'log',thresh,sigma)
[BW,threshold] = edge(I,'log',...)

BW = edge(I,'zerocross',thresh,h)
[BW,thresh] = edge(I,'zerocross',...)

BW = edge(I,'canny')
BW = edge(I,'canny',thresh)
BW = edge(I,'canny',thresh,sigma)
[BW,threshold] = edge(I,'canny',...)

Description edge takes an intensity image I as its input, and returns a binary image BW of
the same size as I, with 1’s where the function finds edges in I and 0’s
elsewhere.

edge supports six different edge-finding methods:

• The Sobel method finds edges using the Sobel approximation to the
derivative. It returns edges at those points where the gradient of I is
maximum.

edge

14-122

• The Prewitt method finds edges using the Prewitt approximation to the
derivative. It returns edges at those points where the gradient of I is
maximum.

• The Roberts method finds edges using the Roberts approximation to the
derivative. It returns edges at those points where the gradient of I is
maximum.

• The Laplacian of Gaussian method finds edges by looking for zero crossings
after filtering I with a Laplacian of Gaussian filter.

• The zero-cross method finds edges by looking for zero crossings after filtering
I with a filter you specify.

• The Canny method finds edges by looking for local maxima of the gradient of
I. The gradient is calculated using the derivative of a Gaussian filter. The
method uses two thresholds, to detect strong and weak edges, and includes
the weak edges in the output only if they are connected to strong edges. This
method is therefore less likely than the others to be fooled by noise, and more
likely to detect true weak edges.

The parameters you can supply differ depending on the method you specify. If
you do not specify a method, edge uses the Sobel method.

Sobel Method
BW = edge(I,'sobel') specifies the Sobel method.

BW = edge(I,'sobel',thresh) specifies the sensitivity threshold for the Sobel
method. edge ignores all edges that are not stronger than thresh. If you do not
specify thresh, or if thresh is empty ([]), edge chooses the value
automatically.

BW = edge(I,'sobel',thresh,direction) specifies the direction of detection
for the Sobel method. direction is a string specifying whether to look for
'horizontal' or 'vertical' edges or 'both' (the default).

[BW,thresh] = edge(I,'sobel',...) returns the threshold value.

Prewitt Method
BW = edge(I,'prewitt') specifies the Prewitt method.

BW = edge(I,'prewitt',thresh) specifies the sensitivity threshold for the
Prewitt method. edge ignores all edges that are not stronger than thresh. If

edge

14-123

you do not specify thresh, or if thresh is empty ([]), edge chooses the value
automatically.

BW = edge(I,'prewitt',thresh,direction) specifies the direction of
detection for the Prewitt method. direction is a string specifying whether to
look for
'horizontal' or 'vertical' edges or 'both' (the default).

[BW,thresh] = edge(I,'prewitt',...) returns the threshold value.

Roberts Method
BW = edge(I,'roberts') specifies the Roberts method.

BW = edge(I,'roberts',thresh) specifies the sensitivity threshold for the
Roberts method. edge ignores all edges that are not stronger than thresh. If
you do not specify thresh, or if thresh is empty ([]), edge chooses the value
automatically.

[BW,thresh] = edge(I,'roberts',...) returns the threshold value.

Laplacian of Gaussian Method
BW = edge(I,'log') specifies the Laplacian of Gaussian method.

BW = edge(I,'log',thresh) specifies the sensitivity threshold for the
Laplacian of Gaussian method. edge ignores all edges that are not stronger
than thresh. If you do not specify thresh, or if thresh is empty ([]), edge
chooses the value automatically.

BW = edge(I,'log',thresh,sigma) specifies the Laplacian of Gaussian
method, using sigma as the standard deviation of the LoG filter. The default
sigma is 2; the size of the filter is n-by-n, where n = ceil(sigma*3)*2+1.

[BW,thresh] = edge(I,'log',...) returns the threshold value.

Zero-Cross Method
BW = edge(I,'zerocross',thresh,h) specifies the zero-cross method, using
the filter h. thresh is the sensitivity threshold; if the argument is empty ([]),
edge chooses the sensitivity threshold automatically.

[BW,thresh] = edge(I,'zerocross',...) returns the threshold value.

edge

14-124

Canny Method
BW = edge(I,'canny') specifies the Canny method.

BW = edge(I,'canny',thresh) specifies sensitivity thresholds for the Canny
method. thresh is a two-element vector in which the first element is the low
threshold, and the second element is the high threshold. If you specify a scalar
for thresh, this value is used for the high threshold and 0.4*thresh is used for
the low threshold. If you do not specify thresh, or if thresh is empty ([]), edge
chooses low and high values automatically.

BW = edge(I,'canny',thresh,sigma) specifies the Canny method, using
sigma as the standard deviation of the Gaussian filter. The default sigma is 1;
the size of the filter is chosen automatically, based on sigma.

[BW,thresh] = edge(I,'canny',...) returns the threshold values as a
two-element vector.

Class Support I can be of class uint8, uint16, or double. BW is of class logical.

Remarks For the 'log' and 'zerocross' methods, if you specify a threshold of 0, the
output image has closed contours, because it includes all the zero crossings in
the input image.

Example Find the edges of an image using the Prewitt and Canny methods.

I = imread('circuit.tif');
BW1 = edge(I,'prewitt');
BW2 = edge(I,'canny');
imshow(BW1);
figure, imshow(BW2)

edge

14-125

See Also fspecial

References [1] Canny, John, “A Computational Approach to Edge Detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,Vol. PAMI-8, No. 6,
1986, pp. 679-698.

[2] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood
Cliffs, NJ, Prentice Hall, 1990, pp. 478-488.

[3] Parker, James R., Algorithms for Image Processing and Computer Vision,
New York, John Wiley & Sons, Inc., 1997, pp. 23-29.

Prewitt Filter Canny Filter

edgetaper

14-126

14edgetaperPurpose Taper the discontinuities along the image edges

Syntax J = edgetaper(I,PSF)

Description J = edgetaper(I,PSF) blurs the edges of the input image I using the point
spread function PSF. The output image J is the weighted sum of the original
image I and its blurred version. The weighting array, determined by the
autocorrelation function of PSF, makes J equal to I in its central region, and
equal to the blurred version of I near the edges.

The edgetaper function reduces the ringing effect in image deblurring methods
that use the discrete Fourier transform, such as deconvwnr, deconvreg, and
deconvlucy.

Note The size of the PSF cannot exceed half of the image size in any
dimension.

Class Support I and PSF can be of class uint8, uint16, or double. J is of the same class as I.

Example I = imread('cameraman.tif');
PSF = fspecial('gaussian',60,10);
J = edgetaper(I,PSF);
subplot(1,2,1);imshow(I,[]);title('original image');
subplot(1,2,2);imshow(J,[]);title('edges tapered');

See Also deconvlucy, deconvreg, deconvwnr, otf2psf, padarray, psf2otf

fan2para

14-127

14fan2paraPurpose Compute parallel-beam projections from fan-beam tomography data

Syntax P = fan2para(F,D)
P = fan2para(...,param1,val1,param2,val2,...)
[P,parallel_locations,parallel_rotation_angles] = fan2para(...)

Description P = fan2para(F,D) computes the parallel-beam data (sinogram) from the
fan-beam data (sinogram) F. Each column of F contains the fan-beam spread
angles at a single rotation angle. D is the distance from the fan-beam vertex to
the center of rotation.

fan2para assumes the fan-beam spread angles are the same increments as the
input rotation angles, split equally on either side of zero. The input rotation
angles are assumed to be stepped in equal increments to cover [0,360)
degrees. Output angles are calculated to cover [0,180) degrees in the same
increments as the input.

P = fan2para(...,param1,val1,param2,val2,...) specifies parameters
that control various aspects of the fan2para conversion, listed in the following
table. Parameter names can be abbreviated, and case does not matter. Default
values are in braces ({}).

Parameter Description

'FanCoverage' String specifying the range through which the beams are
rotated.

Possible values: {'cycle'} or 'minimal'

See ifanbeam for details.

'FanRotationIncrement' Positive real scalar specifying the increment of the
rotation angle of the fan-beam projections, measured in
degrees.
Default value is 1.

fan2para

14-128

'FanSensorGeometry' String specifying how sensors are positioned.

Possible values: {'arc'} or 'line'

See fanbeam for details.

'FanSensorSpacing' Positive real scalar specifying the spacing of the fan beams.
Interpretation of the value depends on the setting of
'FanSensorGeometry':

If 'FanSensorGeometry' is 'arc', the value defines the
angular spacing in degrees. Default value is 1.

If 'FanSensorGeometry' is 'line', the value defines the
linear spacing in pixels.

'Interpolation' Text string specifying the type of interpolation used
between the parallel-beam and fan-beam data.

'nearest' — Nearest-neighbor

{'linear'} — Linear

'spline' — Piecewise cubic spline

'pchip' — Piecewise cubic Hermite (PCHIP)

'cubic' — Same as 'pchip'

'ParallelCoverage' Text string specifying the range of rotation.

Possible values: 'cycle' or {'halfcycle'} .

See para2fan for details.

Parameter Description

fan2para

14-129

[P,parallel_locations,parallel_rotation_angles] = fan2para(...)
returns the parallel-beam sensor locations in parallel_locations and
rotation angles in parallel_rotation_angles.

Example Create synthetic parallel-beam data, derive fan-beam data, and then use the
fan-beam data to recover the parallel-beam data.

ph = phantom(128);
theta = 0:179;
[Psynthetic,xp] = radon(ph,theta);
imshow(theta,xp,Psynthetic,[],'n'), axis normal
title('Synthetic Parallel-Beam Data')
xlabel('\theta (degrees)')
ylabel('x''')
colormap(hot), colorbar
Fsynthetic = para2fan(Psynthetic,100,'FanSensorSpacing',1);

'ParallelRotationIncrement' Positive real scalar specifying the parallel-beam rotation
angle increment, measured in degrees. Parallel beam
angles are calculated to cover [0,180) degrees with
increment PAR_ROT_INC, where PAR_ROT_INC is the value of
'ParallelRotationIncrement'. 180/PAR_ROT_INC must
be an integer.
If 'ParallelRotationIncrement' is not specified, the
increment is assumed to be the same as the increment of
the fan-beam rotation angles.

 'ParallelSensorSpacing' Positive real scalar specifying the spacing of the
parallel-beam sensors in pixels. The range of sensor
locations is implied by the range of fan angles and is given
by

[D*sin(min(FAN_ANGLES)),D*sin(max(FAN_ANGLES))]

If 'ParallelSensorSpacing' is not specified, the spacing
is assumed to be uniform and is set to the minimum
spacing implied by the fan angles and sampled over the
range implied by the fan angles.

Parameter Description

fan2para

14-130

Recover original parallel-beam data.

[Precovered,Ploc,Pangles] = fan2para(Fsynthetic,100,...
'FanSensorSpacing',1,...
'ParallelSensorSpacing',1);

figure, imshow(Pangles,Ploc,Precovered,[],'n'), axis normal
title('Recovered Parallel-Beam Data')
xlabel('Rotation Angles (degrees)')
ylabel('Parallel Sensor Locations (pixels)')
colormap(hot), colorbar

Class Support I can be of class double, uint8, uint16, or logical. All other numeric inputs
and outputs are of class double.

See Also fanbeam, ifanbeam, iradon, para2fan, phantom, radon

fanbeam

14-131

14fanbeamPurpose Compute fan-beam transform

Syntax F = fanbeam(I,D)
F = fanbeam(...,param1,val1,param1,val2,...)
[F,sensor_positions,fan_rotation_angles] = fanbeam(...)

Description F = fanbeam(I,D) computes the fan-beam data (sinogram) F from the image I.
D is the distance in pixels from the from the fan-beam vertex to the center of
rotation. Each column of F contains the fan-beam sensor samples at one
rotation angle. The sensors are assumed to have a one-degree angular spacing.
The rotation angles are spaced equally to cover [0:359] degrees.

F = fanbeam(...,param1,val1,param1,val2,...) specifies parameters that
control various aspects of the fan-beam projection, listed in the following table.
Parameter names can be abbreviated, and case does not matter. Default values
are enclosed in braces ({}).

Parameter Description

'FanRotationIncrement' Positive real scalar specifying the increment of the rotation angle of
the fan-beam projections, measured in degrees. Default value is 1.

'FanSensorGeometry' Text string specifying how sensors are positioned.

{'arc'} — Sensors are spaced along a circular arc at distance D
from the center of rotation.

'line' — Sensors are spaced equally along a line, the closest point
of which is distance D from the center of rotation.

'FanSensorSpacing' Positive real scalar specifying the spacing of the fan beams.
Interpretation of the value depends on the setting of
'FanSensorGeometry':

If 'FanSensorGeometry' is 'arc', the value defines the angular
spacing in degrees. Default value is 1.

If 'FanSensorGeometry' is 'line', the value defines the linear
spacing in pixels.

fanbeam

14-132

[F,sensor_positions,fan_rotation_angles] = fanbeam(...) returns
information about the position of sensors and rotation angles. If
'FanSensorGeometry' is 'arc', sensor_positions contains the fan-beam
sensor measurement angles, measured in degrees. If 'FanSensorGeometry' is
'line', sensor_positions contains the fan-beam sensor positions along the
line of sensors, measured in pixels. fan_rotation_angles contains rotation
angles.

Class Support I can be of class double, logical, or any integer class. All other numeric inputs
and outputs are of class double. None of the inputs can be sparse.

Example ph = phantom(128);
imview(ph)
[F,Floc,Fangles] = fanbeam(ph,250);
imshow(Fangles,Floc,F,[],'n'), axis normal
xlabel('Rotation Angles (degrees)')
ylabel('Sensor Positions (degrees)')
colormap(hot), colorbar

See Also fan2para, ifanbeam, iradon, para2fan, phantom, radon

Reference [1] Kak, A.C., & Slaney, M., Principles of Computerized Tomographic Imaging,
IEEE Press, NY, 1988, pp. 92-93.

fft2

14-133

14fft2Purpose Compute two-dimensional fast Fourier transform

fft2 is a function in MATLAB. To get help for this function, select MATLAB
Help from the Help menu and view the online function reference page.

fftn

14-134

14fftnPurpose Compute N-dimensional fast Fourier transform

fftn is a function in MATLAB. To get help for this function, select MATLAB
Help from the Help menu and view the online function reference page.

fftshift

14-135

14fftshiftPurpose Shift zero-frequency component of fast Fourier transform to center of spectrum

fftshift is a function in MATLAB. To get help for this function, select
MATLAB Help from the Help menu and view the online function reference
page.

filter2

14-136

14filter2Purpose Perform two-dimensional linear filtering

filter2 is a function in MATLAB. To get help for this function, select
MATLAB Help from the Help menu and view the online function reference
page.

findbounds

14-137

14findboundsPurpose Find output bounds for spatial transformation

Syntax outbounds = findbounds(TFORM,inbounds)

Description outbounds = findbounds(TFORM,inbounds) estimates the output bounds
corresponding to a given spatial transformation and a set of input bounds.
TFORM is a spatial transformation structure as returned by maketform.
inbounds is 2-by-NUM_DIMS matrix. The first row of inbounds specifies the lower
bounds for each dimension, and the second row specifies the upper bounds.
NUM_DIMS has to be consistent with the ndims_in field of TFORM.

outbounds has the same form as inbounds. It is an estimate of the smallest
rectangular region completely containing the transformed rectangle
represented by the input bounds. Since outbounds is only an estimate, it might
not completely contain the transformed input rectangle.

Notes imtransform uses findbounds to compute the 'OutputBounds' parameter if
the user does not provide it.

If TFORM contains a forward transformation (a nonempty forward_fcn field),
then findbounds works by transforming the vertices of the input bounds
rectangle and then taking minimum and maximum values of the result.

If TFORM does not contain a forward transformation, then findbounds estimates
the output bounds using the Nelder-Mead optimization function fminsearch.
If the optimization procedure fails, findbounds issues a warning and returns
outbounds = inbounds.

Example inbounds = [0 0; 1 1]
tform = maketform('affine',[2 0 0; .5 3 0; 0 0 1])
outbounds = findbounds(tform, inbounds)

See Also cp2tform, imtransform, maketform, tformarray, tformfwd, tforminv

fliptform

14-138

14fliptformPurpose Flip the input and output roles of a TFORM structure

Syntax TFLIP = fliptform(T)

Description TFLIP = fliptform(T) creates a new spatial transformation structure, a TFORM
struct, by flipping the roles of the inputs and outputs in an existing TFORM
struct.

Example T = maketform('affine', [.5 0 0; .5 2 0; 0 0 1]);
T2 = fliptform(T)

The following are equivalent:

x = tformfwd([-3 7],T)
x = tforminv([-3 7],T2)

See Also maketform, tformfwd, tforminv

freqspace

14-139

14freqspacePurpose Determine frequency spacing for two-dimensional frequency response

freqspace is a function in MATLAB. To get help for this function, select
MATLAB Help from the Help menu and view the online function reference
page.

freqz2

14-140

14freqz2Purpose Compute two-dimensional frequency response

Syntax [H,f1,f2] = freqz2(h,n1,n2)
[H,f1,f2] = freqz2(h,[n2 n1])
[H,f1,f2] = freqz2(h)
[H,f1,f2] = freqz2(h,f1,f2)
[...] = freqz2(h,...,[dx dy])
[...] = freqz2(h,...,dx)
freqz2(...)

Description [H,f1,f2] = freqz2(h,n1,n2) returns H, the n2-by-n1 frequency response of
h, and the frequency vectors f1 (of length n1) and f2 (of length n2). h is a
two-dimensional FIR filter, in the form of a computational molecule. f1 and f2
are returned as normalized frequencies in the range -1.0 to 1.0, where 1.0
corresponds to half the sampling frequency, or π radians.

[H,f1,f2] = freqz2(h,[n2 n1]) returns the same result returned by
[H,f1,f2] = freqz2(h,n1,n2).

[H,f1,f2] = freqz2(h) uses [n2 n1] = [64 64].

[H,f1,f2] = freqz2(h,f1,f2) returns the frequency response for the FIR
filter h at frequency values in f1 and f2. These frequency values must be in the
range -1.0 to 1.0, where 1.0 corresponds to half the sampling frequency, or π
radians.

[...] = freqz2(h,...,[dx dy]) uses [dx dy] to override the intersample
spacing in h. dx determines the spacing for the x dimension and dy determines
the spacing for the y dimension. The default spacing is 0.5, which corresponds
to a sampling frequency of 2.0.

[...] = freqz2(h,...,dx) uses dx to determine the intersample spacing in
both dimensions.

With no output arguments, freqz2(...) produces a mesh plot of the
two-dimensional magnitude frequency response.

Class Support The input matrix h can be of class double or of any integer class. All other
inputs to freqz2 must be of class double. All outputs are of class double.

freqz2

14-141

Example Use the window method to create a 16-by-16 filter, then view its frequency
response using freqz2.

Hd = zeros(16,16);
Hd(5:12,5:12) = 1;
Hd(7:10,7:10) = 0;
h = fwind1(Hd,bartlett(16));
colormap(jet(64))
freqz2(h,[32 32]); axis ([-1 1 -1 1 0 1])

See Also freqz in the Signal Processing Toolbox User’s Guide documentation

fsamp2

14-142

14fsamp2Purpose Design two-dimensional FIR filter using frequency sampling

Syntax h = fsamp2(Hd)
h = fsamp2(f1,f2,Hd,[m n])

Description fsamp2 designs two-dimensional FIR filters based on a desired
two-dimensional frequency response sampled at points on the Cartesian plane.

h = fsamp2(Hd) designs a two-dimensional FIR filter with frequency response
Hd, and returns the filter coefficients in matrix h. (fsamp2 returns h as a
computational molecule, which is the appropriate form to use with filter2.)
The filter h has a frequency response that passes through points in Hd. If Hd is
m-by-n, then h is also m-by-n.

Hd is a matrix containing the desired frequency response sampled at equally
spaced points between -1.0 and 1.0 along the x and y frequency axes, where 1.0
corresponds to half the sampling frequency, or π radians.

For accurate results, use frequency points returned by freqspace to create Hd.
(See the entry for freqspace for more information.)

h = fsamp2(f1,f2,Hd,[m n]) produces an m-by-n FIR filter by matching the
filter response at the points in the vectors f1 and f2. The frequency vectors f1
and f2 are in normalized frequency, where 1.0 corresponds to half the sampling
frequency, or π radians. The resulting filter fits the desired response as closely
as possible in the least squares sense. For best results, there must be at least
m*n desired frequency points. fsamp2 issues a warning if you specify fewer than
m*n points.

Class Support The input matrix Hd can be of class double or of any integer class. All other
inputs to fsamp2 must be of class double. All outputs are of class double.

Example Use fsamp2 to design an approximately symmetric two-dimensional bandpass
filter with passband between 0.1 and 0.5 (normalized frequency, where 1.0
corresponds to half the sampling frequency, or π radians):

1 Create a matrix Hd that contains the desired bandpass response. Use
freqspace to create the frequency range vectors f1 and f2.

Hd f1 f2,() Hd ω1 ω2,()=
ω1 πf1= ω2, πf2=

fsamp2

14-143

[f1,f2] = freqspace(21,'meshgrid');
Hd = ones(21);
r = sqrt(f1.^2 + f2.^2);
Hd((r<0.1)|(r>0.5)) = 0;
colormap(jet(64))
mesh(f1,f2,Hd)

2 Design the filter that passes through this response.

h = fsamp2(Hd);
freqz2(h)

fsamp2

14-144

Algorithm fsamp2 computes the filter h by taking the inverse discrete Fourier transform
of the desired frequency response. If the desired frequency response is real and
symmetric (zero phase), the resulting filter is also zero phase.

See Also conv2, filter2, freqspace, ftrans2, fwind1, fwind2

Reference [1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood
Cliffs, NJ, Prentice Hall, 1990, pp. 213-217.

fspecial

14-145

14fspecialPurpose Create 2-D special filters

Syntax h = fspecial(type)
h = fspecial(type,parameters)

Description h = fspecial(type) creates a two-dimensional filter h of the specified type.
fspecial returns h as a correlation kernel, which is the appropriate form to use
with imfilter. type is a string having one of these values.

h = fspecial(type,parameters) accepts a filter type plus additional
modifying parameters particular to the type of filter chosen. If you omit these
arguments, fspecial uses default values for the parameters.

The following list shows the syntax for each filter type. Where applicable,
additional parameters are also shown.

• h = fspecial('average',hsize) returns an averaging filter h of size hsize.
The argument hsize can be a vector specifying the number of rows and
columns in h, or it can be a scalar, in which case h is a square matrix. The
default value for hsize is [3 3].

• h = fspecial('disk',radius) returns a circular averaging filter (pillbox)
within the square matrix of side 2*radius+1. The default radius is 5.

Value Description

'gaussian' Gaussian lowpass filter

'sobel' Sobel horizontal edge-emphasizing filter

'prewitt' Prewitt horizontal edge-emphasizing filter

'laplacian' Filter approximating the two-dimensional
Laplacian operator

'log' Laplacian of Gaussian filter

'average' Averaging filter

'unsharp' Unsharp contrast enhancement filter

fspecial

14-146

• h = fspecial('gaussian',hsize,sigma) returns a rotationally symmetric
Gaussian lowpass filter of size hsize with standard deviation sigma
(positive). hsize can be a vector specifying the number of rows and columns
in h, or it can be a scalar, in which case h is a square matrix. The default
value for hsize is [3 3]; the default value for sigma is 0.5.

• h = fspecial('laplacian',alpha) returns a 3-by-3 filter approximating
the shape of the two-dimensional Laplacian operator. The parameter alpha
controls the shape of the Laplacian and must be in the range 0.0 to 1.0. The
default value for alpha is 0.2.

• h = fspecial('log',hsize,sigma) returns a rotationally symmetric
Laplacian of Gaussian filter of size hsize with standard deviation sigma
(positive). hsize can be a vector specifying the number of rows and columns
in h, or it can be a scalar, in which case h is a square matrix. The default value
for hsize is [5 5] and 0.5 for sigma.

• h = fspecial('motion',len,theta) returns a filter to approximate, once
convolved with an image, the linear motion of a camera by len pixels, with
an angle of theta degrees in a counterclockwise direction. The filter becomes
a vector for horizontal and vertical motions. The default len is 9 and the
default theta is 0, which corresponds to a horizontal motion of nine pixels.

• h = fspecial('prewitt') returns a 3-by-3 filter h (shown below) that
emphasizes horizontal edges by approximating a vertical gradient. If you
need to emphasize vertical edges, transpose the filter h'.

[1 1 1
 0 0 0
 -1 -1 -1]

To find vertical edges, or for x-derivatives, use h'.

• h = fspecial('sobel') returns a 3-by-3 filter h (shown below) that
emphasizes horizontal edges using the smoothing effect by approximating a
vertical gradient. If you need to emphasize vertical edges, transpose the
filter h'.

[1 2 1
 0 0 0
 -1 -2 -1]

• h = fspecial('unsharp',alpha) returns a 3-by-3 unsharp contrast
enhancement filter. fspecial creates the unsharp filter from the negative of
the Laplacian filter with parameter alpha. alpha controls the shape of the

fspecial

14-147

Laplacian and must be in the range 0.0 to 1.0. The default value for alpha is
0.2.

Class Support h is of class double.

Example I = imread('cameraman.tif');
subplot(2,2,1);
imshow(I); title('Original Image');

H = fspecial('motion',20,45);
MotionBlur = imfilter(I,H,'replicate');
subplot(2,2,2);
imshow(MotionBlur);title('Motion Blurred Image');

H = fspecial('disk',10);
blurred = imfilter(I,H,'replicate');
subplot(2,2,3);
imshow(blurred); title('Blurred Image');

H = fspecial('unsharp');
sharpened = imfilter(I,H,'replicate');
subplot(2,2,4);
imshow(sharpened); title('Sharpened Image');

fspecial

14-148

Algorithms fspecial creates Gaussian filters using

fspecial creates Laplacian filters using

Original Image Motion Blurred Image

Blurred Image Sharpened Image

Image Courtesy of MIT

hg n1 n2,() e
n1

2 n2
2+() 2σ2()⁄–

=

h n1 n2,()
hg n1 n2,()

hg
n2

∑
n1

∑
---------------------------=

fspecial

14-149

fspecial creates Laplacian of Gaussian (LoG) filters using

fspecial creates averaging filters using

ones(n(1),n(2))/(n(1)*n(2))

fspecial creates unsharp filters using

See Also conv2, edge, filter2, fsamp2, fwind1, fwind2, imfilter

del2 in the MATLAB Function Reference

∇ 2 ∂2

∂x2
--------- ∂2

∂y2
---------+=

∇ 2 4
α 1+()

α
4
--- 1 α–

4
------------- α

4

1 α–
4

------------- 1– 1 α–
4

α
4
--- 1 α–

4
------------- α

4

≈

hg n1 n2,() e
n1

2 n2
2+() 2σ2()⁄–

=

h n1 n2,()
n1

2 n2
2

+ 2σ2
–()hg n1 n2,()

2πσ6 hg
n2

∑
n1

∑
--=

1
α 1+()

α – α 1 – α–

α 1 – α 5 + α 1–

α – α 1 – α–

ftrans2

14-150

14ftrans2Purpose Design two-dimensional FIR filter using frequency transformation

Syntax h = ftrans2(b,t)
h = ftrans2(b)

Description h = ftrans2(b,t) produces the two-dimensional FIR filter h that corresponds
to the one-dimensional FIR filter b using the transform t. (ftrans2 returns h
as a computational molecule, which is the appropriate form to use with
filter2.) b must be a one-dimensional, odd-length (Type I) FIR filter such
as can be returned by fir1, fir2, or remez in the Signal Processing Toolbox.
The transform matrix t contains coefficients that define the frequency
transformation to use. If t is m-by-n and b has length Q, then h is size
((m-1)*(Q-1)/2+1)-by-((n-1)*(Q-1)/2+1).

h = ftrans2(b) uses the McClellan transform matrix t.

t = [1 2 1; 2 -4 2; 1 2 1]/8;

Remarks The transformation below defines the frequency response of the
two-dimensional filter returned by ftrans2,

where B(ω) is the Fourier transform of the one-dimensional filter b,

and T(ω1,ω2) is the Fourier transform of the transformation matrix t.

The returned filter h is the inverse Fourier transform of H(ω1,ω2).

H ω1 ω2,() B ω() ωcos T ω1 ω2,()=
=

B ω() b n()e jωn–

n N–=

N

∑=

T ω1 ω2,() t n1 n2,()e
jω1n1–

e
jω2n2–

n1

∑
n2

∑=

h n1 n2,() 1

2π()2
-------------- H ω1 ω2,()e

jω1n1e
jω2n2 ω1d ω2d

π–

π

∫
π–

π

∫=

ftrans2

14-151

Example Use ftrans2 to design an approximately circularly symmetric two-dimensional
bandpass filter with passband between 0.1 and 0.6 (normalized frequency,
where 1.0 corresponds to half the sampling frequency, or π radians):

1 Since ftrans2 transforms a one-dimensional FIR filter to create a
two-dimensional filter, first design a one-dimensional FIR bandpass filter
using the Signal Processing Toolbox function remez.

colormap(jet(64))
b = remez(10,[0 0.05 0.15 0.55 0.65 1],[0 0 1 1 0 0]);
[H,w] = freqz(b,1,128,'whole');
plot(w/pi-1,fftshift(abs(H)))

2 Use ftrans2 with the default McClellan transformation to create the
desired approximately circularly symmetric filter.

h = ftrans2(b);
freqz2(h)

ftrans2

14-152

See Also conv2, filter2, fsamp2, fwind1, fwind2

Reference [1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood
Cliffs, NJ, Prentice Hall, 1990, pp. 218-237.

fwind1

14-153

14fwind1Purpose Design two-dimensional FIR filter using one-dimensional window method

Syntax h = fwind1(Hd,win)
h = fwind1(Hd,win1,win2)
h = fwind1(f1,f2,Hd,...)

Description fwind1 designs two-dimensional FIR filters using the window method. fwind1
uses a one-dimensional window specification to design a two-dimensional FIR
filter based on the desired frequency response Hd. fwind1 works with
one-dimensional windows only; use fwind2 to work with two-dimensional
windows.

h = fwind1(Hd,win) designs a two-dimensional FIR filter h with frequency
response Hd. (fwind1 returns h as a computational molecule, which is the
appropriate form to use with filter2.) fwind1 uses the one-dimensional
window win to form an approximately circularly symmetric two-dimensional
window using Huang’s method. You can specify win using windows from the
Signal Processing Toolbox, such as boxcar, hamming, hanning, bartlett,
blackman, kaiser, or chebwin. If length(win) is n, then h is n-by-n.

Hd is a matrix containing the desired frequency response sampled at equally
spaced points between -1.0 and 1.0 (in normalized frequency, where 1.0
corresponds to half the sampling frequency, or π radians) along the x and y
frequency axes. For accurate results, use frequency points returned by
freqspace to create Hd. (See the entry for freqspace for more information.)

h = fwind1(Hd,win1,win2) uses the two one-dimensional windows win1 and
win2 to create a separable two-dimensional window. If length(win1) is n and
length(win2) is m, then h is m-by-n.

h = fwind1(f1,f2,Hd,...) lets you specify the desired frequency response Hd
at arbitrary frequencies (f1 and f2) along the x- and y-axes. The frequency
vectors f1 and f2 should be in the range -1.0 to 1.0, where 1.0 corresponds to
half the sampling frequency, or π radians. The length of the windows controls
the size of the resulting filter, as above.

Class Support The input matrix Hd can be of class double or of any integer class. All other
inputs to fwind1 must be of class double. All outputs are of class double.

fwind1

14-154

Example Use fwind1 to design an approximately circularly symmetric two-dimensional
bandpass filter with passband between 0.1 and 0.5 (normalized frequency,
where 1.0 corresponds to half the sampling frequency, or π radians):

1 Create a matrix Hd that contains the desired bandpass response. Use
freqspace to create the frequency range vectors f1 and f2.

[f1,f2] = freqspace(21,'meshgrid');
Hd = ones(21);
r = sqrt(f1.^2 + f2.^2);
Hd((r<0.1)|(r>0.5)) = 0;
colormap(jet(64))
mesh(f1,f2,Hd)

2 Design the filter using a one-dimensional Hamming window.

h = fwind1(Hd,hamming(21));
freqz2(h)

fwind1

14-155

Algorithm fwind1 takes a one-dimensional window specification and forms an
approximately circularly symmetric two-dimensional window using Huang’s
method,

where w(t) is the one-dimensional window and w(n1,n2) is the resulting
two-dimensional window.

Given two windows, fwind1 forms a separable two-dimensional window.

fwind1 calls fwind2 with Hd and the two-dimensional window. fwind2
computes h using an inverse Fourier transform and multiplication by the
two-dimensional window.

w n1 n2,() w t()
t n1

2 n2
2+=

=

w n1 n2,() w1 n1()w2 n2()=

hd n1 n2,() 1

2π()2
-------------- Hd ω1 ω2,()e

jω1n1e
jω2n2 ω1d ω2d

π–

π

∫
π–

π

∫=

h n1 n2,() hd n1 n2,()w n1 n2,()=

fwind1

14-156

See Also conv2, filter2, fsamp2, freqspace, ftrans2, fwind2

Reference [1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood
Cliffs, NJ, Prentice Hall, 1990.

fwind2

14-157

14fwind2Purpose Design two-dimensional FIR filter using two-dimensional window method

Syntax h = fwind2(Hd,win)
h = fwind2(f1,f2,Hd,win)

Description Use fwind2 to design two-dimensional FIR filters using the window method.
fwind2 uses a two-dimensional window specification to design a
two-dimensional FIR filter based on the desired frequency response Hd. fwind2
works with two-dimensional windows; use fwind1 to work with
one-dimensional windows.

h = fwind2(Hd,win) produces the two-dimensional FIR filter h using an
inverse Fourier transform of the desired frequency response Hd and
multiplication by the window win. Hd is a matrix containing the desired
frequency response at equally spaced points in the Cartesian plane. fwind2
returns h as a computational molecule, which is the appropriate form to use
with filter2. h is the same size as win.

For accurate results, use frequency points returned by freqspace to create Hd.
(See the entry for freqspace for more information.)

h = fwind2(f1,f2,Hd,win) lets you specify the desired frequency response Hd
at arbitrary frequencies (f1 and f2) along the x- and y-axes. The frequency
vectors f1 and f2 should be in the range -1.0 to 1.0, where 1.0 corresponds to
half the sampling frequency, or π radians. h is the same size as win.

Class Support The input matrix Hd can be of class double or of any integer class. All other
inputs to fwind2 must be of class double. All outputs are of class double.

Example Use fwind2 to design an approximately circularly symmetric two-dimensional
bandpass filter with passband between 0.1 and 0.5 (normalized frequency,
where 1.0 corresponds to half the sampling frequency, or π radians):

1 Create a matrix Hd that contains the desired bandpass response. Use
freqspace to create the frequency range vectors f1 and f2.

[f1,f2] = freqspace(21,'meshgrid');
Hd = ones(21);
r = sqrt(f1.^2 + f2.^2);
Hd((r<0.1)|(r>0.5)) = 0;

fwind2

14-158

colormap(jet(64))
mesh(f1,f2,Hd)

2 Create a two-dimensional Gaussian window using fspecial.

win = fspecial('gaussian',21,2);
win = win ./ max(win(:)); % Make the maximum window value be 1.
mesh(win)

fwind2

14-159

3 Design the filter using the window from step 2.

h = fwind2(Hd,win);
freqz2(h)

fwind2

14-160

Algorithm fwind2 computes h using an inverse Fourier transform and multiplication by
the two-dimensional window win.

See Also conv2, filter2, fsamp2, freqspace, ftrans2, fwind1

Reference [1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood
Cliffs, NJ, Prentice Hall, 1990, pp. 202-213.

hd n1 n2,() 1

2π()2
-------------- Hd ω1 ω2,()e

jω1n1e
jω2n2 ω1d ω2d

π–

π

∫
π–

π

∫=

h n1 n2,() hd n1 n2,()w n1 n2,()=

getheight

14-161

14getheightPurpose Get height of structuring element

Syntax H = getheight(SE)

Description H = getheight(SE) returns an array the same size as getnhood(SE)
containing the height associated with each of the structuring element
neighbors. H is all zeros for a flat structuring element.

Class Support SE is a STREL object. H is of class double.

Example se = strel(ones(3,3),magic(3));
getheight(se)

See Also strel, getnhood

getimage

14-162

14getimagePurpose Get image data from axes

Syntax A = getimage(h)
[x,y,A] = getimage(h)
[...,A,flag] = getimage(h)
[...] = getimage

Description A = getimage(h) returns the first image data contained in the Handle
Graphics object h. h can be a figure, axes, image, or texture-mapped surface. A
is identical to the image CData; it contains the same values and is of the same
class (uint8 or double) as the image CData. If h is not an image or does not
contain an image or texture-mapped surface, A is empty.

[x,y,A] = getimage(h) returns the image XData in x and the YData in y. XData
and YData are two-element vectors that indicate the range of the x-axis and
y-axis.

[...,A,flag] = getimage(h) returns an integer flag that indicates the type
of image h contains. This table summarizes the possible values for flag.

[...] = getimage returns information for the current axes. It is equivalent to
[...] = getimage(gca).

Class Support The output array A is of the same class as the image CData. All other inputs and
outputs are of class double.

Flag Type of Image

0 Not an image; A is returned as an empty matrix

1 Indexed image

2 Intensity image with values in standard range ([0,1] for
double arrays, [0,255] for uint8 arrays, [0,65535] for uint16
arrays)

3 Intensity data, but not in standard range

4 RGB image

getimage

14-163

Example This example illustrates obtaining the image data from an image displayed
directly from a file.

imshow rice.png
I = getimage;

getline

14-164

14getlinePurpose Select polyline with mouse

Syntax [x,y] = getline(fig)
[x,y] = getline(ax)
[x,y] = getline
[x,y] = getline(...,'closed')

Description [x,y] = getline(fig) lets you select a polyline in the current axes of figure
fig using the mouse. Coordinates of the polyline are returned in X and Y. Use
normal button clicks to add points to the polyline. A shift-, right-, or
double-click adds a final point and ends the polyline selection. Pressing Return
or Enter ends the polyline selection without adding a final point. Pressing
Backspace or Delete removes the previously selected point from the polyline.

[x,y] = getline(ax) lets you select a polyline in the axes specified by the
handle ax.

[x,y] = getline is the same as [x,y] = getline(gcf).

[x,y] = getline(...,'closed') animates and returns a closed polygon.

See Also getpts, getrect

getneighbors

14-165

14getneighborsPurpose Get structuring element neighbor locations and heights

Syntax [offsets,heights] = getneighbors(SE)

Description [offsets,heights] = getneighbors(SE) returns the relative locations and
corresponding heights for each of the neighbors in the structuring element
object SE.

offsets is a P-by-N array where P is the number of neighbors in the
structuring element and N is the dimensionality of the structuring element.
Each row of offsets contains the location of the corresponding neighbor,
relative to the center of the structuring element.

heights is a P-element column vector containing the height of each structuring
element neighbor.

Class Support SE is a STREL object. The return values offsets and heights are arrays of
double-precision values.

Example se = strel([1 0 1],[5 0 -5])
[offsets,heights] = getneighbors(se)
se =
Nonflat STREL object containing 2 neighbors.

Neighborhood:
 1 0 1

Height:
 5 0 -5

offsets =
 0 -1
 0 1
heights =
 5 -5

See Also strel, getnhood, getheight

getnhood

14-166

14getnhoodPurpose Get structuring element neighborhood

Syntax nhood = getnhood(SE)

Description nhood = getnhood(SE) returns the neighborhood associated with the
structuring element SE.

Class Support SE is a STREL object. nhood is a logical array.

Example se = strel(eye(5));
nhood = getnhood(se)

See Also strel, getneighbors

getpts

14-167

14getptsPurpose Select points with mouse

Syntax [x,y] = getpts(fig)
[x,y] = getpts(ax)
[x,y] = getpts

Description [x,y] = getpts(fig) lets you choose a set of points in the current axes of
figure fig using the mouse. Coordinates of the selected points are returned in
X and Y.

Use normal button clicks to add points. A shift-, right-, or double-click adds a
final point and ends the selection. Pressing Return or Enter ends the selection
without adding a final point. Pressing Backspace or Delete removes the
previously selected point.

[x,y] = getpts(ax) lets you choose points in the axes specified by the handle
ax.

[x,y] = getpts is the same as [x,y] = getpts(gcf).

See Also getline, getrect

getrect

14-168

14getrectPurpose Select rectangle with mouse

Syntax rect = getrect(fig)
rect = getrect(ax)
rect = getrect(fig)

Description rect = getrect(fig) lets you select a rectangle in the current axes of figure
fig using the mouse. Coordinates of the rectangle are returned in X and Y.

Use the mouse to click and drag the desired rectangle. rect is a four-element
vector with the form [xmin ymin width height]. To constrain the rectangle to
be a square, use a shift- or right-click to begin the drag.

rect = getrect(ax) lets you select a rectangle in the axes specified by the
handle ax.

See Also getline, getpts

getsequence

14-169

14getsequencePurpose Extract sequence of decomposed structuring elements

Syntax SEQ = getsequence(SE)

Description SEQ = getsequence(SE), where SE is a structuring element array, returns
another structuring element array SEQ containing the individual structuring
elements that form the decomposition of SE. SEQ is equivalent to SE, but the
elements of SEQ have no decomposition.

Class Support SE and SEQ are arrays of STREL objects.

Example The strel function uses decomposition for square structuring elements larger
than 3-by-3. Use getsequence to extract the decomposed structuring elements.

se = strel('square',5)
seq = getsequence(se)
se =
Flat STREL object containing 25 neighbors.
Decomposition: 2 STREL objects containing a total of 10 neighbors

Neighborhood:
 1 1 1 1 1
 1 1 1 1 1
 1 1 1 1 1
 1 1 1 1 1
 1 1 1 1 1
seq =
2x1 array of STREL objects

Use imdilate with the 'full' option to see that dilating sequentially with the
decomposed structuring elements really does form a 5-by-5 square:

imdilate(1,seq,'full')

See Also imdilate, imerode, strel

gray2ind

14-170

14gray2indPurpose Convert an intensity image to an indexed image

Syntax [X,map] = gray2ind(I,n)
[X,map] = gray2ind(BW,n)

Description gray2ind scales, then rounds, an intensity image to produce an equivalent
indexed image.

[X,map] = gray2ind(I,n) converts the intensity image I to an indexed image
X with colormap gray(n). If n is omitted, it defaults to 64.

[X,map] = gray2ind(BW,n) converts the binary image BW to an indexed image
X with colormap gray(n). If n is omitted, it defaults to 2.

n must be an integer between 1 and 65536.

Class Support The input image I must be a real, nonsparse array of class logical, uint8,
uint16, or double. It can have any dimension. The class of the output image X
is uint8 if the colormap length is less than or equal to 256; otherwise it is
uint16.

See Also ind2gray

grayslice

14-171

14grayslicePurpose Create indexed image from intensity image using multilevel thresholding

Syntax X = grayslice(I,n)
X = grayslice(I,v)

Description X = grayslice(I,n) thresholds the intensity image I using cutoff values

, returning an indexed image in X.

X = grayslice(I,v) thresholds the intensity image I using the values of v,
where v is a vector of values between 0 and 1, returning an indexed image in X.

You can view the thresholded image using imshow(X,map) with a colormap of
appropriate length.

Class Support The input image I can be of class uint8, uint16, or double. Note that the
threshold values are always between 0 and 1, even if I is of class uint8 or
uint16. In this case, each threshold value is multiplied by 255 or 65535 to
determine the actual threshold to use.

The class of the output image X depends on the number of threshold values, as
specified by n or length(v). If the number of threshold values is less than 256,
then X is of class uint8, and the values in X range from 0 to n or length(v). If
the number of threshold values is 256 or greater, X is of class double, and the
values in X range from 1 to n+1 or length(v)+1.

Example I = imread('snowflakes.png');
X = grayslice(I,16);
imview(I)
imview(X,jet(16))

See Also gray2ind

1
n
--- 2

n
--- … n 1–

n
-------------,, ,

graythresh

14-172

14graythreshPurpose Compute global image threshold using Otsu's method

Syntax level = graythresh(I)

Description level = graythresh(I) computes a global threshold (level) that can be used
to convert an intensity image to a binary image with im2bw.

level is a normalized intensity value that lies in the range [0, 1].

The graythresh function uses Otsu's method, which chooses the threshold to
minimize the intraclass variance of the black and white pixels.

Multidimensional arrays are converted automatically to 2-D arrays using
reshape. The graythresh function ignores any nonzero imaginary part of I.

Class Support The input image I can be of class uint8, uint16, or double and it must be
nonsparse. The return value level is a double scalar.

Example I = imread('coins.png');
level = graythresh(I);
BW = im2bw(I,level);
imshow(BW)

See Also im2bw

Reference Otsu, N., “A Threshold Selection Method from Gray-Level Histograms,” IEEE
Transactions on Systems, Man, and Cybernetics, Vol. 9, No. 1, 1979, pp. 62-66.

histeq

14-173

14histeqPurpose Enhance contrast using histogram equalization

Syntax J = histeq(I,hgram)
J = histeq(I,n)
[J,T] = histeq(I,...)

newmap = histeq(X,map,hgram)
newmap = histeq(X,map)
[newmap,T] = histeq(X,...)

Description histeq enhances the contrast of images by transforming the values in an
intensity image, or the values in the colormap of an indexed image, so that the
histogram of the output image approximately matches a specified histogram.

J = histeq(I,hgram) transforms the intensity image I so that the histogram
of the output intensity image J with length(hgram) bins approximately
matches hgram. The vector hgram should contain integer counts for equally
spaced bins with intensity values in the appropriate range: [0, 1] for images of
class double, [0, 255] for images of class uint8, and [0, 65535] for images of
class uint16. histeq automatically scales hgram so that sum(hgram) =
prod(size(I)). The histogram of J will better match hgram when
length(hgram) is much smaller than the number of discrete levels in I.

J = histeq(I,n) transforms the intensity image I, returning in J an intensity
image with n discrete gray levels. A roughly equal number of pixels is mapped
to each of the n levels in J, so that the histogram of J is approximately flat. (The
histogram of J is flatter when n is much smaller than the number of discrete
levels in I.) The default value for n is 64.

[J,T] = histeq(I,...) returns the grayscale transformation that maps gray
levels in the intensity image I to gray levels in J.

newmap = histeq(X,map,hgram) transforms the colormap associated with the
indexed image X so that the histogram of the gray component of the indexed
image (X,newmap) approximately matches hgram. The histeq function returns
the transformed colormap in newmap. length(hgram) must be the same as
size(map,1).

histeq

14-174

newmap = histeq(X,map) transforms the values in the colormap so that the
histogram of the gray component of the indexed image X is approximately flat.
It returns the transformed colormap in newmap.

[newmap,T] = histeq(X,...) returns the grayscale transformation T that
maps the gray component of map to the gray component of newmap.

Class Support For syntaxes that include an intensity image I as input, I can be of class uint8,
uint16, or double, and the output image J has the same class as I. For
syntaxes that include an indexed image X as input, X can be of class uint8 or
double; the output colormap is always of class double. Also, the optional output
T (the gray-level transform) is always of class double.

Example Enhance the contrast of an intensity image using histogram equalization.

I = imread('tire.tif');
J = histeq(I);
imshow(I)
figure, imshow(J)

Display the resulting histograms.

imhist(I,64)
figure; imhist(J,64)

histeq

14-175

Algorithm When you supply a desired histogram hgram, histeq chooses the grayscale
transformation T to minimize

where c0 is the cumulative histogram of A, c1 is the cumulative sum of hgram for
all intensities k. This minimization is subject to the constraints that T must be
monotonic and c1(T(a)) cannot overshoot c0(a) by more than half the distance
between the histogram counts at a. histeq uses this transformation to map the
gray levels in X (or the colormap) to their new values.

If you do not specify hgram, histeq creates a flat hgram,

hgram = ones(1,n)*prod(size(A))/n;

and then applies the previous algorithm.

See Also brighten, imadjust, imhist

c1 T k()() c0 k()–

b T a()=

hsv2rgb

14-176

14hsv2rgbPurpose Convert hue-saturation-value (HSV) values to RGB color space

hsv2rgb is a function in MATLAB. To get help for this function, select
MATLAB Help from the Help menu and view the online function reference
page.

iccread

14-177

14iccreadPurpose Read ICC profile

Syntax P = iccread(filename)

Description P = iccread(filename) reads the International Color Consortium (ICC) color
profile data from the file specified in the text string filename. iccread can
also read an ICC profile that is embedded in a TIFF file. To determine if a TIFF
file contains an embedded ICC profile, use the imfinfo function to get
information about the file and look for the ICCProfileOffset field.

iccread returns the profile data in the structure P. You can use this profile as
the source or destination profile with the makecform function.

ICC profiles provide color management systems with the information
necessary to convert color data between native device color spaces and device
independent color spaces, called the Profile Connection Space (PCS).

The profile returned, P, is a 1-by-1 structure array whose fields contain the
data structures (called tags) defined in the specfication ICC.1:2001-04. The
number of fields in P depends on the profile class and the choices made by the
profile creator. iccread returns all the tags for a given profile, both public and
private. However, private tags and certain public tags are left as encoded uint8
data.

The following table lists fields that are found in any profile structure generated
by iccread. For more information about ICC profiles, visit the ICC web site,
www.color.org.

Field Data Type Description

Filename Text string Profile name

Header 1-by-1 struct
array

Profile header

TagTable n-by-3 cell
array

Profile tag table

Copywright Text string Profile copyright notice

Description Text string Profile description

iccread

14-178

Additionally, P might contain one or more of the following transforms:

• Three component matrix-based transform: A simple transform that is often
used to transform between the RGB and XYZ color spaces. If this transform
is present, P contains a field called MatTRC.

• N-component LUT-based transform: A transform that is used for
transforming between color spaces that have a more complex relationship.
This type of transform is found in any of the following fields in P:

Example The example reads the ICC profile that describes a typical PC computer
monitor.

prof = iccread('sRGB.icm');

prof =

Filename: 'sRGB.icm'
 Header: [1x1 struct]
 TagTable: {17x3 cell}
 Copyright: 'Copyright (c) 1999 Hewlett-Packard Company'
 Description: 'sRGB IEC61966-2.1 991203'
 MediaWhitePoint: [0.9505 1 1.0891]
 MediaBlackPoint: [0 0 0]
 DeviceMfgDesc: 'IEC '

MediaWhitepoint double array XYZ tristimulus values of the
device’s media white point

PrivateTags m-by-2 cell
array

Contents of all the private tags or
tags not defined in ICC.1:2001-04.
The tag signatures are in the first
column, and the contents of the tags
are in the second column. Note that
the contents of these tags are left in
the unsigned 8-bit encoding

AToB0 BToA0 Preview0 Gamut

AToB1 BToA1 Preview1

AToB2 BToA2 Preview2

Field Data Type Description

iccread

14-179

 DeviceModelDesc: 'sRGB IEC 61966-2.1 sRGB 991203'
 ViewingCondDesc: 'Reference Viewing Condition in IEC61966-2.1'
 ViewingConditions: [1x1 struct]
 Luminance: [76.0365 80 87.1246]
 Measurement: [28x1 uint8]
 Technology: [4x1 uint8]
 MatTRC: [1x1 struct]
 PrivateTags: {}

To determine the source color space, view the ColorSpace field in the Header
structure.

prof.Header.ColorSpace

ans =

 RGB

To determine the PCS of the profile, view the ConnectionSpace field in the
Header structure.

prof.Header.ConnectionSpace

ans =

 XYZ

See Also makecform

idct2

14-180

14idct2Purpose Compute two-dimensional inverse discrete cosine transform

Syntax B = idct2(A)
B = idct2(A,m,n)
B = idct2(A,[m n])

Description B = idct2(A) returns the two-dimensional inverse discrete cosine transform
(DCT) of A.

B = idct2(A,m,n) or B = idct2(A,[m n]) pads A with 0’s to size m-by-n before
transforming. If [m n] < size(A), idct2 crops A before transforming.

For any A, idct2(dct2(A)) equals A to within roundoff error.

Class Support The input matrix A can be of class double or of any numeric class. The output
matrix B is of class double.

Algorithm idct2 computes the two-dimensional inverse DCT using

See Also dct2, dctmtx, fft2, ifft2

References [1] Jain, A. K., Fundamentals of Digital Image Processing, Englewood Cliffs,
NJ, Prentice Hall, 1989, pp. 150-153.

[2] Pennebaker, W. B., and J. L. Mitchell, JPEG: Still Image Data Compression
Standard, New York, Van Nostrand Reinhold, 1993.

Amn αpαqBpq
π 2m 1+()p

2M
------------------------------- π 2n 1+()q

2N
-----------------------------,

0 m M 1–≤ ≤
0 n N 1–≤ ≤

coscos

q 0=

N 1–

∑
p 0=

M 1–

∑=

αp
1 M, p⁄ 0=

2 M⁄ , 1 p M 1–≤ ≤

= αq
1 N, q⁄ 0=

2 N⁄ , 1 q N 1–≤ ≤

=

ifanbeam

14-181

14ifanbeamPurpose Compute inverse fan-beam transform

Syntax I = ifanbeam(F,D)
I = ifambeam(...,param1,val1,param2,val2,...)
[I,H] = ifanbeam(...)

Description I = ifanbeam(F,D) reconstructs the image I from projection data in the
two-dimensional array F. Each column of F contains fan-beam projection data
at one rotation angle. ifanbeam assumes that the center of rotation is the
center point of the projections, which is defined as ceil(size(F,1)/2).

The fan-beam spread angles are assumed to be the same increments as the
input rotation angles split equally on either side of zero. The input rotation
angles are assumed to be stepped in equal increments to cover [0:359]
degrees.

D is the distance from the fan-beam vertex to the center of rotation.

I = ifanbeam(...,param1,val1,param2,val2,...) specifies parameters
that control various aspects of the ifanbeam reconstruction, described in the
following table. Parameter names can be abbreviated, and case does not
matter. Default values are in braces ({}).

Parameter Description

'FanCoverage' String specifying the range through which the beams are rotated.

{'cycle'} — Rotate through the full range [0,360).

'minimal' — Rotate the minimum range necessary to represent
the object.

'FanRotationIncrement' Positive real scalar specifying the increment of the rotation angle
of the fan-beam projections, measured in degrees. See fanbeam
for details.

'FanSensorGeometry' String specifying how sensors are positioned. See fanbeam for
details.

ifanbeam

14-182

[I,H] = ifanbeam(...) returns the frequency response of the filter in the
vector H.

Notes ifanbeam converts the fan-beam data to parallel beam projections and then
uses the filtered back projection algorithm to perform the inverse Radon
transform. The filter is designed directly in the frequency domain and then
multiplied by the FFT of the projections. The projections are zero-padded to a
power of 2 before filtering to prevent spatial domain aliasing and to speed up
the FFT.

Class Support All numeric input arguments must be of class double. The output arguments
are of class double.

Example ph = phantom(128);

'FanSensorSpacing' Positive real scalar specifying the spacing of the fan-beam
sensors. Interpretation of the value depends on the setting of
'FanSensorGeometry'. See fanbeam for details.

'Filter' String specifying the name of a filter. See iradon for details.

'FrequencyScaling' Scalar in the range (0,1] that modifies the filter by rescaling its
frequency axis. See iradon for details.

'Interpolation' String specifying an interpolation method. See iradon for details.

'OutputSize' Positive scalar specifying the number of rows and columns in the
reconstructed image.

If 'OutputSize' is not specified, ifanbeam determines the size
automatically.

If you specify 'OutputSize', ifanbeam reconstructs a smaller or
larger portion of the image, but does not change the scaling of the
data.

Note: If the projections were calculated with the fanbeam
function, the reconstructed image might not be the same size as
the original image.

Parameter Description

ifanbeam

14-183

d = 100;
F = fanbeam(ph,d);
I = ifanbeam(F,d,'FanSensorSpacing',0.5);
imview(ph); imview(I);

See Also fan2para, fanbeam, iradon, para2fan, phantom, radon

References [1] Kak, A. C., and M. Slaney, Principles of Computerized Tomographic
Imaging, New York, NY, IEEE Press, 1988.

ifft2

14-184

14ifft2Purpose Compute two-dimensional inverse fast Fourier transform

ifft2 is a function in MATLAB. To get help for this function, select MATLAB
Help from the Help menu and view the online function reference pages.

ifftn

14-185

14ifftnPurpose Compute N-dimensional inverse fast Fourier transform

ifftn is a function in MATLAB. To get help for this function, select MATLAB
Help from the Help menu and view the online function reference pages.

im2bw

14-186

14im2bwPurpose Convert an image to a binary image, based on threshold

Syntax BW = im2bw(I,level)
BW = im2bw(X,map,level)
BW = im2bw(RGB,level)

Description im2bw produces binary images from indexed, intensity, or RGB images. To do
this, it converts the input image to grayscale format (if it is not already an
intensity image), and then uses thresholding to convert this grayscale image to
binary. The output binary image BW has values of 0 (black) for all pixels in the
input image with luminance less than level and 1 (white) for all other pixels.
(Note that you specify level in the range [0,1], regardless of the class of the
input image.)

BW = im2bw(I,level) converts the intensity image I to black and white.

BW = im2bw(X,map,level) converts the indexed image X with colormap map to
black and white.

BW = im2bw(RGB,level) converts the RGB image RGB to black and white.

Note The function graythresh can be used to compute the level argument
automatically.

Class Support The input image can be of class uint8, uint16, or double and it must be
nonsparse. The output image, BW, is of class logical.

Example load trees
BW = im2bw(X,map,0.4);
imview(X,map),imview(BW)

im2bw

14-187

See Also graythresh, ind2gray, rgb2gray

Image Courtesy of Susan Cohen

im2col

14-188

14im2colPurpose Rearrange image blocks into columns

Syntax B = im2col(A,[m n],block_type)
B = im2col(A,[m n])
B = im2col(A,'indexed',...)

Description B = im2col(A,[m n],block_type) rearranges image blocks into columns.
block_type is a string that can have one of these values. The default value is
enclosed in braces ({}).

For the sliding block case, each column of B contains the neighborhoods of A
reshaped as nhood(:) where nhood is a matrix containing an m-by-n
neighborhood of A. im2col orders the columns of B so that they can be reshaped
to form a matrix in the normal way. For example, suppose you use a function,
such as sum(B), that returns a scalar for each column of B. You can directly
store the result in a matrix of size (mm-m+1)-by-(nn-n+1), using these calls.

B = im2col(A,[m n],'sliding');
C = reshape(sum(B),mm-m+1,nn-n+1);

B = im2col(A,'indexed',...) processes A as an indexed image, padding with
0’s if the class of A is uint8, or 1’s if the class of A is double.

Class Support The input image A can be numeric or logical. The output matrix B is of the same
class as the input image.

Value Description

'distinct' Rearranges each distinct m-by-n block in the image A into
a column of B. im2col pads A with 0’s, if necessary, so its
size is an integer multiple of m-by-n. If A = [A11 A12;
A21 A22], where each Aij is m-by-n, then B = [A11(:)
A12(:) A21(:) A22(:)].

{'sliding'} Converts each sliding m-by-n block of A into a column of B,
with no zero padding. B has m*n rows and contains as
many columns as there are m-by-n neighborhoods of A. If
the size of A is [mm nn], then the size of B is
(m*n)-by-((mm-m+1)*(nn-n+1)).

im2col

14-189

See Also blkproc, col2im, colfilt, nlfilter

im2double

14-190

14im2doublePurpose Convert image array to double precision

Syntax I2 = im2double(I)
RGB2 = im2double(RGB)
I = im2double(BW)
X2 = im2double(X,'indexed')

Description im2double takes an image as input, and returns an image of class double. If
the input image is of class double, the output image is identical to it. If the
input image is of class logical, uint8, or uint16, im2double returns the
equivalent image of class double, rescaling or offsetting the data as necessary.

I2 = im2double(I) converts the intensity image I to double precision,
rescaling the data if necessary.

RGB2 = im2double(RGB) converts the true-color image RGB to double precision,
rescaling the data if necessary.

I = im2double(BW) converts the binary image BW to a double-precision
intensity image.

X2 = im2double(X,'indexed') converts the indexed image X to double
precision, offsetting the data if necessary.

See Also double, im2uint8, uint8

im2java

14-191

14im2javaPurpose Convert image to Java image

im2java is a MATLAB function. To get help for this function, select MATLAB
Help from the Help menu and view the online function reference pages.

im2java2d

14-192

14im2java2dPurpose Convert image to Java buffered image

Syntax jimage = im2java2d(I)
jimage = im2java2d(X,MAP)

Description jimage = im2java2d(I) converts the image I to an instance of the Java image
class java.awt.image.BufferedImage. The image I can be an intensity
(grayscale), RGB, or binary image.

jimage = im2java2d(X,MAP) converts the indexed image X with colormap MAP
to an instance of the Java class java.awt.image.BufferedImage.

Note The im2java2d function works with the Java 2D API. The im2java
function works with the Java Abstract Windowing Toolkit (AWT).

Class Support Intensity, indexed, and RGB input images can be of class uint8, uint16, or
double. Binary input images must be of class logical.

Example This example reads an image into the MATLAB workspace and then uses
im2java2d to convert it into an instance of the Java class
java.awt.image.BufferedImage.

I = imread('moon.tif');
javaImage = im2java2d(I);
frame = javax.swing.JFrame;
icon = javax.swing.ImageIcon(javaImage);
label = javax.swing.JLabel(icon);
frame.getContentPane.add(label);
frame.pack
frame.show

im2uint16

14-193

14im2uint16Purpose Convert image array to 16-bit unsigned integers

Syntax I2 = im2uint16(I)
RGB2 = im2uint16(RGB)
I = im2uint16(BW)
X2 = im2uint16(X,'indexed')

Description im2uint16 takes an image as input and returns an image of class uint16. If the
input image is of class uint16, the output image is identical to it. If the input
image is of class double or uint8, im2uint16 returns the equivalent image of
class uint16, rescaling or offsetting the data as necessary.

I2 = im2uint16(I) converts the intensity image I to uint16, rescaling the
data if necessary.

RGB2 = im2uint16(RGB) converts the true-color image RGB to uint16, rescaling
the data if necessary.

I = im2uint16(BW) converts the binary image BW to a uint16 intensity image,
changing 1-valued elements to 65535.

X2 = im2uint16(X,'indexed') converts the indexed image X to uint16,
offsetting the data if necessary. Note that it is not always possible to convert
an indexed image to uint16. If X is of class double, max(X(:)) must be 65536
or less.

Note im2uint16 does not support binary images.

See Also im2uint8, double, im2double, uint8, uint16, imapprox

im2uint8

14-194

14im2uint8Purpose Convert image array to 8-bit unsigned integers

Syntax I2 = im2uint8(I)
RGB2 = im2uint8(RGB)
I = im2uint8(BW)
X2 = im2uint8(X,'indexed')

Description im2uint8 takes an image as input and returns an image of class uint8. If the
input image is of class uint8, the output image is identical to it. If the input
image is of class logical, uint16, or double, im2uint8 returns the equivalent
image of class uint8, rescaling or offsetting the data as necessary.

I2 = im2uint8(I) converts the intensity image I to uint8, rescaling the data
if necessary.

RGB2 = im2uint8(RGB) converts the true-color image RGB to uint8, rescaling
the data if necessary.

I = im2uint8(BW) converts the binary image BW to a uint8 intensity image,
changing 1-valued elements to 255

X2 = im2uint8(X,'indexed') converts the indexed image X to uint8,
offsetting the data if necessary. Note that it is not always possible to convert
an indexed image to uint8. If X is of class double, max(X(:)) must be 256 or
less; if X is of class uint16, max(X(:)) must be 255 or less. To convert a uint16
indexed image to uint8 by reducing the number of colors, use imapprox.

See Also im2uint16, double, im2double, uint8, imapprox, uint16

imabsdiff

14-195

14imabsdiffPurpose Compute absolute difference of two images

Syntax Z = imabsdiff(X,Y)

Description Z = imabsdiff(X,Y) subtracts each element in array Y from the corresponding
element in array X and returns the absolute difference in the corresponding
element of the output array Z. X and Y are real, nonsparse numeric arrays with
the same class and size. Z has the same class and size as X and Y. If X and Y are
integer arrays, elements in the output that exceed the range of the integer type
are truncated.

If X and Y are double arrays, you can use the expression abs(X-Y) instead of
this function.

Note On Intel architecture processors, imabsdiff can take advantage of the
Intel Performance Primitives Library (IPPL), thus accelerating its execution
time. IPPL is activated only if arrays X, Y, and Z are of class logical, uint8, or
single, and are of the same class.

Examples This example calculates the absolute difference between two uint8 arrays.
Note that the absolute value prevents negative values from being rounded to
zero in the result, as they are with imsubtract.

X = uint8([255 10 75; 44 225 100]);
Y = uint8([50 50 50; 50 50 50]);
Z = imabsdiff(X,Y)

Z =
 205 40 25
 6 175 50

Display the absolute difference between a filtered image and the original.

I = imread('cameraman.tif');
J = uint8(filter2(fspecial('gaussian'), I));
K = imabsdiff(I,J);
imshow(K,[]) % [] = scale data automatically

imabsdiff

14-196

See Also imadd, imcomplement, imdivide, imlincomb, immultiply, imsubtract, ippl

imadd

14-197

14imaddPurpose Add two images, or add a constant to an image

Syntax Z = imadd(X,Y)

Description Z = imadd(X,Y) adds each element in array X with the corresponding element
in array Y and returns the sum in the corresponding element of the output
array Z. X and Y are real, nonsparse numeric arrays with the same size and
class, or Y is a scalar double. The array returned, Z, has the same size and class,
or Y is a scalar double. Z has the same size and class as X.

If X and Y are integer arrays, elements in the output that exceed the range of
the integer type are truncated, and fractional values are rounded.

If X and Y are double arrays, you can use the expression X+Y instead of this
function.

Note On Intel architecture processors, imadd can take advantage of the Intel
Performance Primitives Library (IPPL), thus accelerating its execution time.
IPPL is activated if arrays X, Y, and Z are of class logical, uint8, or single
and are of the same class, or if Y is a double scalar and arrays X and Z are
uint8, int16, or single and are of the same class.

Examples Add two uint8 arrays. Note the truncation that occurs when the values exceed
255.

X = uint8([255 0 75; 44 225 100]);
Y = uint8([50 50 50; 50 50 50]);
Z = imadd(X,Y)
Z =

 255 50 125
 94 255 150

Add two images together and specify an output class.

I = imread('rice.png');
J = imread('cameraman.tif');
K = imadd(I,J,'uint16');
imshow(K,[])

imadd

14-198

Add a constant to an image.

I = imread('rice.png');
J = imadd(I,50);
subplot(1,2,1), imshow(I)
subplot(1,2,2), imshow(J)

See Also imabsdiff, imcomplement, imdivide, imlincomb, immultiply, imsubtract,
ippl

imadjust

14-199

14imadjustPurpose Adjust image intensity values or colormap

Syntax J = imadjust(I)
J = imadjust(I,[low_in; high_in],[low_out; high_out])
J = imadjust(...,gamma)
newmap = imadjust(map,[low_in high_in],[low_out high_out],gamma)
RGB2 = imadjust(RGB1,...)

Description J = imadjust(I) maps the values in intensity image I to new values in J such
that 1% of data is saturated at low and high intensities of I. This increases the
contrast of the output image J. This syntax is equivalent to
imadjust(I,stretchlim(I)).

J = imadjust(I,[low_in; high_in],[low_out; high_out]) maps the values
in intensity image I to new values in J such that values between low_in and
high_in map to values between low_out and high_out. Values below low_in
and above high_in are clipped; that is, values below low_in map to low_out,
and those above high_in map to high_out. You can use an empty matrix ([])
for [low_in high_in] or for [low_out high_out] to specify the default of [0 1].

J = imadjust(I,[low_in; high_in],[low_out; high_out],gamma) maps the
values in intensity image I to new values in J, where gamma specifies the shape
of the curve describing the relationship between the values in I and J. If gamma
is less than 1, the mapping is weighted toward higher (brighter) output values.
If gamma is greater than 1, the mapping is weighted toward lower (darker)
output values. If you omit the argument, gamma defaults to 1 (linear mapping).

newmap = imadjust(map,[low_in; high_in],[low_out; high_out],gamma)
transforms the colormap associated with an indexed image. If low_in, high_in,
low_out, high_out, and gamma are scalars, then the same mapping applies to
red, green, and blue components. Unique mappings for each color component
are possible when

low_in and high_in are both 1-by-3 vectors.

low_out and high_out are both 1-by-3 vectors, or gamma is a 1-by-3 vector.

The rescaled colormap newmap is the same size as map.

imadjust

14-200

RGB2 = imadjust(RGB1,...) performs the adjustment on each image plane
(red, green, and blue) of the RGB image RGB1. As with the colormap
adjustment, you can apply unique mappings to each plane.

Note If high_out < low_out, the output image is reversed, as in a
photographic negative.

Class Support For syntax variations that include an input image (rather than a colormap), the
input image can be of class uint8, uint16, or double. The output image has the
same class as the input image. For syntax variations that include a colormap,
the input and output colormaps are of class double.

Example Adjust a low-contrast grayscale image.

I = imread('pout.tif');
J = imadjust(I);
imview(I), imview(J)

Adjust the grayscale image, specifying the contrast limits.

K = imadjust(I,[0.3 0.7],[]);
imview(K)

Adjust an RGB image.

RGB1 = imread('peppers.png');

imadjust

14-201

RGB2 = imadjust(RGB1,[.2 .3 0; .6 .7 1],[]);
imview(RGB1), imview(RGB2)

See Also brighten, histeq, stretchlim

imapprox

14-202

14imapproxPurpose Approximate indexed image by one with fewer colors

Syntax [Y,newmap] = imapprox(X,map,n)
[Y,newmap] = imapprox(X,map,tol)
Y = imapprox(X,map,newmap)
[...] = imapprox(...,dither_option)

Description [Y,newmap] = imapprox(X,map,n) approximates the colors in the indexed
image X and associated colormap map by using minimum variance
quantization. imapprox returns indexed image Y with colormap newmap, which
has at most n colors.

[Y,newmap] = imapprox(X,map,tol) approximates the colors in X and map
through uniform quantization. newmap contains at most (floor(1/tol)+1)^3
colors. tol must be between 0 and 1.0.

Y = imapprox(X,map,newmap) approximates the colors in map by using
colormap mapping to find the colors in newmap that best match the colors in map.

Y = imapprox(...,dither_option) enables or disables dithering.
dither_option is a string that can have one of these values. The default value
is enclosed in braces ({}).

Class Support The input image X can be of class uint8, uint16, or double. The output image
Y is of class uint8 if the length of newmap is less than or equal to 256. If the
length of newmap is greater than 256, Y is of class double.

Algorithm imapprox uses rgb2ind to create a new colormap that uses fewer colors.

See Also cmunique, dither, rgb2ind

Value Description

{'dither'} Dithers, if necessary, to achieve better color resolution
at the expense of spatial resolution.

'nodither' Maps each color in the original image to the closest color
in the new map. No dithering is performed.

imbothat

14-203

14imbothatPurpose Perform bottom-hat filtering

Syntax IM2 = imbothat(IM,SE)
IM2 = imbothat(IM,NHOOD)

Description IM2 = imbothat(IM,SE) performs morphological bottom-hat filtering on the
grayscale or binary input image, IM, returning the filtered image, IM2. The
argument SE is a structuring element returned by the strel function. SE must
be a single structuring element object, not an array containing multiple
structuring element objects.

IM2 = imbothat(IM,NHOOD) performs morphological bottom hat filtering where
NHOOD is an array of 0’s and 1’s that specifies the size and shape of the
structuring element. This is equivalent to imbothat(IM,strel(NHOOD)).

Class Support IM can be numeric or logical and must be nonsparse. The output image has the
same class as the input image. If the input is binary (logical), then the
structuring element must be flat.

Example Top-hat filtering and bottom-hat filtering can be used together to enhance
contrast in an image.

1 Read the image into the MATLAB workspace.
I = imread('pout.tif');
imshow(I)

imbothat

14-204

2 Create disk-shaped structuring element, needed for morphological
processing.
se = strel('disk',3);

3 Add the original image I to the top-hat filtered image, and then subtract the
bottom-hat filtered image.
J = imsubtract(imadd(I,imtophat(I,se)), imbothat(I,se));
figure, imshow(J)

See Also imtophat, strel

imclearborder

14-205

14imclearborderPurpose Suppress light structures connected to image border

Syntax IM2 = imclearborder(IM)
IM2 = imclearborder(IM,CONN)

Description IM2 = imclearborder(IM) suppresses structures that are lighter than their
surroundings and that are connected to the image border. IM can be an
intensity or binary image. The output image, IM2, is intensity or binary,
respectively. The default connectivity is 8 for two dimensions, 26 for three
dimensions, and conndef(ndims(BW),'maximal') for higher dimensions.

Note For intensity images, imclearborder tends to reduce the overall
intensity level in addition to suppressing border structures.

IM2 = imclearborder(IM,CONN) specifies the desired connectivity. CONN can
have any of the following scalar values.

Connectivity can also be defined in a more general way for any dimension by
using for CONN a 3-by-3-by- ... -by-3 matrix of 0’s and 1’s. The 1-valued elements
define neighborhood locations relative to the center element of CONN. Note that
CONN must be symmetric about its center element.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

imclearborder

14-206

Note A pixel on the edge of the input image might not be considered to be a
border pixel if a nondefault connectivity is specified. For example, if conn =
[0 0 0; 1 1 1; 0 0 0], elements on the first and last row are not considered
to be border pixels because, according to that connectivity definition, they are
not connected to the region outside the image.

Class Support IM can be a numeric or logical array of any dimension, and it must be nonsparse
and real. IM2 has the same class as IM.

Example The following examples use this simple binary image to illustrate the effect of
imclearborder when you specify different connectivities.

BW =
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 1 0 0 1 1 1 0 0 0
 0 1 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

Using a 4-connected neighborhood, the pixel at (5,2) is not considered
connected to the border pixel (4,1), so it is not cleared.

BWc1 = imclearborder(BW,4)
BWc1 =
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 1 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

imclearborder

14-207

Using an 8-connected neighborhood, pixel (5,2) is considered connected to
pixel (4,1) so both are cleared.

BWc2 = imclearborder(BW,8)

BWc2 =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

Algorithm imclearborder uses morphological reconstruction where

• Mask image is the input image.

• Marker image is zero everywhere except along the border, where it equals
the mask image.

See Also conndef

Reference [1] Soille, P., Morphological Image Analysis: Principles and Applications,
Springer, 1999, pp. 164-165.

imclose

14-208

14imclosePurpose Close an image

Syntax IM2 = imclose(IM,SE)
IM2 = imclose(IM,NHOOD)

Description IM2 = imclose(IM,SE) performs morphological closing on the grayscale or
binary image IM, returning the closed image, IM2. The structuring element, SE,
must be a single structuring element object, as opposed to an array of objects.

IM2 = imclose(IM,NHOOD) performs closing with the structuring element
strel(NHOOD), where NHOOD is an array of 0’s and 1’s that specifies the
structuring element neighborhood.

Class Support IM can be any numeric or logical class and any dimension, and must be
nonsparse. If IM is logical, then SE must be flat. IM2 has the same class as IM.

Example This example uses imclose to join the circles in the image together by filling in
the gaps between them and by smoothening their outer edges.

1 Read the image into the MATLAB workspace and view it.
originalBW = imread('circles.png');
imview(originalBW);

2 Create a disk-shaped structuring element. Use a disk structuring element
to preserve the circular nature of the object. Specify a radius of 10 pixels so
that the largest gap gets filled.
se = strel('disk',10);

imclose

14-209

3 Perform a morphological close operation on the image.
closeBW = imclose(originalBW,se);
imview(closeBW)

See Also imdilate, imerode, imopen, strel

imcomplement

14-210

14imcomplementPurpose Complement image

Syntax IM2 = imcomplement(IM)

Description IM2 = imcomplement(IM) computes the complement of the image IM. IM can be
a binary, intensity, or RGB image. IM2 has the same class and size as IM.

In the complement of a binary image, zeros become ones and ones become
zeros; black and white are reversed. In the complement of an intensity or RGB
image, each pixel value is subtracted from the maximum pixel value supported
by the class (or 1.0 for double-precision images) and the difference is used as
the pixel value in the output image. In the output image, dark areas become
lighter and light areas become darker.

If IM is an intensity or RGB image of class double, you can use the expression
1-IM instead of this function. If IM is a binary image, you can use the expression
~IM instead of this function.

Examples Create the complement of a uint8 array.

X = uint8([255 10 75; 44 225 100]);
X2 = imcomplement(X)
X2 =
 0 245 180
 211 30 155

Reverse black and white in a binary image.

bw = imread('text.png');
bw2 = imcomplement(bw);
subplot(1,2,1),imshow(bw)
subplot(1,2,2),imshow(bw2)

Create the complement of an intensity image.

I = imread('glass.png');
J = imcomplement(I);
imview(I), imview(J)

imcomplement

14-211

See Also imabsdiff, imadd, imdivide, imlincomb, immultiply, imsubtract

Original Image Complement Image

imcontour

14-212

14imcontourPurpose Create a contour plot of image data

Syntax imcontour(I)
imcontour(I,n)
imcontour(I,v)
imcontour(x,y,...)
imcontour(...,LineSpec)
[C,h] = imcontour(...)

Description imcontour(I) draws a contour plot of the intensity image I, automatically
setting up the axes so their orientation and aspect ratio match the image.

imcontour(I,n) draws a contour plot of the intensity image I, automatically
setting up the axes so their orientation and aspect ratio match the image. n is
the number of equally spaced contour levels in the plot; if you omit the
argument, the number of levels and the values of the levels are chosen
automatically.

imcontour(I,v) draws a contour plot of I with contour lines at the data values
specified in vector v. The number of contour levels is equal to length(v).

imcontour(x,y,...) uses the vectors x and y to specify the x- and y-axis limits.

imcontour(...,LineSpec) draws the contours using the line type and color
specified by LineSpec. Marker symbols are ignored.

[C,h] = imcontour(...) returns the contour matrix C and a vector of handles
to the objects in the plot. (The objects are actually patches, and the lines are
the edges of the patches.) You can use the clabel function with the contour
matrix C to add contour labels to the plot.

Class Support The input image can be of class uint8, uint16, double, or logical.

Example I = imread('circuit.tif');
imcontour(I,3)

imcontour

14-213

See Also clabel, contour, LineSpec in the MATLAB Function Reference

50 100 150 200 250

50

100

150

200

250

imcrop

14-214

14imcropPurpose Crop an image

Syntax I2 = imcrop(I)
X2 = imcrop(X,map)
RGB2 = imcrop(RGB)

I2 = imcrop(I,rect)
X2 = imcrop(X,map,rect)
RGB2 = imcrop(RGB,rect)

[...] = imcrop(x,y,...)
[A,rect] = imcrop(...)
[x,y,A,rect] = imcrop(...)

Description imcrop crops an image to a specified rectangle. In the syntaxes below, imcrop
displays the input image and waits for you to specify the crop rectangle with
the mouse.

I2 = imcrop(I)
X2 = imcrop(X,map)
RGB2 = imcrop(RGB)

If you omit the input arguments, imcrop operates on the image in the current
axes.

To specify the rectangle,

• For a single-button mouse, press the mouse button and drag to define the
crop rectangle. Finish by releasing the mouse button.

• For a two- or three-button mouse, press the left mouse button and drag to
define the crop rectangle. Finish by releasing the mouse button.

If you hold down the Shift key while dragging, or if you press the right mouse
button on a two- or three-button mouse, imcrop constrains the bounding
rectangle to be a square.

When you release the mouse button, imcrop returns the cropped image in the
supplied output argument. If you do not supply an output argument, imcrop
displays the output image in a new figure.

imcrop

14-215

You can also specify the cropping rectangle noninteractively, using these
syntaxes

I2 = imcrop(I,rect)
X2 = imcrop(X,map,rect)
RGB2 = imcrop(RGB,rect)

rect is a four-element vector with the form [xmin ymin width height]; these
values are specified in spatial coordinates.

To specify a nondefault spatial coordinate system for the input image, precede
the other input arguments with two, two-element vectors specifying the XData
and YData. For example:

[...] = imcrop(x,y,...)

If you supply additional output arguments, imcrop returns information about
the selected rectangle and the coordinate system of the input image. For
example:

[A,rect] = imcrop(...)
[x,y,A,rect] = imcrop(...)

A is the output image. x and y are the XData and YData of the input image.

Class Support The input image A can be of class logical, uint8, uint16, or double. The
output image B is of the same class as A. rect is always of class double.

Remarks Because rect is specified in terms of spatial coordinates, the width and height
elements of rect do not always correspond exactly with the size of the output
image. For example, suppose rect is [20 20 40 30], using the default spatial
coordinate system. The upper-left corner of the specified rectangle is the center
of the pixel (20,20) and the lower-right corner is the center of the pixel (50,60).
The resulting output image is 31-by-41, not 30-by-40, because the output image
includes all pixels in the input image that are completely or partially enclosed
by the rectangle.

Example I = imread('circuit.tif');
I2 = imcrop(I,[75 68 130 112]);
imview(I), imview(I2)

imcrop

14-216

See Also zoom

imdilate

14-217

14imdilatePurpose Dilate image

Syntax IM2 = imdilate(IM,SE)
IM2 = imdilate(IM,NHOOD)
IM2 = imdilate(IM,SE,PACKOPT)
IM2 = imdilate(...,PADOPT)

Description IM2 = imdilate(IM,SE) dilates the grayscale, binary, or packed binary image
IM, returning the dilated image, IM2. The argument SE is a structuring element
object, or array of structuring element objects, returned by the strel function.

If IM is logical and the structuring element is flat, imdilate performs binary
dilation; otherwise, it performs grayscale dilation. If SE is an array of
structuring element objects, imdilate performs multiple dilations of the input
image, using each structuring element in SE in succession.

IM2 = imdilate(IM,NHOOD) dilates the image IM, where NHOOD is a matrix of
0’s and 1’s that specifies the structuring element neighborhood. This is
equivalent to the syntax imdilate(IM,strel(NHOOD)). The imdilate function
determines the center element of the neighborhood by
floor((size(NHOOD)+1)/2).

IM2 = imdilate(IM,SE,PACKOPT) or imdilate(IM,NHOOD,PACKOPT) specifies
whether IM is a packed binary image. PACKOPT can have either of the following
values. Default value is enclosed in braces ({}).

Value Description

'ispacked' IM is treated as a packed binary image as produced by
bwpack. IM must be a 2-D uint32 array and SE must be
a flat 2-D structuring element. If the value of PACKOPT
is 'ispacked', PADOPT must be 'same'.

{'notpacked'} IM is treated as a normal array.

imdilate

14-218

IM2 = imdilate(...,PADOPT) specifies the size of the output image. PADOPT
can have either of the following values. Default value is enclosed in braces ({}).

PADOPT is analogous to the optional SHAPE argument to the conv2 and filter2
functions.

Class Support IM can be logical or numeric and must be real and nonsparse. It can have any
dimension. If IM is logical, SE must be flat. The output has the same class as the
input. If the input is packed binary, then the output is also packed binary.

 Examples This example dilates a binary image with a vertical line structuring element.

bw = imread('text.png');
se = strel('line',11,90);
bw2 = imdilate(bw,se);
imshow(bw), title('Original')
figure, imshow(bw2), title('Dilated')

This example dilates a grayscale image with a rolling ball structuring element.

I = imread('cameraman.tif');

Value Description

{'same'} Make the output image the same size as the input image. If
the value of PACKOPT is 'ispacked', PADOPT must be 'same'.

'full' Compute the full dilation.

imdilate

14-219

se = strel('ball',5,5);
I2 = imdilate(I,se);
imshow(I), title('Original')
figure, imshow(I2), title('Dilated')

To determine the domain of the composition of two flat structuring elements,
dilate the scalar value 1 with both structuring elements in sequence, using the
'full' option.

se1 = strel('line',3,0)
se1 =

Flat STREL object containing 3 neighbors.
Neighborhood:
 1 1 1

se2 = strel('line',3,90)
se2 =

Flat STREL object containing 3 neighbors.
Neighborhood:
 1
 1
 1

composition = imdilate(1,[se1 se2],'full')

imdilate

14-220

composition =
 1 1 1
 1 1 1
 1 1 1

Algorithm imdilate automatically takes advantage of the decomposition of a structuring
element object (if it exists). Also, when performing binary dilation with a
structuring element object that has a decomposition, imdilate automatically
uses binary image packing to speed up the dilation.

Dilation using bit packing is described in [2].

See Also bwpack, bwunpack, conv2, filter2, imclose, imerode, imopen, strel

References [1] Haralick, R.M., and L. G. Shapiro, Computer and Robot Vision, Vol. I,
Addison-Wesley, 1992, pp. 158-205.

[2] van den Boomgaard and van Balen, “Image Transforms Using Bitmapped
Binary Images,” Computer Vision, Graphics, and Image Processing: Graphical
Models and Image Processing, Vol. 54, No. 3, May, 1992, pp. 254-258.

imdivide

14-221

14imdividePurpose Divide one image into another, or divide an image by a constant

Syntax Z = imdivide(X,Y)

Description Z = imdivide(X,Y) divides each element in the array X by the corresponding
element in array Y and returns the result in the corresponding element of the
output array Z. X and Y are real, nonsparse numeric arrays with the same size
and class, or Y can be a scalar double. Z has the same size and class as X and Y.

If X is an integer array, elements in the output that exceed the range of integer
type are truncated, and fractional values are rounded.

If X and Y are double arrays, you can use the expression X./Y instead of this
function.

Note On Intel architecture processors, imdivide can take advantage of the
Intel Performance Primitives Library (IPPL), thus accelerating its execution
time. IPPL is activated only if arrays X and Y are of class uint8, int16, or
single and are of the same size and class.

Example Divide two uint8 arrays. Note that fractional values greater than or equal to
0.5 are rounded up to the nearest integer.

X = uint8([255 10 75; 44 225 100]);
Y = uint8([50 20 50; 50 50 50]);
Z = imdivide(X,Y)
Z =
 5 1 2
 1 5 2

Estimate and divide out the background of the rice image.

I = imread('rice.png');
background = imopen(I,strel('disk',15));
Ip = imdivide(I,background);
imview(Ip,[])

Divide an image by a constant factor.

imdivide

14-222

I = imread('rice.png');
J = imdivide(I,2);
subplot(1,2,1), imshow(I)
subplot(1,2,2), imshow(J)

See Also imabsdiff, imadd, imcomplement, imlincomb, immultiply, imsubtract, ippl

imerode

14-223

14imerodePurpose Erode image

Syntax IM2 = imerode(IM,SE)
IM2 = imerode(IM,NHOOD)
IM2 = imerode(IM,SE,PACKOPT,M)
IM2 = imerode(...,PADOPT)

Description IM2 = imerode(IM,SE) erodes the grayscale, binary, or packed binary image
IM, returning the eroded image IM2. The argument SE is a structuring element
object or array of structuring element objects returned by the strel function.

If IM is logical and the structuring element is flat, imerode performs binary
dilation; otherwise it performs grayscale erosion. If SE is an array of
structuring element objects, imerode performs multiple erosions of the input
image, using each structuring element in SE in succession.

IM2 = imerode(IM,NHOOD) erodes the image IM, where NHOOD is an array of 0’s
and 1’s that specifies the structuring element neighborhood. This is equivalent
to the syntax imerode(IM,strel(NHOOD)). The imerode function determines
the center element of the neighborhood by floor((size(NHOOD)+1)/2)

IM2 = imerode(IM,SE,PACKOPT,M) or imerode(IM,NHOOD,PACKOPT,M)
specifies whether IM is a packed binary image and, if it is, provides the row
dimension M of the original unpacked image. PACKOPT can have either of the
following values. Default value is enclosed in braces ({}).

If PACKOPT is 'ispacked', you must specify a value for M.

Value Description

'ispacked' IM is treated as a packed binary image as produced by
bwpack. IM must be a 2-D uint32 array and SE must be a
flat 2-D structuring element.

{'notpacked'} IM is treated as a normal array.

imerode

14-224

IM2 = imerode(...,PADOPT) specifies the size of the output image. PADOPT can
have either of the following values. Default value is enclosed in braces ({}).

PADOPT is analogous to the SHAPE input to the CONV2 and FILTER2 functions.

Class Support IM can be numeric or logical and it can be of any dimension. If IM is logical and
the structuring element is flat, the output image is logical; otherwise the
output image has the same class as the input. If the input is packed binary,
then the output is also packed binary.

Examples This example erodes a binary image with a disk structuring element.

originalBW = imread('circles.png');
se = strel('disk',11);
erodedBW = imerode(originalBW,se);
imview(originalBW), imview(erodedBW)

This example erodes a grayscale image with a rolling ball.

I = imread('cameraman.tif');
se = strel('ball',5,5);

Value Description

{'same'} Make the output image the same size as the input image. If
the value of PACKOPT is 'ispacked', PADOPT must be 'same'.

'full' Compute the full erosion.

imerode

14-225

I2 = imerode(I,se);
imshow(I), title('Original')
figure, imshow(I2), title('Eroded')

Algorithm
Notes

imerode automatically takes advantage of the decomposition of a structuring
element object (if a decomposition exists). Also, when performing binary
dilation with a structuring element object that has a decomposition, imerode
automatically uses binary image packing to speed up the dilation.

Erosion using bit packing is described in [2].

See Also bwpack, bwunpack, conv2, filter2, imclose, imdilate, imopen, strel

References [1] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision,
Vol. I, Addison-Wesley, 1992, pp. 158-205.

[2] van den Boomgaard and van Balen, “Image Transforms Using Bitmapped
Binary Images,” Computer Vision, Graphics, and Image Processing: Graphical
Models and Image Processing, Vol. 54, No. 3, May, 1992, pp. 254-258.

imextendedmax

14-226

14imextendedmaxPurpose Extended-maxima transform

Syntax BW = imextendedmax(I,H)
BW = imextendedmax(I,H,CONN)

Description BW = imextendedmax(I,H) computes the extended-maxima transform, which
is the regional maxima of the H-maxima transform. H is a nonnegative scalar.

Regional maxima are connected components of pixels with the same intensity
value, t, whose external boundary pixels all have a value less than t.

By default, imextendedmax uses 8-connected neighborhoods for 2-D images and
26-connected neighborhoods for 3-D images. For higher dimensions,
imextendedmax uses conndef(ndims(I),'maximal').

BW = imextendedmax(I,H,CONN) computes the extended-maxima transform,
where CONN specifies the connectivity. CONN can have any of the following scalar
values.

Connectivity can be defined in a more general way for any dimension by using
for CONN a 3-by-3-by- ...-by-3 matrix of 0’s and 1’s. The 1-valued elements define
neighborhood locations relative to the center element of CONN. Note that CONN
must be symmetric about its center element.

Class Support I can be of any nonsparse numeric class and any dimension. BW has the same
size as I and is always logical.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

imextendedmax

14-227

Example I = imread('glass.png');
BW = imextendedmax(I,80);
imview(I), imview(BW)

See Also conndef, imextendedmin, imreconstruct

Reference [1] Soille, P., Morphological Image Analysis: Principles and Applications,
Springer-Verlag, 1999, pp. 170-171.

Original Image Extended Maxima Image

imextendedmin

14-228

14imextendedminPurpose Extended-minima transform

Syntax BW = imextendedmin(I,h)
BW = imextendedmin(I,h,CONN)

Description BW = imextendedmin(I,h) computes the extended-minima transform, which is
the regional minima of the H-minima transform. h is a nonnegative scalar.

Regional minima are connected components of pixels with the same intensity
value, t, whose external boundary pixels all have a value greater than t.

By default, imextendedmin uses 8-connected neighborhoods for 2-D images,
and 26-connected neighborhoods for 3-D images. For higher dimensions,
imextendedmin uses conndef(ndims(I),'maximal').

BW = imextendedmin(I,h,CONN) computes the extended-minima transform,
where CONN specifies the connectivity. CONN can have any of the following scalar
values.

Connectivity can be defined in a more general way for any dimension by using
for CONN a 3-by-3-by-...-by-3 matrix of 0’s and 1’s. The 1-valued elements define
neighborhood locations relative to the center element of CONN. Note that CONN
must be symmetric about its center element.

Class Support I can be of any nonsparse numeric class and any dimension. BW has the same
size as I and is always logical.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

imextendedmin

14-229

Example I = imread('glass.png');
BW = imextendedmin(I,50);
imview(I), imview(BW)

See Also conndef, imextendedmax, imreconstruct

Reference [1] Soille, P., Morphological Image Analysis: Principles and Applications,
Springer-Verlag, 1999, pp. 170-171.

Original Image Extended Minima Image

imfill

14-230

14imfillPurpose Fill image regions

Syntax BW2 = imfill(BW,locations)
BW2 = imfill(BW,'holes')
I2 = imfill(I)

BW2 = imfill(BW)
[BW2 locations] = imfill(BW)

BW2 = imfill(BW,locations,CONN)
BW2 = imfill(BW,CONN,'holes')
I2 = imfill(I,CONN)

Description BW2 = imfill(BW,locations) performs a flood-fill operation on background
pixels of the binary image BW, starting from the points specified in locations.
If locations is a P-by-1 vector, it contains the linear indices of the starting
locations. If locations is a P-by-ndims(BW) matrix, each row contains the array
indices of one of the starting locations.

BW2 = imfill(BW,'holes') fills holes in the binary image BW. A hole is a set of
background pixels that cannot be reached by filling in the background from the
edge of the image.

I2 = imfill(I) fills holes in the intensity image I. In this case, a hole is an
area of dark pixels surrounded by lighter pixels.

Interactive Use BW2 = imfill(BW) displays the binary image BW on the screen and lets you
select the starting locations using the mouse. Click the mouse button to add
points. Press Backspace or Delete to remove the previously selected point. A
shift-click, right-click, or double-click selects a final point and then starts the
fill operation; pressing Return finishes the selection without adding a point.

Note imfill supports interactive use only for 2-D images.

[BW2,locations] = imfill(BW) lets you select the starting points selected
using the mouse, returning the locations of points in locations. locations is
a vector of linear indices into the input image.

imfill

14-231

Specifying
Connectivity

By default, imfill uses 4-connected background neighbors for 2-D inputs and
6-connected background neighbors for 3-D inputs. For higher dimensions the
default background connectivity is determined by using
conndef(NUM_DIMS,'minimal'). You can override the default connectivity
with these syntaxes:

BW2 = imfill(BW,LOCATIONS,CONN)
BW2 = imfill(BW,CONN,'holes')
I2 = imfill(I,CONN)

To override the default connectivity and interactively specify the starting
locations, use this syntax:

BW2 = imfill(BW,0,CONN)

CONN can have any of the following scalar values.

Connectivity can be defined in a more general way for any dimension by using
for CONN a 3-by-3-by- ... -by-3 matrix of 0’s and 1’s. The 1-valued elements define
neighborhood locations relative to the center element of CONN. Note that CONN
must be symmetric about its center element.

Class Support The input image can be numeric or logical, and it must be real and nonsparse.
It can have any dimension. The output image has the same class as the input
image.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

imfill

14-232

Examples Fill in the background of a binary image from a specified starting location.

BW1 = logical([1 0 0 0 0 0 0 0
 1 1 1 1 1 0 0 0
 1 0 0 0 1 0 1 0
 1 0 0 0 1 1 1 0
 1 1 1 1 0 1 1 1
 1 0 0 1 1 0 1 0
 1 0 0 0 1 0 1 0
 1 0 0 0 1 1 1 0]);

BW2 = imfill(BW1,[3 3],8)

Fill in the holes of a binary image.

BW4 = im2bw(imread('coins.png'));
BW5 = imfill(BW4,'holes');
imview(BW4), imview(BW5)

Fill in the holes of an intensity image.

I = imread('tire.tif');
I2 = imfill(I,'holes');
imview(I), imview(I2)

Original Image Filled Image

imfill

14-233

Algorithm imfill uses an algorithm based on morphological reconstruction [1].

See Also bwselect, imreconstruct, roifill

Reference [1] Soille, P., Morphological Image Analysis: Principles and Applications,
Springer-Verlag, 1999, pp. 173-174.

Original Image Filled Image

imfilter

14-234

14imfilterPurpose Multidimensional image filtering

Syntax B = imfilter(A,H)
B = imfilter(A,H,option1,option2,...)

Description B = imfilter(A,H) filters the multidimensional array A with the
multidimensional filter H. The array A can be a nonsparse numeric array of any
class and dimension. The result B has the same size and class as A.

Each element of the output B is computed using double-precision floating point.
If A is an integer array, then output elements that exceed the range of the
integer type are truncated, and fractional values are rounded.

B = imfilter(A,H,option1,option2,...) performs multidimensional
filtering according to the specified options. Option arguments can have the
following values.

Boundary Options

Option Description

X Input array values outside the bounds of the array are
implicitly assumed to have the value X. When no
boundary option is specified, imfilter uses X = 0.

'symmetric' Input array values outside the bounds of the array are
computed by mirror-reflecting the array across the array
border.

'replicate' Input array values outside the bounds of the array are
assumed to equal the nearest array border value.

'circular' Input array values outside the bounds of the array are
computed by implicitly assuming the input array is
periodic.

imfilter

14-235

N-D convolution is related to N-D correlation by a reflection of the filter matrix.

Note On Intel architecture processors, imfilter can take advantage of the
Intel Performance Primitives Library (IPPL), thus accelerating its execution
time. IPPL is activated only if A and H are both two-dimensional and A is of
class uint8, int16, or single.

Examples Read a color image into the workspace and view it.

originalRGB = imread('peppers.png');
imview(originalRGB)

Create a filter, h, that can be used to approximate linear camera motion.

h = fspecial('motion', 50, 45);

Apply the filter, using imfilter, to the image rgb to create a new image, rgb2.

Output Size Options

Option Description

'same' The output array is the same size as the input array. This
is the default behavior when no output size options are
specified.

'full' The output array is the full filtered result, and so is
larger than the input array.

Correlation and Convolution Options

Option Description

'corr' imfilter performs multidimensional filtering using
correlation, which is the same way that filter2 performs
filtering. When no correlation or convolution option is
specified, imfilter uses correlation.

'conv' imfilter performs multidimensional filtering using
convolution.

imfilter

14-236

filteredRGB = imfilter(originalRGB, h);
imview(filteredRGB)

Note that imfilter is more memory efficient than some other filtering
operations in that it outputs an array of the same data type as the input image
array. In this example, the output is an array of uint8.

whos rgb2
 Name Size Bytes Class

 h 37x37 10952 double array
 rgb 384x512x3 589824 uint8 array
 rgb2 384x512x3 589824 uint8 array

This example specifies the replicate boundary option.

boundaryReplicateRGB = imfilter(originalRGB, h, 'replicate');
imview(boundaryReplicateRGB)

See Also conv2, convn, filter2, fspecial, ippl

imfinfo

14-237

14imfinfoPurpose Information about graphics file

imfinfo is a MATLAB function. To get help for this function, select MATLAB
Help from the Help menu and view the online function reference pages.

imhist

14-238

14imhistPurpose Display a histogram of image data

Syntax imhist(I,n)
imhist(X,map)
[counts,x] = imhist(...)

Description imhist(I) displays a histogram for the intensity image I above a grayscale
colorbar. The number of bins in the histogram is specified by the image type. If
I is a grayscale image, imhist uses a default value of 256 bins. If I is a binary
image, imhist uses 2 bins.

imhist(I,n) displays a histogram where n specifies the number of bins used in
the histogram. n also specifies the length of the colorbar. If I is a binary image,
n can only have the value 2.

imhist(X,map) displays a histogram for the indexed image X. This histogram
shows the distribution of pixel values above a colorbar of the colormap map. The
colormap must be at least as long as the largest index in X. The histogram has
one bin for each entry in the colormap.

[counts,x] = imhist(...) returns the histogram counts in counts and the
bin locations in x so that stem(x,counts) shows the histogram. For indexed
images, it returns the histogram counts for each colormap entry; the length of
counts is the same as the length of the colormap.

Note For intensity images, the n bins of the histogram are each half-open
intervals of width . In particular, the th bin is the half-open
interval . The scale factor
depends on the image class. is 1 if the intensity image is double, is 255 if
the intensity image is uint8, and is 65535 if the intensity image is uint16.

Class Support The input image can be of class logical, uint8, uint16, or double.

Example I = imread('pout.tif');
imhist(I)

A n 1–()⁄ p
A p 1.5–() n 1–()⁄ x A p 0.5–() n 1–()⁄<≤ A

A A
A

imhist

14-239

See Also histeq

hist in the MATLAB Function Reference

imhmax

14-240

14imhmaxPurpose H-maxima transform

Syntax I2 = imhmax(I,h)
I2 = imhmax(I,h,CONN)

Description I2 = imhmax(I,h) suppresses all maxima in the intensity image I whose
height is less than h, where h is a scalar.

Regional maxima are connected components of pixels with the same intensity
value, t, whose external boundary pixels all have a value less than t.

By default, imhmax uses 8-connected neighborhoods for 2-D images, and
26-connected neighborhoods for 3-D images. For higher dimensions, imhmax
uses conndef(ndims(I),'maximal').

I2 = imhmax(I,h,CONN) computes the H-maxima transform, where CONN
specifies the connectivity. CONN can have any of the following scalar values.

Connectivity can be defined in a more general way for any dimension by using
for CONN a 3-by-3-by- ...-by-3 matrix of 0’s and 1’s. The 1-valued elements define
neighborhood locations relative to the center element of CONN. Note that CONN
must be symmetric about its center element.

Class Support I can be of any nonsparse numeric class and any dimension. I2 has the same
size and class as I.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

imhmax

14-241

Example a = zeros(10,10);
a(2:4,2:4) = 3; % maxima 3 higher than surround
a(6:8,6:8) = 8; % maxima 8 higher than surround
b = imhmax(a,4); % only the maxima higher than 4 survive.

See Also conndef, imhmin, imreconstruct

Reference [1] Soille, P., Morphological Image Analysis: Principles and Applications,
Springer-Verlag, 1999, pp. 170-171.

imhmin

14-242

14imhminPurpose H-minima transform

Syntax I2 = imhmin(I,h)
I2 = imhmin(I,h,CONN)

Description I2 = imhmin(I,h) suppresses all minima in the intensity image I whose depth
is less than h, where h is a scalar.

Regional minima are connected components of pixels with the same intensity
value, t, whose external boundary pixels all have a value greater than t.

By default, imhmin uses 8-connected neighborhoods for 2-D images, and
26-connected neighborhoods for 3-D images. For higher dimensions, imhmin
uses conndef(ndims(I),'maximal').

I2 = imhmin(I,h,CONN) computes the H-minima transform, where CONN
specifies the connectivity. CONN can have any of the following scalar values.

Connectivity can be defined in a more general way for any dimension by using
for CONN a 3-by-3-by- ...-by-3 matrix of 0’s and 1’s. The 1-valued elements define
neighborhood locations relative to the center element of CONN. Note that CONN
must be symmetric about its center element.

Class Support I can be of any nonsparse numeric class and any dimension. I2 has the same
size and class as I.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

imhmin

14-243

Example Create a sample image with two regional minima.

a = 10*ones(10,10);
a(2:4,2:4) = 7;
a(6:8,6:8) = 2

a =

 10 10 10 10 10 10 10 10 10 10
 10 7 7 7 10 10 10 10 10 10
 10 7 7 7 10 10 10 10 10 10
 10 7 7 7 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 2 2 2 10 10
 10 10 10 10 10 2 2 2 10 10
 10 10 10 10 10 2 2 2 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10

Suppress all minima below a specified value. Note how the region with pixel
valued 7 disappears in the transformed image.

b = imhmin(a,4)

b =

 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 6 6 6 10 10
 10 10 10 10 10 6 6 6 10 10
 10 10 10 10 10 6 6 6 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10

See Also conndef, imhmax, imreconstruct

Reference [1] Soille, P., Morphological Image Analysis: Principles and Applications,
Springer-Verlag, 1999, pp. 170-171.

imimposemin

14-244

14imimposeminPurpose Impose minima

Syntax I2 = imimposemin(I,BW)
I2 = imimposemin(I,H,CONN)

Description I2 = imimposemin(I,BW) modifies the intensity image I using morphological
reconstruction so it only has regional minima wherever BW is nonzero. BW is a
binary image the same size as I.

By default, imimposemin uses 8-connected neighborhoods for 2-D images and
26-connected neighborhoods for 3-D images. For higher dimensions,
imimposemin uses conndef(ndims(I),'minimum').

I2 = imimposemin(I,H,CONN) specifies the connectivity, where CONN can have
any of the following scalar values.

Connectivity can also be defined in a more general way for any dimension by
using for CONN a 3-by-3-by-...-by-3 matrix of 0’s and 1’s. The 1-valued elements
define neighborhood locations relative to the center element of CONN. Note that
CONN must be symmetric about its center element.

Class Support I can be of any nonsparse numeric class and any dimension. BW must be a
nonsparse numeric array with the same size as I. I2 has the same size and
class as I.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

imimposemin

14-245

Example Modify an image so that it only has regional minima at one location.

1 Read an image and display it. This image is called the mask image.
mask = imread('glass.png');
imshow(mask)

2 Create the marker image that will be used to process the mask image.

The example creates a binary image that is the same size as the mask image
and sets a small area of the binary image to 1. These pixels define the
location in the mask image where a regional minimum will be imposed.
marker = false(size(mask));
marker(65:70,65:70) = true;

To show where these pixels of interest fall on the original image, this code
superimposes the marker over the mask. The small white square marks the
spot. This code is not essential to the impose minima operation.
J = mask;
J(marker) = 255;
figure, imshow(J); title('Marker Image Superimposed on Mask');

imimposemin

14-246

3 Impose the regional minimum on the input image using the imimposemin
function.

The imimposemin function uses morphological reconstruction of the mask
image with the marker image to impose the minima at the specified location.
Note how all the dark areas of the original image, except the marked area,
are lighter.
K = imimposemin(mask,marker);
figure, imshow(K);

4 To illustrate how this operation removes all minima in the original image
except the imposed minimum, compare the regional minima in the original
image with the regional minimum in the processed image. These calls to
imregionalmin return binary images that specify the locations of all the
regional minima in both images.

BW = imregionalmin(mask);
figure, imshow(BW); title('Regional Minima in Original Image')
BW2 = imregionalmin(K);
figure, imshow(BW2), title('Regional Minima After Processing');

imimposemin

14-247

Algorithm imimposemin uses a technique based on morphological reconstruction.

See Also conndef, imreconstruct, imregionalmin

Regional Minima in Original Image Regional Minima After Processing

imlincomb

14-248

14imlincombPurpose Compute linear combination of images

Syntax Z = imlincomb(K1,A1,K2,A2,...,Kn,An)
Z = imlincomb(K1,A1,K2,A2,...,Kn,An,K)
Z = imlincomb(..., output_class)

Description Z = imlincomb(K1,A1,K2,A2,...,Kn,An) computes

K1*A1 + K2*A2 + ... + Kn*An

where K1, K2, through Kn are real, double scalars and A1, A2, through An are
real, nonsparse, numeric arrays with the same class and size. Z has the same
class and size as A1.

Z = imlincomb(K1,A1,K2,A2,...,Kn,An,K) computes

K1*A1 + K2*A2 + ... + Kn*An + K

where imlincomb adds K, a real, double scalar, to the sum of the products of K1
through Kn and A1 through An.

Z = imlincomb(...,output_class) lets you specify the class of Z.
output_class is a string containing the name of a numeric class.

When performing a series of arithmetic operations on a pair of images, you can
achieve more accurate results if you use imlincomb to combine the operations,
rather than nesting calls to the individual arithmetic functions, such as imadd.
When you nest calls to the arithmetic functions, and the input arrays are of an
integer class, each function truncates and rounds the result before passing it to
the next function, thus losing accuracy in the final result. imlincomb computes
each element of the output Z individually, in double-precision floating point. If
Z is an integer array, imlincomb truncates elements of Z that exceed the range
of the integer type and rounds off fractional values.

On Intel architecture processors, imlincomb can take advantage of the Intel
Performance Primitives Library (IPPL), thus accelerating its execution time.
IPPL is activated only in the following cases:

Z = imlincomb(1.0, A1, 1.0, A2)

Z = imlincomb(1.0, A1,-1.0, A2)

Z = imlincomb(-1.0, A1, 1.0, A2)

imlincomb

14-249

 Z = imlincomb(1.0 , A1, K)

where A1, A2, and Z are of class uint8, int16, or single and are of the same
class.

Examples Example 1
Scale an image by a factor of 2.

I = imread('cameraman.tif');
J = imlincomb(2,I);
imview(J)

Example 2
Form a difference image with the zero value shifted to 128.

I = imread('cameraman.tif');
J = uint8(filter2(fspecial('gaussian'), I));
K = imlincomb(1,I,-1,J,128); % K(r,c) = I(r,c) - J(r,c) + 128
imview(K)

Example 3
Add two images with a specified output class.

I = imread('rice.png');
J = imread('cameraman.tif');
K = imlincomb(1,I,1,J,'uint16');
imview(K,[])

Example 4
To illustrate how imlincomb performs all the arithmetic operations before
truncating the result, compare the results of calculating the average of two
arrays, X and Y, using nested arithmetic functions and then using imlincomb.

In the version that uses nested arithmetic functions, imadd adds 255 and 50
and truncates the result to 255 before passing it to imdivide. The average
returned in Z(1,1) is 128.

X = uint8([255 10 75; 44 225 100]);
Y = uint8([50 20 50; 50 50 50]);
Z = imdivide(imadd(X,Y),2)
Z =

imlincomb

14-250

 128 15 63
 47 128 75

imlincomb performs the addition and division in double precision and only
truncates the final result. The average returned in Z2(1,1) is 153.

Z2 = imlincomb(.5,X,.5,Y)
Z2 =
 153 15 63
 47 138 75

See Also imadd, imcomplement, imdivide, immultiply, imsubtract

immovie

14-251

14immoviePurpose Make a movie of a multiframe indexed image

Syntax mov = immovie(X,map)
mov = immovie(RGB)

Description mov = immovie(X,map) returns the movie structure array mov from the images
in the multiframe indexed image X with the colormap map. As it creates the
movie array, it displays the movie frames on the screen. You can play the movie
using the MATLAB movie function. For details about the movie structure
array, see the reference page for getframe.

X comprises multiple indexed images, all having the same size and all using the
colormap map. X is an m-by-n-by-1-by-k array, where k is the number of images.

mov = immovie(RGB) returns the movie structure array mov from the images in
the multiframe, true-color image RGB.

RGB comprises multiple true-color images, all having the same size. RGB is an
m-by-n-by-3-by-k array, where k is the number of images.

Remarks You can also use the MATLAB function avifile to make movies from images.
The avifile function creates AVI files. In addition, you can convert an existing
MATLAB movie into an AVI file by using the movie2avi function.

Class Support An indexed image can be uint8, uint16, double, or logical. A true-color image
can be uint8, uint16, or double. mov is a MATLAB movie structure.

Example load mri
mov = immovie(D,map);
movie(mov,3)

See Also avifile, getframe, montage, movie, movie2avi

immultiply

14-252

14immultiplyPurpose Multiply two images, or multiply an image by a constant

Syntax Z = immultiply(X,Y)

Description Z = immultiply(X,Y) multiplies each element in array X by the corresponding
element in array Y and returns the product in the corresponding element of the
output array Z.

If X and Y are real numeric arrays with the same size and class, then Z has the
same size and class as X. If X is a numeric array and Y is a scalar double, then
Z has the same size and class as X.

If X is logical and Y is numeric, then Z has the same size and class as Y. If X is
numeric and Y is logical, then Z has the same size and class as X.

immultiply computes each element of Z individually in double-precision
floating point. If X is an integer array, then elements of Z exceeding the range
of the integer type are truncated, and fractional values are rounded.

If X and Y are double arrays, you can use the expression X.*Y instead of this
function.

Note On Intel architecture processors, immultiply can take advantage of the
Intel Performance Primitives Library (IPPL), thus accelerating its execution
time. IPPL is activated only if arrays X, Y, and Z are of class logical, uint8, or
single, and are of the same class.

Example Multiply an image by itself. Note how the example converts the class of the
image from uint8 to uint16 before performing the multiplication to avoid
truncating the results.

I = imread('moon.tif');
I16 = uint16(I);
J = immultiply(I16,I16);
imshow(I), figure, imshow(J)

Scale an image by a constant factor:

I = imread('moon.tif');

immultiply

14-253

J = immultiply(I,0.5);
subplot(1,2,1), imshow(I)
subplot(1,2,2), imshow(J)

See also imabsdiff, imadd, imcomplement, imdivide, imlincomb, imsubtract, ippl

imnoise

14-254

14imnoisePurpose Add noise to an image

Syntax J = imnoise(I,type)
J = imnoise(I,type,parameters)

Description J = imnoise(I,type) adds noise of a given type to the intensity image I. type
is a string that can have one of these values.

J = imnoise(I,type,parameters) accepts an algorithm type plus additional
modifying parameters particular to the type of algorithm chosen. If you omit
these arguments, imnoise uses default values for the parameters. Here are
examples of the noise types and their parameters:

• J = imnoise(I,'gaussian',m,v) adds Gaussian white noise of mean m and
variance v to the image I. The default is zero mean noise with 0.01 variance.

• J = imnoise(I,'localvar',V) adds zero-mean, Gaussian white noise of
local variance V to the image I. V is an array of the same size as I.

• J = imnoise(I,'localvar',image_intensity,var) adds zero-mean,
Gaussian noise to an image I, where the local variance of the noise, var, is a
function of the image intensity values in I. The image_intensity and var
arguments are vectors of the same size, and plot(image_intensity,var)
plots the functional relationship between noise variance and image
intensity. The image_intensity vector must contain normalized intensity
values ranging from 0 to 1.

• J = imnoise(I,'poisson') generates Poisson noise from the data instead
of adding artificial noise to the data. In order to respect Poisson statistics, the

Value Description

'gaussian' Gaussian white noise

'localvar' Zero-mean Gaussian white noise with an
intensity-dependent variance

'poisson' Poisson noise

'salt & pepper' On and off pixels

'speckle' Multiplicative noise

imnoise

14-255

intensities of unit8 and uint16 images must correspond to the number of
photons (or any other quanta of information). Double-precision images are
used when the number of photons per pixel can be much larger than 65535
(but less than 10^12); the intensity values vary between 0 and 1 and
correspond to the number of photons divided by 10^12.

• J = imnoise(I,'salt & pepper',d) adds salt and pepper noise to the image
I, where d is the noise density. This affects approximately d*prod(size(I))
pixels. The default is 0.05 noise density.

• J = imnoise(I,'speckle',v) adds multiplicative noise to the image I,
using the equation J = I+n*I, where n is uniformly distributed random noise
with mean 0 and variance v. The default for v is 0.04.

Note The mean and variance parameters for 'gaussian', 'localvar', and
'speckle' noise types are always specified as if the image were of class
double in the range [0, 1]. If the input image is of class uint8 or uint16, the
imnoise function converts the image to double, adds noise according to the
specified type and parameters, and then converts the noisy image back to the
same class as the input.

Class Support I can be of class uint8, uint16, or double. The output image J is of the same
class as I. If I has more than two dimensions it is treated as a
multidimensional intensity image and not as an RGB image.

Example I = imread('eight.tif');
J = imnoise(I,'salt & pepper',0.02);
imshow(I)
figure, imshow(J)

imnoise

14-256

See Also rand, randn in the MATLAB Function Reference

imopen

14-257

14imopenPurpose Open an image

Syntax IM2 = imopen(IM,SE)
IM2 = imopen(IM,NHOOD)

Description IM2 = imopen(IM,SE) performs morphological opening on the grayscale or
binary image IM with the structuring element SE. The argument SE must be a
single structuring element object, as opposed to an array of objects.

IM2 = imopen(IM,NHOOD) performs opening with the structuring element
strel(NHOOD), where NHOOD is an array of 0’s and 1’s that specifies the
structuring element neighborhood.

Class Support IM can be any numeric or logical class and any dimension, and must be
nonsparse. If IM is logical, then SE must be flat. IM2 has the same class as IM.

Example This example uses imopen to filter out the smaller objects in an image.

1 Read the image into the MATLAB workspace and display it.
I = imread('snowflakes.png');
imview(I)

2 Create a disk-shaped structuring element with a radius of 5 pixels.
se = strel('disk',5);

3 Remove snowflakes having a radius less than 5 pixels by opening it with the
disk-shaped structuring element created in step 2.
I_opened = imopen(I,se);
imview(I_opened,[])

imopen

14-258

See Also imclose, imdilate, imerode, strel

impixel

14-259

14impixelPurpose Determine pixel color values

Syntax P = impixel(I)
P = impixel(X,map)
P = impixel(RGB)

P = impixel(I,c,r)
P = impixel(X,map,c,r)
P = impixel(RGB,c,r)
[c,r,P] = impixel(...)

P = impixel(x,y,I,xi,yi)
P = impixel(x,y,X,map,xi,yi)
P = impixel(x,y,RGB,xi,yi)
[xi,yi,P] = impixel(x,y,...)

Description impixel returns the red, green, and blue color values of specified image pixels.
In the syntaxes below, impixel displays the input image and waits for you to
specify the pixels with the mouse.

P = impixel(I)
P = impixel(X,map)
P = impixel(RGB)

If you omit the input arguments, impixel operates on the image in the current
axes.

Use normal button clicks to select pixels. Press Backspace or Delete to remove
the previously selected pixel. A shift-click, right-click, or double-click adds a
final pixel and ends the selection; pressing Return finishes the selection
without adding a pixel.

When you finish selecting pixels, impixel returns an m-by-3 matrix of RGB
values in the supplied output argument. If you do not supply an output
argument, impixel returns the matrix in ans.

You can also specify the pixels noninteractively, using these syntaxes.

P = impixel(I,c,r)
P = impixel(X,map,c,r)
P = impixel(RGB,c,r)

impixel

14-260

r and c are equal-length vectors specifying the coordinates of the pixels whose
RGB values are returned in P. The kth row of P contains the RGB values for the
pixel (r(k),c(k)).

If you supply three output arguments, impixel returns the coordinates of the
selected pixels. For example,

[c,r,P] = impixel(...)

To specify a nondefault spatial coordinate system for the input image, use
these syntaxes.

P = impixel(x,y,I,xi,yi)
P = impixel(x,y,X,map,xi,yi)
P = impixel(x,y,RGB,xi,yi)

x and y are two-element vectors specifying the image XData and YData. xi and
yi are equal-length vectors specifying the spatial coordinates of the pixels
whose RGB values are returned in P. If you supply three output arguments,
impixel returns the coordinates of the selected pixels.

[xi,yi,P] = impixel(x,y,...)

Class Support The input image can be of class uint8, uint16, double, or logical. All other
inputs and outputs are of class double.

Remarks impixel works with indexed, intensity, and RGB images. impixel always
returns pixel values as RGB triplets, regardless of the image type:

• For an RGB image, impixel returns the actual data for the pixel. The values
are either uint8 integers or double floating-point numbers, depending on
the class of the image array.

• For an indexed image, impixel returns the RGB triplet stored in the row of
the colormap that the pixel value points to. The values are double
floating-point numbers.

• For an intensity image, impixel returns the intensity value as an RGB
triplet, where R=G=B. The values are either uint8 integers or double
floating-point numbers, depending on the class of the image array.

impixel

14-261

Example RGB = imread('peppers.png');
c = [12 146 410];
r = [104 156 129];
pixels = impixel(RGB,c,r)

pixels =

 62 34 63
 166 54 60
 59 28 47

See Also improfile, pixval

improfile

14-262

14improfilePurpose Compute pixel-value cross-sections along line segments

Syntax c = improfile
c = improfile(n)

c = improfile(I,xi,yi)
c = improfile(I,xi,yi,n)

[cx,cy,c] = improfile(...)
[cx,cy,c,xi,yi] = improfile(...)

[...] = improfile(x,y,I,xi,yi)
[...] = improfile(x,y,I,xi,yi,n)

[...] = improfile(...,method)

Description improfile computes the intensity values along a line or a multiline path in an
image. improfile selects equally spaced points along the path you specify, and
then uses interpolation to find the intensity value for each point. improfile
works with grayscale intensity images and RGB images.

If you call improfile with one of these syntaxes, it operates interactively on
the image in the current axes.

c = improfile
c = improfile(n)

n specifies the number of points to compute the intensity value for. If you do not
provide this argument, improfile chooses a value for n, roughly equal to the
number of pixels the path traverses.

You specify the line or path using the mouse, by clicking points in the image.
Press Backspace or Delete to remove the previously selected point. A
shift-click, right-click, or double-click adds a final point and ends the selection;
pressing Return finishes the selection without adding a point. When you finish
selecting points, improfile returns the interpolated data values in c. c is an
n-by-1 vector if the input is a grayscale intensity image, or an n-by-1-by-3 array
if the input is an RGB image.

improfile

14-263

If you omit the output argument, improfile displays a plot of the computed
intensity values. If the specified path consists of a single line segment,
improfile creates a two-dimensional plot of intensity values versus the
distance along the line segment; if the path consists of two or more line
segments, improfile creates a three-dimensional plot of the intensity values
versus their x- and y-coordinates.

You can also specify the path noninteractively, using these syntaxes.

c = improfile(I,xi,yi)
c = improfile(I,xi,yi,n)

xi and yi are equal-length vectors specifying the spatial coordinates of the
endpoints of the line segments.

You can use these syntaxes to return additional information.

[cx,cy,c] = improfile(...)
[cx,cy,c,xi,yi] = improfile(...)

cx and cy are vectors of length n, containing the spatial coordinates of the
points at which the intensity values are computed.

To specify a nondefault spatial coordinate system for the input image, use
these syntaxes.

[...] = improfile(x,y,I,xi,yi)
[...] = improfile(x,y,I,xi,yi,n)

x and y are two-element vectors specifying the image XData and YData.

[...] = improfile(...,method) uses the specified interpolation method.
method is a string that can have one of these values. The default value is
enclosed in braces ({}).

Value Description

{'nearest'} Nearest-neighbor interpolation

'bilinear' Bilinear interpolation

'bicubic' Bicubic interpolation

improfile

14-264

Class Support The input image can be uint8, uint16, double, or logical. All other inputs and
outputs must be double.

Example I = imread('liftingbody.png');
x = [19 427 416 77];
y = [96 462 37 33];
improfile(I,x,y),grid on;

See Also impixel, pixval

interp2 in the MATLAB Function Reference

0
100

200
300

400
500

0

100

200

300

400

500

0

50

100

150

200

250

300

XY

imread

14-265

14imreadPurpose Read image from graphics file

imread is a MATLAB function. To get help for this function, select MATLAB
Help from the Help menu and view the online function reference page.

imreconstruct

14-266

14imreconstructPurpose Morphological reconstruction

Syntax IM = imreconstruct(MARKER,MASK)
IM = imreconstruct(MARKER,MASK,CONN)

Description IM = imreconstruct(MARKER,MASK) performs morphological reconstruction of
the image MARKER under the image MASK. MARKER and MASK can be two intensity
images or two binary images with the same size. The returned image IM is an
intensity or binary image, respectively. MARKER must be the same size as MASK,
and its elements must be less than or equal to the corresponding elements of
MASK.

By default, imreconstruct uses 8-connected neighborhoods for 2-D images and
26-connected neighborhoods for 3-D images. For higher dimensions,
imreconstruct uses conndef(ndims(I),'maximal').

IM = imreconstruct(MARKER,MASK,CONN) performs morphological
reconstruction with the specified connectivity. CONN can have any of the
following scalar values.

Connectivity can be defined in a more general way for any dimension by using
for CONN a 3-by-3-by- ... -by-3 matrix of 0’s and 1’s. The 1-valued elements define
neighborhood locations relative to the center element of CONN. Note that CONN
must be symmetric about its center element.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

imreconstruct

14-267

Morphological reconstruction is the algorithmic basis for several other Image
Processing Toolbox functions, including imclearborder, imextendedmax,
imextendedmin, imfill, imhmax, imhmin, and imimposemin.

Class Support MARKER and MASK must be nonsparse numeric or logical arrays with the same
class and any dimension. IM is of the same class as MARKER and MASK.

Algorithm imreconstruct uses the fast hybrid grayscale reconstruction algorithm
described in [1].

See Also imclearborder, imextendedmax, imextendedmin, imfill, imhmax, imhmin,
imimposemin

Reference [1] Vincent, L., “Morphological Grayscale Reconstruction in Image Analysis:
Applications and Efficient Algorithms,” IEEE Transactions on Image
Processing, Vol. 2, No. 2, April, 1993, pp. 176-201.

imregionalmax

14-268

14imregionalmaxPurpose Find regional maxima

Syntax BW = imregionalmax(I)
BW = imregionalmax(I,CONN)

Description BW = imregionalmax(I) finds the regional maxima of I. imregionalmax
returns the binary image BW that identifies the locations of the regional
maxima in I. BW is the same size as I. In BW, pixels that are set to 1 identify
regional maxima; all other pixels are set to 0.

Regional maxima are connected components of pixels with the same intensity
value, t, whose external boundary pixels all have a value less than t.

By default, imregionalmax uses 8-connected neighborhoods for 2-D images and
26-connected neighborhoods for 3-D images. For higher dimensions,
imregionalmax uses conndef(ndims(I),'maximal').

BW = imregionalmax(I,CONN) computes the regional maxima of I using the
specified connectivity. CONN can have any of the following scalar values.

Connectivity can be defined in a more general way for any dimension by using
for CONN a 3-by-3-by- ...-by-3 matrix of 0’s and 1’s. The 1-valued elements define
neighborhood locations relative to the center element of CONN. Note that CONN
must be symmetric about its center element.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

imregionalmax

14-269

Class Support I can be any nonsparse, numeric class and any dimension. BW is logical.

Example Create a sample image with several regional maxima.

A = 10*ones(10,10);
A(2:4,2:4) = 22;
A(6:8,6:8) = 33;
A(2,7) = 44;
A(3,8) = 45;
A(4,9) = 44;
A =
 10 10 10 10 10 10 10 10 10 10
 10 22 22 22 10 10 44 10 10 10
 10 22 22 22 10 10 10 45 10 10
 10 22 22 22 10 10 10 10 44 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 33 33 33 10 10
 10 10 10 10 10 33 33 33 10 10
 10 10 10 10 10 33 33 33 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10

Find the regional maxima.

regmax = imregionalmax(A)
regmax =
 0 0 0 0 0 0 0 0 0 0
 0 1 1 1 0 0 0 0 0 0
 0 1 1 1 0 0 0 1 0 0
 0 1 1 1 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0

See Also conndef, imreconstruct, imregionalmin

imregionalmin

14-270

14imregionalminPurpose Find regional minima

Syntax BW = imregionalmin(I)
BW = imregionalmin(I,CONN)

Description BW = imregionalmin(I) computes the regional minima of I. The output binary
image BW has value 1 corresponding to the pixels of I that belong to regional
minima and 0 otherwise. BW is the same size as I.

Regional minima are connected components of pixels with the same intensity
value, t, whose external boundary pixels all have a value greater than t.

By default, imregionalmin uses 8-connected neighborhoods for 2-D images and
26-connected neighborhoods for 3-D images. For higher dimensions,
imregionalmin uses conndef(ndims(I),'maximal').

BW = imregionalmin(I,CONN) specifies the desired connectivity. CONN can have
any of the following scalar values.

Connectivity can be defined in a more general way for any dimension by using
for CONN a 3-by-3-by- ...-by-3 matrix of 0’s and 1’s. The 1-valued elements define
neighborhood locations relative to the center element of CONN. Note that CONN
must be symmetric about its center element.

Class Support I can be any nonsparse, numeric class and any dimension. BW is logical.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

imregionalmin

14-271

Example A = 10*ones(10,10);
A(2:4,2:4) = 3; % minima 3 lower than surround
A(6:8,6:8) = 8; % minima 8 lower than surround
A =
10 10 10 10 10 10 10 10 10 10
10 7 7 7 10 10 10 10 10 10
10 7 7 7 10 10 10 10 10 10
10 7 7 7 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10

 10 10 10 10 10 2 2 2 10 10
 10 10 10 10 10 2 2 2 10 10
 10 10 10 10 10 2 2 2 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10

B = imregionalmin(A)
B =
 0 0 0 0 0 0 0 0 0 0
 0 1 1 1 0 0 0 0 0 0
 0 1 1 1 0 0 0 0 0 0
 0 1 1 1 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0

See Also conndef, imreconstruct, imregionalmax

imresize

14-272

14imresizePurpose Resize an image

Syntax B = imresize(A,m)
B = imresize(A,m,method)
B = imresize(A,[mrows ncols],method)

B = imresize(...,method,n)
B = imresize(...,method,h)

Description B = imresize(A,m) returns an image B that is m times the size of A, using
nearest-neighbor interpolation. A can be an indexed image, grayscale image,
RGB, or binary image. If m is between 0 and 1.0, B is smaller than A. If m is
greater than 1.0, B is larger than A.

B = imresize(A,m,method) returns an image that is m times the size of A using
the interpolation method specified by method. method is a string that can have
one of these values. The default value is enclosed in braces ({}).

B = imresize(A,[mrows ncols],method) returns an image of the size
specified by [mrows ncols]. If the specified size does not produce the same
aspect ratio as the input image has, the output image is distorted.

When the specified output size is smaller than the size of the input image, and
method is 'bilinear' or 'bicubic', imresize applies a lowpass filter before
interpolation to reduce aliasing. The default filter size is 11-by-11.

You can specify a different order for the default filter using

B = imresize(...,method,n)

n is an integer scalar specifying the size of the filter, which is n-by-n. If n is 0
(zero), imresize omits the filtering step.

Value Description

{'nearest'} Nearest-neighbor interpolation

'bilinear' Bilinear interpolation

'bicubic' Bicubic interpolation

imresize

14-273

You can also specify your own filter using this syntax.

B = imresize(...,method,h)

h is any two-dimensional FIR filter (such as those returned by ftrans2, fwind1,
fwind2, or fsamp2).

Class Support The input image A can be numeric or logical and it must be nonsparse. The
output image B is of the same class as the input image.

See Also imrotate, imtransform, tformarray

interp2 in the MATLAB Function Reference

imrotate

14-274

14imrotatePurpose Rotate an image

Syntax B = imrotate(A,angle)
B = imrotate(A,angle,method)
B = imrotate(A,angle,method,bbox)

Description B = imrotate(A,angle) rotates the image A by angle degrees in a
counterclockwise direction, using the nearest-neighbor interpolation. To rotate
the image clockwise, specify a negative angle.

B = imrotate(A,angle,method) rotates the image A by angle degrees in a
counterclockwise direction, using the interpolation method specified by
method. method is a string that can have one of these values. The default value
is enclosed in braces ({}).

B = imrotate(A,angle,method,bbox) rotates the image A through angle
degrees. The bbox argument specifies the bounding box of the returned image.
bbox is a string that can have one of these values. The default value is enclosed
in braces ({}).

Value Description

{'nearest'} Nearest-neighbor interpolation

'bilinear' Bilinear interpolation

'bicubic' Bicubic interpolation
Note: Bicubic interpolation can produce pixel values
outside the original range.

Value Description

'crop' Output image B includes only the central portion of the
rotated image and is the same size as A.

{'loose'} Output image B includes the whole rotated image and is
generally larger than the input image A. imrotate sets
pixels in areas outside the original image to zero.

imrotate

14-275

Class Support The input image A can be numeric or logical and it must be nonsparse. The
output image B is of the same class as the input image.

Example This example reads solar spectra image, stored in FITS format, and rotates the
the image to bring it into horizontal alignment. A rotation of -1 degree is all
that is required.

I = fitsread('solarspectra.fts');
I = mat2gray(I);
J = imrotate(I,-1,'bilinear','crop');
imshow(I)
figure, imshow(J)

See Also imcrop, imresize, imtransform, tformarray

Original Image Rotated Image
Image Courtesy Ann Walker

imshow

14-276

14imshowPurpose Display an image

Syntax imshow(I,n)
imshow(I,[low high])
imshow(BW)
imshow(X,map)
imshow(RGB)
imshow(...,display_option)

imshow(x,y,A,...)
imshow filename
h = imshow(...)

Description imshow(I,n) displays the intensity image I with n discrete levels of gray. If you
omit n, imshow uses 256 gray levels on 24-bit displays, or 64 gray levels on other
systems.

imshow(I,[low high]) displays I as a grayscale intensity image, specifying
the data range for I. imshow displays the value low (and any value less than
low) as black and displays the value high (and any value greater than high) as
white. Values in between are displayed as intermediate shades of gray using
the default number of gray levels. If you use an empty matrix ([]) for [low
high], imshow uses [min(I(:)) max(I(:))]; that is, the minimum value in I
is displayed as black, and the maximum value is displayed as white.

imshow(BW) displays the binary image BW. imshow displays pixels with the
value 0 (zero) as black and pixels with the value 1 as white.

imshow(X,map) displays the indexed image X with the colormap map.

imshow(RGB) displays the true-color image RGB.

imshow(...,display_option) displays the image, where display_option
specifies how imshow handles the sizing of the image. display_option is a
string that can have either of these values. Either option string can be
abbreviated. If you do not supply this argument, imshow determines whether to
call truesize based on the setting of the 'ImshowTruesize' preference.

imshow

14-277

.

imshow(x,y,A,...) uses the two-element vectors x and y to establish a
nondefault spatial coordinate system. x and y specify the MATLAB Handle
Graphics image object properties XData and YData.

imshow filename displays the image stored in the graphics file filename.
imshow calls imread to read the image from the file, but the image data is not
stored in the MATLAB workspace. The file must be in the current directory or
on the MATLAB path.

h = imshow(...) returns the handle to the image object created by imshow.

Class Support The input image can be of class logical, uint8, uint16, or double, and it must
be nonsparse.

Remarks You can use the iptsetpref function to set several toolbox preferences that
modify the behavior of imshow. For example:

• 'ImshowBorder' controls whether imshow displays the image with a border
around it.

• 'ImshowAxesVisible' controls whether imshow displays the image with the
axes box and tick labels.

• 'ImshowTruesize' controls whether imshow calls the truesize function.

Note that the display_option argument to imshow enables you to override the
'ImshowTruesize' preference.

For more information about these preferences, see the reference entry for
iptsetpref.

See Also getimage, imread, iptgetpref, iptsetpref, subimage, truesize, warp

image, imagesc in the MATLAB Function Reference

Value Description

'notruesize' Call the truesize function, which maps each pixel in
the image to one screen pixel.

'truesize' Do not call the truesize function.

imsubtract

14-278

14imsubtractPurpose Subtract one image from another, or subtract a constant from an image

Syntax Z = imsubtract(X,Y)

Description Z = imsubtract(X,Y) subtracts each element in array Y from the
corresponding element in array X and returns the difference in the
corresponding element of the output array Z. X and Y are real, nonsparse
numeric arrays of the same size and class, or Y is a double scalar. The array
returned, Z, has the same size and class as X.

If X is an integer array, then elements of the output that exceed the range of
the integer type are truncated, and fractional values are rounded.

If X and Y are double arrays, then you can use the expression X-Y instead of this
function.

Note On Intel architecture processors, imsubtract can take advantage of the
Intel Performance Primitives Library (IPPL), thus accelerating its execution
time. IPPL is activated only if array X is of class uint8, int16, or single.

Examples Subtract two uint8 arrays. Note that negative results are rounded to 0.

X = uint8([255 10 75; 44 225 100]);
Y = uint8([50 50 50; 50 50 50]);
Z = imadd(X,Y)
Z =

 205 0 25
 0 175 50

Estimate and subtract the background of an image:

I = imread('rice.png');
background = imopen(I,strel('disk',15));
Ip = imsubtract(I,background);
imview(Ip,[])

Subtract a constant value from an image:

imsubtract

14-279

I = imread('rice.png');
Iq = imsubtract(I,50);
imview(I),imview(Iq)

See Also imabsdiff, imadd, imcomplement, imdivide, imlincomb, immultiply, ippl

imtophat

14-280

14imtophatPurpose Perform top-hat filtering

Syntax IM2 = imtophat(IM,SE)
IM2 = imtophat(IM,NHOOD)

Description IM2 = imtophat(IM,SE) performs morphological top-hat filtering on the
grayscale or binary input image IM using the structuring element SE, where SE
is returned by strel. SE must be a single structuring element object, not an
array containing multiple structuring element objects.

IM2 = imtophat(IM,NHOOD), where NHOOD is an array of 0’s and 1’s that
specifies the size and shape of the structuring element, is the same as
imptophat(IM,strel(NHOOD)).

Class Support IM can be numeric or logical and must be nonsparse. The output image IM2 has
the same class as the input image. If the input is binary (logical), the
structuring element must be flat.

Example You can use top-hat filtering to correct uneven illumination when the
background is dark. This example uses top-hat filtering with a disk-shaped
structuring element to remove the uneven background illumination from an
image.

1 Read an image into the MATLAB workspace.
I = imread('rice.png');
imshow(I)

imtophat

14-281

2 Create the structuring element and perform top-hat filtering of the image.
se = strel('disk',12);
J = imtophat(I,se);
figure, imshow(J)

3 Use imadjust to improve the visibility of the result.
K = imadjust(J);
figure, imshow(K)

See Also imbothat, strel

imtransform

14-282

14imtransformPurpose Apply 2-D spatial transformation to image

Syntax B = imtransform(A,TFORM)
B = imtransform(A,TFORM,INTERP)
[B,XDATA,YDATA] = imtransform(...)
[B,XDATA,YDATA] = imtransform(...,param1,val1,param2,val2,...)

Description B = imtransform(A,TFORM) transforms the image A according to the 2-D
spatial transformation defined by TFORM, which is a spatial transformation
structure (TFORM) as returned by maketform or cp2tform. If ndims(A) > 2, such
as for an RGB image, then the same 2-D transformation is automatically
applied to all 2-D planes along the higher dimensions.

When you use this syntax, imtransform automatically shifts the origin of your
output image to make as much of the transformed image visible as possible. If
you are using imtransform to do image registration, this syntax is not likely to
give you the results you expect; you might want to set 'XData' and 'YData'
explicitly.

B = imtransform(A,TFORM,INTERP) specifies the form of interpolation to use.
INTERP can have one of these values. The default value is enclosed in braces
({}).

Alternatively, INTERP can be a RESAMPLER structure returned by
makeresampler. This option allows more control over how resampling is
performed.

[B,XDATA,YDATA] = imtransform(...) returns the location of the output
image B in the output X-Y space. XDATA and YDATA are two-element vectors. The
elements of XDATA specify the x-coordinates of the first and last columns of B.
The elements of YDATA specify the y-coordinates of the first and last rows of B.
Normally, imtransform computes XDATA and YDATA automatically so that B

Value Description

'bicubic' Bicubic interpolation

{'bilinear'} Bilinear interpolation

'nearest' Nearest-neighbor interpolation

imtransform

14-283

contains the entire transformed image A. However, you can override this
automatic computation; see below.

[B,XDATA,YDATA] = imtransform(...,param1,val1,param2,val2,...)
specifies parameters that control various aspects of the spatial transformation.
This table lists all the parameters you can specify. Note that parameter names
can be abbreviated and are not case sensitive.

Parameter Description

'UData'
'VData'

Both of these parameters are two-element real
vectors. 'UData' and 'VData' specify the spatial
location of the image A in the 2-D input space U-V.
The two elements of 'UData' give the
u-coordinates (horizontal) of the first and last
columns of A, respectively. The two elements of
'VData' give the v-coordinates (vertical) of the
first and last rows of A, respectively.

The default values for 'UData' and 'VData' are
[1 size(A,2)] and [1 size(A,1)], respectively.

'XData'
'YData'

Both of these parameters are two-element real
vectors. 'XData' and 'YData' specify the spatial
location of the output image B in the 2-D output
space X-Y. The two elements of 'XData' give the
x-coordinates (horizontal) of the first and last
columns of B, respectively. The two elements of
'YData' give the y-coordinates (vertical) of the
first and last rows of B, respectively.

If 'XData' and 'YData' are not specified,
imtransform estimates values for them that will
completely contain the entire transformed output
image.

imtransform

14-284

'XYScale' A one- or two-element real vector. The first
element of 'XYScale' specifies the width of each
output pixel in X-Y space. The second element (if
present) specifies the height of each output pixel.
If 'XYScale' has only one element, then the same
value is used for both width and height.
If 'XYScale' is not specified but 'Size' is, then
'XYScale' is computed from 'Size', 'XData',
and 'YData'. If neither 'XYScale' nor 'Size' is
provided, then the scale of the input pixels is
used for 'XYScale'.

'Size' A two-element vector of nonnegative integers.
'Size' specifies the number of rows and columns
of the output image B. For higher dimensions, the
size of B is taken directly from the size of A. In
other words, size(B,k) equals size(A,k) for k >
2. If 'Size' is not specified, then it is computed
from 'XData', 'YData', and 'XYScale'.

Parameter Description

imtransform

14-285

Notes • When you do not specify the output-space location for B using 'XData' and
'YData', imtransform estimates them automatically using the function
findbounds. For some commonly used transformations, such as affine or
projective, for which a forward mapping is easily computable, findbounds is
fast. For transformations that do not have a forward mapping, such as the
polynomial ones computed by cp2tform, findbounds can take significantly
longer. If you can specify 'XData' and 'YData' directly for such
transformations, imtransform might run noticeably faster.

• The automatic estimate of 'XData' and 'YData' using findbounds is not
guaranteed in all cases to completely contain all the pixels of the
transformed input image.

'FillValues' An array containing one or several fill values.
Fill values are used for output pixels when the
corresponding transformed location in the input
image is completely outside the input image
boundaries. If A is 2-D, 'FillValues' must be a
scalar. However, if A's dimension is greater than
two, then 'FillValues' can be an array whose
size satisfies the following constraint:
size(fill_values,k) must equal either
size(A,k+2) or 1.
For example, if A is a uint8 RGB image that is
200-by-200-by-3, then possibilities for
'FillValues' include
0 Fill with black
[0;0;0] Fill with black
255 Fill with white
[255;255;255] Fill with white
[0;0;255] Fill with blue
[255;255;0] Fill with yellow

If A is 4-D with size 200-by-200-by-3-by-10, then
'FillValues' can be a scalar, 1-by-10, 3-by-1, or
3-by-10.

Parameter Description

imtransform

14-286

• The output values XDATA and YDATA might not exactly equal the input
'XData' and 'YData' parameters. This can happen either because of the
need for an integer number of rows and columns, or if you specify values for
'XData', 'YData', 'XYScale', and 'Size' that are not entirely consistent. In
either case, the first element of XDATA and YDATA always equals the first
element of 'XData' and 'YData', respectively. Only the second elements of
XDATA and YDATA might be different.

• imtransform assumes spatial-coordinate conventions for the transformation
TFORM. Specifically, the first dimension of the transformation is the
horizontal or x-coordinate, and the second dimension is the vertical or
y-coordinate. Note that this is the reverse of the array subscripting
convention in MATLAB.

• TFORM must be a 2-D transformation to be used with imtransform. For
arbitrary-dimensional array transformations, see tformarray.

Class Support The input image A can be of any nonsparse numeric class, real or complex, or it
can be of class logical. The class of B is the same as the class of A.

Example Example 1
Apply a horizontal shear to an intensity image.

I = imread('cameraman.tif');
tform = maketform('affine',[1 0 0; .5 1 0; 0 0 1]);
J = imtransform(I,tform);
imshow(I), figure, imshow(J)

Example 2
A projective transformation can map a square to a quadrilateral. In this
example, set up an input coordinate system so that the input image fills the
unit square and then transform the image into the quadrilateral with vertices
(0 0), (1 0), (1 1), (0 1) to the quadrilateral with vertices (-4 2), (-8 3), (-3 -5), (6
3). Fill with gray and use bicubic interpolation. Make the output size the same
as the input size.

I = imread('cameraman.tif');
udata = [0 1]; vdata = [0 1]; % input coordinate system
tform = maketform('projective',[0 0; 1 0; 1 1; 0 1],...
 [-4 2; -8 -3; -3 -5; 6 3]);
[B,xdata,ydata] = imtransform(I, tform, 'bicubic', ...

imtransform

14-287

'udata', udata,...
'vdata', vdata,...
'size', size(I),...
'fill', 128);

subplot(1,2,1), imshow(udata,vdata,I), axis on
subplot(1,2,2), imshow(xdata,ydata,B), axis on

Example 3
Register an aerial photo to an orthophoto.

Read in the aerial photo.

unregistered = imread('westconcordaerial.png');
figure, imshow(unregistered)

Read in the orthophoto.

figure, imshow('westconcordorthophoto.png')

Load control points that were previously picked.

load westconcordpoints

Create a transformation structure for a projective transformation.

t_concord = cp2tform(input_points,base_points,'projective');

Get the width and height of the orthophoto and perform the transformation.

info = imfinfo('westconcordorthophoto.png');

registered = imtransform(unregistered,t_concord,...
 'XData',[1 info.Width], 'YData',[1 info.Height]);
figure, imshow(registered)

See Also cp2tform, imresize, imrotate, maketform, makeresampler, tformarray

imview

14-288

14imviewPurpose Display image in the Image Viewer

Syntax imview(I)
imview(RGB)
imview(X,map)
imview(I,range)
imview(filename)
imview(...,'InitialMagnification',initial_mag)
h = imview(...)
imview close all

Description imview(I) displays the intensity image I.

imview(RGB) displays the true-color image RGB.

imview(X,map) displays the indexed image X with colormap map.

imview(I,range) displays the intensity image I, where range is a two-element
vector [LOW HIGH] that controls the black-to-white range in the displayed
image. imview displays the value LOW (and any value less than LOW) as black,
and the value HIGH (and any value greater than HIGH) as white. Values in
between are displayed as intermediate shades of gray. range can also be empty
([]), in which case imview displays the minimum value of I as black and the
maximum value of I as white. In other words, imview(I,[]) is equivalent to
imview(I,[min(I(:)) max(I(:))]).

imview(filename) displays the image contained in the file specified by
filename. The file must contain an image that can be read by imread. If the file
contains multiple images, the first one is displayed.

With no input arguments, imview displays a file chooser dialog box so you can
select an image file interactively.

H = imview(...) returns a handle H to the tool. close(H) closes the image
viewer.

imview close all closes all image viewers.

imview

14-289

imview(...,'InitialMagnification',initial_mag) displays the image,
specifying the InitialMagnification parameter that controls the initial
magnification used to display the image. The value of this parameter,
initial_mag, can have either of the following values.

By default, the initial magnification is set to the value returned by
iptgetpref('ImviewInitialMagnification').

Class Support The input image can be of class logical, uint8, uint16, or double.

Examples This example opens a file specified as a text string and displays it.

imview('board.tif')

This example opens an indexed image and displays it.

[X,map] = imread('trees.tif');
imview(X,map)

This example brings the intensity image in the file specified into the MATLAB
workspace and displays it.

I = imread('cameraman.tif');
imview(I)

This example displays an image with a specified range and returns a handle to
the Image Viewer. The example uses the close function to close the Image
Viewer.

h = imview(I,[0 80]);
close(h)

Value Description

100 Display image at 100% magnification; that is, every
image pixel maps to one screen pixel

'fit' Scale entire image to fit in the Image Viewer window

imview

14-290

Notes Managing Multiple Image Viewer Windows
If you have multiple Image Viewer windows open and you want to close all of
them, use this command:

imview close all

You can also close all open Image Viewer windows by choosing Close All from
the Window menu on the MATLAB Desktop. Note, however, that this will
close all windows listed in the Window menu, not just Image Viewer windows.

You can also use the Window menu to navigate to a particular Image Viewer
that you have open.

Managing Memory Usage
To increase the amount of memory available to the Image Viewer, create a file
named 'java.opts' and put it in your MATLAB startup directory. By default,
MATLAB gives the Java Virtual Machine 64 MB.

The java.opts file should contain a line like this one, which gives the Java
Virtual Machine 128 MB:

-Xmx128m

To avoid virtual memory “thrashing,” set the -Xmx option to no more than 66%
real RAM.

On UNIX systems, create the java.opts file in a directory where you intend to
start MATLAB and move to that directory before starting MATLAB.

On Windows systems,

1 Create the java.opts file in a directory where you intend to start MATLAB.

2 Create a shortcut to MATLAB.

3 Right-click the shortcut and select Properties.

4 In the Properties dialog box, specify the name of the directory in which you
created the java.opts file as the MATLAB startup directory.

The MATLAB desktop and the Image Viewer share Java Virtual Machine
memory. If you are having trouble viewing large images, consider running
MATLAB with the -nodesktop mode enabled. This should allow you to use the
Image Viewer to view large images.

imview

14-291

See Also imread, imshow

imwrite

14-292

14imwritePurpose Write image to graphics file

imwrite is a function in MATLAB. To get help for this function, select
MATLAB Help from the Help menu and view the online function reference
page.

ind2gray

14-293

14ind2grayPurpose Convert an indexed image to an intensity image

Syntax I = ind2gray(X,map)

Description I = ind2gray(X,map) converts the image X with colormap map to an intensity
image I. ind2gray removes the hue and saturation information from the input
image while retaining the luminance.

Class Support X can be of class uint8, uint16, or double. I is of class double.

Example load trees
I = ind2gray(X,map);
imshow(X,map)
figure,imshow(I)

Algorithm ind2gray converts the colormap to NTSC coordinates using rgb2ntsc, and sets
the hue and saturation components (I and Q) to zero, creating a gray colormap.
ind2gray then replaces the indices in the image X with the corresponding
grayscale intensity values in the gray colormap.

See Also gray2ind, imshow, rgb2ntsc

Image Courtesy of Susan Cohen

ind2rgb

14-294

14ind2rgbPurpose Convert an indexed image to an RGB image

Syntax RGB = ind2rgb(X,map)

Description RGB = ind2rgb(X,map) converts the matrix X and corresponding colormap map
to RGB (true-color) format.

Class Support X can be of class uint8, uint16, or double. RGB is an m-by-n-by-3 array of class
double.

See Also ind2gray, rgb2ind

ippl

14-295

14ipplPurpose Check for presence of the Intel Performance Primitives Library (IPPL)

Syntax TF = ippl
[TF B] = ippl

Description The Intel Performance Primitives Library (IPPL) provides a collection of basic
functions used in signal and image processing. The IPPL takes advantage of
the parallelism of the Single-Instruction, Multiple-Data (SIMD) instructions
that make up the core of the MMX technology and Streaming SIMD
Extensions. These instructions are available only on the Intel architecture
processors. IPPL is used by some of the Image Processing Toolbox functions to
accelerate their execution time.

TF = ippl returns true (1) if IPPL is available and false (0) otherwise.

[TF B] = ippl returns an additional column cell array B. Each row of B
contains a string describing a specific IPPL module.

When IPPL is available, the Image Processing Toolbox image arithmetic
functions (imabsdiff, imadd, imsubtract, imdivide, immultiply, and
imlincomb) and the imfilter function take advantage of it. Toolbox functions
that use these functions also benefit.

Notes IPPL is utilized only for some data types and only under specific conditions. See
the help sections of the functions listed above for detailed information on when
IPPL is activated.

The IPPL function is likely to change.

See Also imabsdiff, imadd, imdivide, imfilter, imlincomb, immultiply, imsubtract

iptdemos

14-296

14iptdemosPurpose Display index of Image Processing Toolbox demos

Syntax iptdemos

Description iptdemos displays the HTML page that lists all the Image Processing demos.
iptdemos displays the page in the MATLAB Help browser.

iptgetpref

14-297

14iptgetprefPurpose Return Image Processing Toolbox preferences

Syntax prefs = iptgetpref
value = iptgetpref(prefname)

Description prefs = iptgetpref without an input argument returns a structure
containing all the Image Processing Toolbox preferences with their current
values. Each field in the structure has the name of an Image Processing
Toolbox preference. See iptsetpref for a list.

value = iptgetpref(prefname) returns the value of the Image Processing
Toolbox preference specified by the string prefname. See iptsetpref for a
complete list of valid preference names. Preference names are not case
sensitive and can be abbreviated.

Example value = iptgetpref('ImshowAxesVisible')

value =

off

See Also imshow, iptsetpref

iptsetpref

14-298

14iptsetprefPurpose Set Image Processing Toolbox preferences or display valid values

Syntax iptsetpref(prefname)
iptsetpref(prefname,value)

Description iptsetpref(prefname) displays the valid values for the Image Processing
Toolbox preference specified by prefname.

iptsetpref(prefname,value) sets the Image Processing Toolbox preference
specified by the string prefname to the value specified by value. The setting
persists until the end of the current MATLAB session, or until you change the
setting. (To make the value persist between sessions, put the command in your
startup.m file.)

This table describes the available preferences. Note that the preference names
are case insensitive and can be abbreviated. The default value is enclosed in
braces ({}).

Preference Name Description

'ImshowBorder' Controls whether imshow includes a border around the
image in the figure window.

{'loose'} — Include a border between the image and the
edges of the figure window, thus leaving room for axes
labels, titles, etc.

'tight' — Adjust the figure size so that the image entirely
fills the figure.

Note: There can still be a border if the image is very small,
or if there are other objects besides the image and its axes
in the figure.

'ImshowAxesVisible' Controls whether imshow includes visible axes and tick
labels in the figure window.

'on' — Include axes box and tick labels.

{'off'} — Do not include axes box and tick labels.

iptsetpref

14-299

Example iptsetpref('ImshowBorder','tight')

See Also imshow, imview, iptgetpref, truesize

axis in the MATLAB Function Reference

'ImshowTruesize' Controls whether imshow calls the truesize function.

{'manual'} — Do not call the truesize function.

'auto' — Let imshow decide whether to call the truesize
function. imshow calls truesize if there are no other
objects in the resulting figure besides the image and its
axes.

Note: You can override this setting for a particular call to
imshow by specifying the display_option argument by
calling the truesize function after displaying the image.

'ImviewInitialMagnification' Controls the initial magnification of an image displayed in
the Image Viewer, imview.

{100} — Display the image at 100% magnification.

'fit' — Scale the image to fit in the imview window.

Note: You can override this setting for a particular call to
imview by specifying the 'InitialMagnification'
parameter.

'TruesizeWarning' Controls whether the truesize function displays a warning
if the image is too large to fit on the screen.

{'on'} — The truesize function displays the message. The
entire image is still displayed, but at less than true size.

'off'— truesize does not display the warning.

Note: This preference applies even when you call truesize
indirectly, such as through imshow.

Preference Name Description

iradon

14-300

14iradonPurpose Compute inverse Radon transform

Syntax I = iradon(R,theta)
I = iradon(R,theta,interp,filter,frequency_scaling,output_size)
[I,H] = iradon(...)

Description I = iradon(R,theta) reconstructs the image I from projection data in the
two-dimensional array R. The columns of R are parallel beam projection data.
iradon assumes that the center of rotation is the center point of the projections,
which is defined as ceil(size(R,1)/2).

theta describes the angles (in degrees) at which the projections were taken. It
can be either a vector containing the angles or a scalar specifying D_theta, the
incremental angle between projections. If theta is a vector, it must contain
angles with equal spacing between them. If theta is a scalar specifying
D_theta, the projections were taken at angles theta = m*D_theta, where
m = 0,1,2,...,size(R,2) 1. If the input is the empty matrix ([]), D_theta
defaults to 180/size(R,2).

iradon uses the filtered back-projection algorithm to perform the inverse
Radon transform. The filter is designed directly in the frequency domain and
then multiplied by the FFT of the projections. The projections are zero-padded
to a power of 2 before filtering to prevent spatial domain aliasing and to speed
up the FFT.

I = iradon(P,theta,interp,filter,frequency_scaling,output_size)
specifies parameters to use in the inverse Radon transform. You can specify
any combination of the last four arguments. iradon uses default values for any
of these arguments that you omit.

interp specifies the type of interpolation to use in the back projection. The
available options are listed in order of increasing accuracy and computational
complexity. The default value is enclosed in braces ({}).

Value Description

'nearest' Nearest-neighbor interpolation

iradon

14-301

filter specifies the filter to use for frequency domain filtering. filter can be
any of the strings that specify standard filters. The default value is enclosed in
braces ({}).

frequency_scaling is a scalar in the range (0,1] that modifies the filter by
rescaling its frequency axis. The default is 1. If frequency_scaling is less than
1, the filter is compressed to fit into the frequency range
[0,frequency_scaling], in normalized frequencies; all frequencies above
frequency_scaling are set to 0.

output_size is a scalar that specifies the number of rows and columns in the
reconstructed image. If output_size is not specified, the size is determined
from the length of the projections.

n = 2*floor(size(R,1)/(2*sqrt(2)))

If you specify output_size, iradon reconstructs a smaller or larger portion of
the image but does not change the scaling of the data. If the projections were

{'linear'} Linear interpolation

'spline' Spline interpolation

Value Description

{'Ram-Lak'} Cropped Ram-Lak or ramp filter. The frequency
response of this filter is | f |. Because this filter is
sensitive to noise in the projections, one of the filters
listed below might be preferable. These filters multiply
the Ram-Lak filter by a window that deemphasizes
high frequencies.

'Shepp-Logan' Multiplies the Ram-Lak filter by a sinc function

'Cosine' Multiplies the Ram-Lak filter by a cosine function

'Hamming' Multiplies the Ram-Lak filter by a Hamming window

'Hann' Multiplies the Ram-Lak filter by a Hann window

Value Description

iradon

14-302

calculated with the radon function, the reconstructed image might not be the
same size as the original image.

[I,H] = iradon(...) returns the frequency response of the filter in the vector
H.

Class Support All input arguments must be of class double. Output arguments are of class
double.

Example P = phantom(128);
R = radon(P,0:179);
I = iradon(R,0:179,'nearest','Hann');
imview(P), imview(I)

Algorithm iradon uses the filtered back projection algorithm to perform the inverse
Radon transform. The filter is designed directly in the frequency domain and
then multiplied by the FFT of the projections. The projections are zero-padded
to a power of 2 before filtering to prevent spatial domain aliasing and to speed
up the FFT.

See Also fan2para, fanbeam, ifanbeam, para2fan, phantom, radon

References [1] Kak, A. C., and M. Slaney, Principles of Computerized Tomographic
Imaging, New York, NY, IEEE Press, 1988.

isbw

14-303

14isbwPurpose Return true for a binary image

Note This function is obsolete and may be removed in future versions. Use
islogical instead.

Syntax flag = isbw(A)

Description flag = isbw(A) returns 1 if A is a binary image and 0 otherwise.

The input image A is considered to be a binary image if it is a nonsparse logical
array.

Class Support The input image A can be any MATLAB array.

See Also isind, isgray, isrgb

isflat

14-304

14isflatPurpose Return true for flat structuring element

Syntax TF = isflat(SE)

Description TF = isflat(SE) returns true (1) if the structuring element SE is flat;
otherwise it returns false (0). If SE is an array of STREL objects, then TF is the
same size as SE.

Class Support SE is a STREL object. TF is a double-precision value.

See Also strel

isgray

14-305

14isgrayPurpose Return true for intensity image

Note This function is obsolete and may be removed in future versions.

Syntax flag = isgray(A)

Description flag = isgray(A) returns 1 if A is a grayscale intensity image and 0 otherwise.

isgray uses these criteria to decide whether A is an intensity image:

• If A is of class double, all values must be in the range [0,1], and the number
of dimensions of A must be 2.

• If A is of class uint16 or uint8, the number of dimensions of A must be 2.

Note A four-dimensional array that contains multiple intensity images
returns 0, not 1.

Class Support The input image A can be of class logical, uint8, uint16, or double.

See Also isbw, isind, isrgb

isind

14-306

14isindPurpose Return true for an indexed image

Note This function is obsolete and may be removed in future versions.

Syntax flag = isind(A)

Description flag = isind(A) returns 1 if A is an indexed image and 0 otherwise.

isind uses these criteria to determine if A is an indexed image:

• If A is of class double, all values in A must be integers greater than or equal
to 1, and the number of dimensions of A must be 2.

• If A is of class uint8 or uint16, the number of dimensions of A must be 2.

Note A four-dimensional array that contains multiple indexed images
returns 0, not 1.

Class Support A can be of class logical, uint8, uint16, or double.

See Also isbw, isgray, isrgb

isrgb

14-307

14isrgbPurpose Return true for an RGB image

Note This function is obsolete and may be removed in future versions.

Syntax flag = isrgb(A)

Description flag = isrgb(A) returns 1 if A is an RGB true-color image and 0 otherwise.

isrgb uses these criteria to determine whether A is an RGB image:

• If A is of class double, all values must be in the range [0,1], and A must be
m-by-n-by-3.

• If A is of class uint16 or uint8, A must be m-by-n-by-3.

Note A four-dimensional array that contains multiple RGB images returns 0,
not 1.

Class Support A can be of class logical, uint8, uint16, or double.

See Also isbw, isgray, isind

lab2double

14-308

14lab2doublePurpose Convert data to double

Syntax labd = lab2double(lab)

Description labd = lab2double(lab) converts an M-by-3 or M-by-N-by-3 array of
 color values to class double. The output array labd has the same size

as lab.

The Image Processing Toolbox follows the convention that double-precision
 arrays contain 1976 CIE values. arrays that are

uint8 or uint16 follow the convention in the ICC profile specification
(ICC.1:2001-4, www.color.org) for representing values as unsigned
8-bit or 16-bit integers. The ICC encoding convention is illustrated by these
tables.

Class Support lab is a uint8, uint16, or double array that must be real and nonsparse. labd
is double.

See Also applycform, lab2uint8, lab2uint16, makecform, whitepoint, xyz2double,
xyz2uint16

L∗ a∗ b∗

Value (L*) uint8 Value uint16 Value

0.0 0 0

100.0 255 65280

100.0 + (25500/65280) None 65535

Value (a* or b*) uint8 Value uint16 Value

-128.0 0 0

0.0 128 32768

127.0 255 65280

127.0 + (255/256) None 65535

L∗ a∗ b∗

L∗ a∗ b∗ L∗ a∗ b∗ L∗ a∗ b∗

L∗ a∗ b∗

lab2uint16

14-309

14lab2uint16Purpose Convert data to uint16

Syntax lab16 = lab2uint16(lab)

Description lab16 = lab2uint16(lab) converts an M-by-3 or M-by-N-by-3 array of
 color values to uint16. lab16 has the same size as lab.

The Image Processing Toolbox follows the convention that double-precision
 arrays contain 1976 CIE values. arrays that are

uint8 or uint16 follow the convention in the ICC profile specification
(ICC.1:2001-4, www.color.org) for representing values as unsigned
8-bit or 16-bit integers. The ICC encoding convention is illustrated by these
tables.

Class Support lab can be a uint8, uint16, or double array that must be real and nonsparse.
lab16 is of class uint16.

See Also applycform, lab2double, lab2uint8, makecform, whitepoint, xyz2double,
xyz2uint16

L∗ a∗ b∗

Value (L*) uint8 Value uint16 Value

0.0 0 0

100.0 255 65280

100.0 + (25500/65280) None 65535

Value (a* or b*) uint8 Value uint16 Value

-128.0 0 0

0.0 128 32768

127.0 255 65280

127.0 + (255/256) None 65535

L∗ a∗ b∗

L∗ a∗ b∗ L∗ a∗ b∗ L∗ a∗ b∗

L∗ a∗ b∗

lab2uint8

14-310

14lab2uint8Purpose Convert data to uint8

Syntax lab8 = lab2uint8(lab)

Description lab8 = lab2uint8(lab) converts an M-by-3 or M-by-N-by-3 array of
color values to uint8. lab8 has the same size as lab.

The Image Processing Toolbox follows the convention that double-precision
 arrays contain 1976 CIE values. arrays that are

uint8 or uint16 follow the convention in the ICC profile specification
(ICC.1:2001-4, www.color.org) for representing values as unsigned
8-bit or 16-bit integers. The ICC encoding convention is illustrated by these
tables.

Class Support lab is a uint8, uint16, or double array that must be real and nonsparse. lab8
is uint8.

See Also applycform, lab2double, lab2uint16, makecform, whitepoint, xyz2double,
xyz2uint16

L∗ a∗ b∗

Value (L*) uint8 Value uint16 Value

0.0 0 0

100.0 255 65280

100.0 + (25500/65280) None 65535

Value (a* or b*) uint8 Value uint16 Value

-128.0 0 0

0.0 128 32768

127.0 255 65280

127.0 + (255/256) None 65535

L∗ a∗ b∗

L∗ a∗ b∗ L∗ a∗ b∗ L∗ a∗ b∗

L∗ a∗ b∗

label2rgb

14-311

14label2rgbPurpose Convert a label matrix into an RGB image

Syntax RGB = label2rgb(L)
RGB = label2rgb(L,map)
RGB = label2rgb(L,map,zerocolor)
RGB = label2rgb(L,map,zerocolor,order)

Description RGB = label2rgb(L) converts a label matrix L, such as those returned by
bwlabel or watershed, into an RGB color image for the purpose of visualizing
the labeled regions. The label2rgb function determines the color to assign to
each object based on the number of objects in the label matrix and range of
colors in the colormap. The label2rgb function picks colors from the entire
range.

RGB = label2rgb(L,map) defines the colormap map to be used in the RGB
image. map can have any of the following values:

• n-by-3 colormap matrix

• String containing the name of a MATLAB colormap function, such as 'jet'
or 'gray' (See colormap for a list of supported colormaps.)

• Function handle of a colormap function, such as @jet or @gray

If you do not specify map, the default value is 'jet'.

RGB = label2rgb(L,map,zerocolor) defines the RGB color of the elements
labeled 0 (zero) in the input label matrix L. As the value of zerocolor, specify
an RGB triple or one of the strings listed in this table.

Value Color

'b' Blue

'c' Cyan

'g' Green

'k' Black

'm' Magenta

'r' Red

label2rgb

14-312

If you do not specify zerocolor, the default value for zero-labeled elements is
[1 1 1] (white).

RGB = label2rgb(L,map,zerocolor,order) controls how label2rgb assigns
colormap colors to regions in the label matrix. If order is 'noshuffle' (the
default), label2rgb assigns colormap colors to label matrix regions in
numerical order. If order is 'shuffle', label2rgb assigns colormap colors
pseudorandomly.

Class Support The input label matrix L can have any nonsparse, numeric class. It must
contain finite, nonnegative integers. The output of label2rgb is of class uint8.

Example I = imread('rice.png');
figure, imshow(I), title('original image')
BW = im2bw(I, graythresh(I));
L = bwlabel(BW);
RGB = label2rgb(L);
RGB2 = label2rgb(L, 'spring', 'c', 'shuffle');
imview(RGB), imview(RGB2)

See Also bwlabel, bwlabeln, ismember, watershed

'w' White

'y' Yellow

Value Color

makecform

14-313

14makecformPurpose Create a color transformation structure

Syntax C = makecform(type)
C = makecform(type, 'whitepoint', WP)
C = makecform('icc', src_profile, dest_profile)
C = makecform('icc', src_profile, dest_profile,
 'SourceRenderingIntent', src_intent, 'DestRenderingIntent',
 dest_intent)
C = makecform('clut', profile, LUTtype)
C = makecform('mattrc', MatTrc, 'Direction', direction)

Description C = makecform(type) creates the color transformation structure C that defines
the color space conversion specified by type. To perform the transformation,
pass the color transformation structure as an argument to the applycform
function.

The type argument specifies one of the conversions listed in the following table.
makecform supports conversions between members of the family of
device-independent color spaces defined by the CIE, Commission
Internationale de l’Éclairage (International Commission on Illumination). In
addition, makecform supports conversions to and from the sRGB standard. For
a list of the abbreviations used by the Image Processing Toolbox for each color
space, see the Remarks section of this reference page.

Type Description

'lab2lch' Convert from to the color space.

'lab2srgb'1 Convert from to the color space.

'lab2xyz'1 Convert from to the color space.

'lch2lab' Convert from to the color space.

'srgb2lab'1 Convert from to the color space.

'srgb2xyz' Convert from to the color space.

'upvpl2xyz' Convert from to the color space.

'uvl2xyz' Convert from to the color space.

L∗ a∗ b∗ L∗ ch

L∗ a∗ b∗ srgb

L∗ a∗ b∗ XYZ

L∗ ch L∗ a∗ b∗

srgb L∗ a∗ b∗

srgb XYZ

u ′v ′L XYZ

uvL XYZ

makecform

14-314

1 For the 'xyz2lab', 'lab2xyz', 'srgb2lab', and 'lab2srgb' transforms, you
can optionally specify the value of the reference illuminant, known as the white
point. Use the syntax

C = makecform(type,'WhitePoint', WP)

where WP is a 1-by-3 vector of XYZ values scaled so that Y = 1. The default is
the CIE illuminant D50 as specified in the International Color Consortium
specification ICC.1:2001-04. You can use the whitepoint function to create the
WP vector.

C = makecform('icc', src_profile, dest_profile) creates a color
transform based on two ICC profiles. src_profile and dest_profile are ICC
profile structures returned by iccread.

C = makecform('icc', src_profile, dest_profile,
'SourceRenderingIntent', src_intent, 'DestRenderingIntent',
DEST_INTENT) creates a color transform based on two ICC color profiles,
src_profile and dest_profile, specifying rendering intent arguments for the
source, src_intent, and the destination, dest_intent, profiles.

Rendering intents specify the style of reproduction that should be used when
these profiles are combined. For most devices, the range of reproducible colors
is much smaller than the range of colors represented by the PCS. Rendering
intents define gamut mapping techniques. Possible values for these rendering

'xyl2xyz' Convert from to the color space.

'xyz2lab'1 Convert from to the color space.

'xyz2srgb' Convert from to the color space.

'xyz2upvpl' Convert from to the color space.

'xyz2uvl' Convert from to the color space.

'xyz2xyl' Convert from to the color space.

Type Description

xyY XYZ

XYZ L∗ a∗ b∗

XYZ srgb

XYZ u ′v ′L

XYZ uvL

XYZ xyY

makecform

14-315

intents are listed below. Each rendering intent has distinct aesthetic and
color-accuracy tradeoffs.

C = makecform('clut', profile, LUTtype) creates the color transformation
structure C based on a color lookup table (CLUT) contained in an ICC color
profile. profile is an ICC profile structure returned by iccread. LUTtype

Value Description

'AbsoluteColorimetric' Maps all out-of-gamut colors to the nearest
gamut surface while maintaining the
relationship of all in-gamut colors. This
absolute rendering contains color data that
is relative to a perfectly reflecting diffuser.

'Perceptual' (default) Employs vendor-specific gamut mapping
techniques for optimizing the range of
producible colors of a given device. The
objective is to provide the most aesthetically
pleasing result even though the relationship
of the in-gamut colors might not be
maintained. This media-relative rendering
contains color data that is relative to the
device’s white point.

'RelativeColorimetric' Maps all out-of-gamut colors to the nearest
gamut surface while maintaining the
relationship of all in-gamut colors. This
media-relative rendering contains color data
that is relative to the device’s white point.

'Saturation' Employs vendor-specific gamut mapping
techniques for maximizing the saturation of
device colors. This rendering is generally
used for simple business graphics such as
bar graphs and pie charts. This
media-relative rendering contains color data
that is relative to the device’s white point.

makecform

14-316

specifies which clut in the profile structure is to be used. It can be one of
these strings.

LUT Type Description

'AToB0' Contains the components of a 16- or 8-bit LUTtag
that transforms device colors to PCS colors using the
perceptual rendering.

'AToB1' Contains the components of a 16- or 8-bit LUTtag
that transforms device colors to PCS colors using the
relative rendering.

'AToB2' Contains the components of a 16- or 8-bit LUTtag
that transforms device colors to PCS colors using the
saturation rendering.

'BToA0' Contains the components of a 16- or 8-bit LUTtag
that transforms PCS colors to device colors using the
perceptual rendering.

'BToA1' Contains the components of a 16- or 8-bit LUTtag
that transforms PCS colors to device colors using the
colorimetric rendering.

'BToA2' Contains the components of a 16- or 8-bit LUTtag
that transforms PCS colors to device colors using the
saturation rendering.

'Gamut' Contains the components of a 16- or 8-bit LUTtag
that determines which PCS colors are out of gamut
for a given device.

'Preview0' Contains the components of a 16- or 8-bit Preview
LUTtag that transforms PCS colors to the PCS colors
available for soft proofing using the perceptual
rendering.

makecform

14-317

C = makecform('mattrc', MatTrc, 'Direction', direction) creates the
color transformation structure C based on a Matrix/Tone Reproduction Curve
(MatTRC) model, contained in an ICC color profile. direction can be either
'forward' or 'inverse' and specifies whether the MatTRC is to be applied in
the forward or inverse direction. For more information, see section 6.3.1.2 of
the International Color Consortium specification ICC.1:2001-04
(www.color.org).

Remarks The Image Processing Toolbox uses the following abbreviations to represent
color spaces.

'Preview1' Contains the components of a 16- or 8-bit Preview
LUTtag that transforms PCS colors to the PCS colors
available for soft proofing using the relative
colorimetric rendering.

'Preview2' Contains the components of a 16- or 8-bit Preview
LUTtag that transforms PCS colors to the PCS colors
available for soft proofing using the saturation
rendering.

LUT Type Description

Abbreviation Description

xyz 1931 CIE XYZ tristimulus values

xyl 1931 CIE xyY chromaticity values

uvl 1960 CIE uvL values

upvpl 1976 CIE the values

lab 1976 CIE values

lch Polar transformation of CIE values,
where c = chroma and h = hue

srgb Standard computer monitor RGB values, (IEC
61966-2-1)

u ′v ′L

L∗ a∗ b∗

L∗ a∗ b∗

makecform

14-318

Example Convert RGB image to L*a*b*, assuming input image is uint8.

rgb = imread('peppers.png');
cform = makecform('srgb2lab');
lab = applycform(rgb,cform);

See Also applycform, lab2double, lab2uint16, lab2uint8, whitepoint, xyz2double,
xyz2uint16

makelut

14-319

14makelutPurpose Construct a lookup table for use with applylut

Syntax lut = makelut(fun,n)
lut = makelut(fun,n,P1,P2,...)

Description lut = makelut(fun,n) returns a lookup table for use with applylut. fun is
either a string containing the name of a function or an inline function object.
The function should take a 2-by-2 or 3-by-3 matrix of 1’s and 0’s as input and
return a scalar. n is either 2 or 3, indicating the size of the input to fun. makelut
creates lut by passing all possible 2-by-2 or 3-by-3 neighborhoods to fun, one
at a time, and constructing either a 16-element vector (for 2-by-2
neighborhoods) or a 512-element vector (for 3-by-3 neighborhoods). The vector
consists of the output from fun for each possible neighborhood.

lut = makelut(fun,n,P1,P2,...) passes the additional parameters
P1,P2,... to fun.

Class Support lut is returned as a vector of class double.

Example In this example, the function returns 1 (true) if the number of 1’s in the
neighborhood is 2 or greater, and returns 0 (false) otherwise. makelut then uses
the function to construct a lookup table for 2-by-2 neighborhoods.

f = inline('sum(x(:)) >= 2');
lut = makelut(f,2)

lut =

 0
 0
 0
 1
 0
 1
 1
 1
 0
 1
 1
 1

makelut

14-320

 1
 1
 1
 1

See Also applylut

makeresampler

14-321

14makeresamplerPurpose Create resampling structure

Syntax R = makeresampler(interpolant,padmethod)

Description R = makeresampler(interpolant,padmethod) creates a separable resampler
structure for use with tformarray and imtransform.

The interpolant argument specifies the interpolating kernel that the
separable resampler uses. In its simplest form, interpolant can have any of
the following strings as a value.

If you are using a custom interpolating kernel, you can specify interpolant as
a cell array in either of these forms:

To specify the interpolation method independently along each dimension, you
can combine both types of interpolant specifications. The number of elements
in the cell array must equal the number of transform dimensions. For example,
if you specify this value for interpolant

{'nearest', 'linear', {2 KERNEL_TABLE}}

Interpolant Description

'cubic' Cubic interpolation

'linear' Linear interpolation

'nearest' Nearest-neighbor interpolation

{half_width, positive_half} half_width is a positive scalar designating
the half width of a symmetric interpolating
kernel. positive_half is a vector of values
regularly sampling the kernel on the closed
interval [0 positive_half].

{half_width, interp_fcn} interp_fcn is a function handle that
returns interpolating kernel values, given
an array of input values in the interval
[0 positive_half].

makeresampler

14-322

the resampler uses nearest-neighbor interpolation along the first transform
dimension, linear interpolation along the second dimension, and a custom
table-based interpolation along the third.

The padmethod argument controls how the resampler interpolates or assigns
values to output elements that map close to or outside the edge of the input
array. The following table lists all the possible values of padmethod.

In the case of 'fill', 'replicate', 'circular', or 'symmetric', the
resampling performed by tformarray or imtransform occurs in two logical
steps:

1 Pad the array A infinitely to fill the entire input transform space.

Pad Method Description

'bound' Assigns values from the fill value array to points that
map outside the array and repeats border elements of
the array for points that map inside the array (same as
'replicate'). When interpolant is 'nearest', this
pad method produces the same results as 'fill'.
'bound' is like 'fill', but avoids mixing fill values
and input image values.

'circular' Pads array with circular repetition of elements within
the dimension. Same as padarray.

'fill' Generates an output array with smooth-looking edges
(except when using nearest-neighbor interpolation).
For output points that map near the edge of the input
array (either inside or outside), it combines input
image and fill values. When interpolant is 'nearest',
this pad method produces the same results as 'bound'.

'replicate' Pads array by repeating border elements of array.
Same as padarray.

'symmetric' Pads array with mirror reflections of itself. Same as
padarray.

makeresampler

14-323

2 Evaluate the convolution of the padded A with the resampling kernel at the
output points specified by the geometric map.

Each nontransform dimension is handled separately. The padding is virtual,
(accomplished by remapping array subscripts) for performance and memory
efficiency. If you implement a custom resampler, you can implement these
behaviors.

Custom
Resamplers

The syntaxes described above construct a resampler structure that uses the
separable resampler function that ships with the Image Processing Toolbox. It
is also possible to create a resampler structure that uses a user-written
resampler by using this syntax:

R = makeresampler(PropertyName,PropertyValue,...)

The makeresampler function supports the following properties.

Property Description

'Type' Can have the value 'separable' or 'custom' and must always be supplied.
If 'Type' is 'separable', the only other properties that can be specified are
'Interpolant' and 'PadMethod', and the result is equivalent to using the
makeresampler(interpolant,padmethod) syntax. If 'Type' is 'custom',
you must specify the 'NDims' and 'ResampleFcn' properties and, optionally,
the 'CustomData' property.

'PadMethod' See the padmethod argument for more information.

'Interpolant' See the interpolant argument for more information.

'NDims' Positive integer indicating the dimensionality the custom resampler can
handle. Use a value of Inf to indicate that the custom resampler can handle
any dimension. If 'Type' is 'custom', NDims is required.

makeresampler

14-324

Example Stretch an image in the y-direction using a separable resampler that applies
cubic interpolation in the y-direction and nearest-neighbor interpolation in the
x-direction. (This is equivalent to, but faster than, applying bicubic
interpolation.)

A = imread('moon.tif');
resamp = makeresampler({'nearest','cubic'},'fill');
stretch = maketform('affine',[1 0; 0 1.3; 0 0]);
B = imtransform(A,stretch,resamp);

See Also imtransform, tformarray

'ResampleFcn' Handle to a function that performs the resampling. The function is called
with the following interface.

B = resample_fcn(A,M,TDIMS_A,TDIMS_B,FSIZE_A,FSIZE_B,F,R)

See the help for tformarray for information about the inputs A, TDIMS_A,
TDIMS_B, and F. The argument M is an array that maps the transform
subscript space of B to the transform subscript space of A. If A has N
transform dimensions (N = length(TDIMS_A)) and B has P transform
dimensions (P = length(TDIMS_B)), then ndims(M) = P + 1, if N > 1 and P
if N == 1, and size(M,P + 1) = N.

The first P dimensions of M correspond to the output transform space,
permuted according to the order in which the output transform dimensions
are listed in TDIMS_B. (In general TDIMS_A and TDIMS_B need not be sorted in
ascending order, although such a limitation might be imposed by specific
resamplers.) Thus, the first P elements of size(M) determine the sizes of the
transform dimensions of B. The input transform coordinates to which each
point is mapped are arrayed across the final dimension of M, following the
order given in TDIMS_A. M must be double. FSIZE_A and FSIZE_B are the full
sizes of A and B, padded with 1’s as necessary to be consistent with TDIMS_A,
TDIMS_B, and size(A).

'CustomData' User-defined.

Property Description

maketform

14-325

14maketformPurpose Create geometric transformation structure

Syntax T = maketform(transformtype,...)

Description T = maketform(transformtype,...) creates a multidimensional spatial
transformation structure (called a TFORM struct) that can be used with the
tformfwd, tforminv, fliptform, imtransform, or tformarray functions.

transformtype can be any of the following spatial transformation types.
maketform supports a special syntax for each transformation type. See the
following sections for information about these syntaxes.

Transform
Types

Affine
T = maketform('affine',A) builds a TFORM struct T for an N-dimensional
affine transformation. A is a nonsingular real (N+1)-by-(N+1) or (N+1)-by-N
matrix. If A is (N+1)-by-(N+1), the last column of A must be [zeros(N,1);1].
Otherwise, A is augmented automatically, such that its last column is
[zeros(N,1);1]. The matrix A defines a forward transformation such that
tformfwd(U,T), where U is a 1-by-N vector, returns a 1-by-N vector X, such
that X = U * A(1:N,1:N) + A(N+1,1:N). T has both forward and inverse
transformations.

T = maketform('affine',U,X) builds a TFORM struct T for a two-dimensional
affine transformation that maps each row of U to the corresponding row of X.

Transform Type Description

'affine' Affine transformation in 2-D or N-D

'projective' Projective transformation in 2-D or N-D

'custom' User-defined transformation that can be N-D to
M-D

'box' Independent affine transformation (scale and
shift) in each dimension

'composite' Composition of an arbitrary number of more basic
transformations

maketform

14-326

The U and X arguments are each 3-by-2 and define the corners of input and
output triangles. The corners cannot be collinear.

Projective
T = maketform('projective',A) builds a TFORM struct for an N-dimensional
projective transformation. A is a nonsingular real (N+1)-by-(N+1) matrix.
A(N+1,N+1) cannot be 0. The matrix A defines a forward transformation such
that tformfwd(U,T), where U is a 1-by-N vector, returns a 1-by-N vector X, such
that X = W(1:N)/W(N+1), where W = [U 1] * A. The transformation structure
T has both forward and inverse transformations.

T = maketform('projective',U,X) builds a TFORM struct T for a
two-dimensional projective transformation that maps each row of U to the
corresponding row of X. The U and X arguments are each 4-by-2 and define the
corners of input and output quadrilaterals. No three corners can be collinear.

Custom
T = maketform('custom',NDIMS_IN,NDIMS_OUT,...

FORWARD_FCN,INVERSE_FCN,TDATA) builds a custom TFORM
struct T based on user-provided function handles and parameters. NDIMS_IN
and NDIMS_OUT are the numbers of input and output dimensions. FORWARD_FCN
and INVERSE_FCN are function handles to forward and inverse functions. Those
functions must support the following syntaxes:

where U is a P-by-NDIMS_IN matrix whose rows are points in the
transformation's input space, and X is a P-by-NDIMS_OUT matrix whose rows are
points in the transformation's output space. The TDATA argument can be any
MATLAB array and is typically used to store parameters of the custom
transformation. It is accessible to FORWARD_FCN and INVERSE_FCN via the tdata
field of T. Either FORWARD_FCN or INVERSE_FCN can be empty, although at least
INVERSE_FCN must be defined to use T with tformarray or imtransform.

Box
T = maketform('box',tsize,LOW,HIGH) or
T = maketform('box',INBOUNDS, OUTBOUNDS) builds an N-dimensional affine

Forward function: X = FORWARD_FCN(U,T)

Inverse function: U = INVERSE_FCN(X,T)

maketform

14-327

TFORM struct T. The tsize argument is an N-element vector of positive integers.
LOW and HIGH are also N-element vectors. The transformation maps an input
box defined by the opposite corners ones(1,N) and tsize or, alternatively, by
corners INBOUNDS(1,:) and INBOUND(2,:) to an output box defined by the
opposite corners LOW and HIGH or OUTBOUNDS(1,:) and OUTBOUNDS(2,:). LOW(K)
and HIGH(K) must be different unless tsize(K) is 1, in which case the affine
scale factor along the Kth dimension is assumed to be 1.0. Similarly,
INBOUNDS(1,K) and INBOUNDS(2,K) must be different unless OUTBOUNDS(1,K)
and OUTBOUNDS(2,K) are the same, and vice versa. The 'box' TFORM is typically
used to register the row and column subscripts of an image or array to some
world coordinate system.

Composite
T = maketform('composite',T1,T2,...,TL) or
T = maketform('composite', [T1 T2 ... TL]) builds a TFORM struct T whose
forward and inverse functions are the functional compositions of the forward
and inverse functions of T1, T2, ..., TL.

For example, if L = 3, then tformfwd(U,T) is the same as
tformfwd(tformfwd(tformfwd(U,T3),T2),T1). The components T1 through
TL must be compatible in terms of the numbers of input and output dimensions.
T has a defined forward transform function only if all the component
transforms have defined forward transform functions. T has a defined inverse
transform function only if all the component functions have defined inverse
transform functions.

Example Make and apply an affine transformation.

T = maketform('affine',[.5 0 0; .5 2 0; 0 0 1]);
tformfwd([10 20],T)
I = imread('cameraman.tif');
I2 = imtransform(I,T);
imshow(I2)

See Also tformfwd, tforminv, fliptform, imtransform, tformarray

mat2gray

14-328

14mat2grayPurpose Convert a matrix to a grayscale intensity image

Syntax I = mat2gray(A,[amin amax])
I = mat2gray(A)

Description I = mat2gray(A,[amin amax]) converts the matrix A to the intensity image I.
The returned matrix I contains values in the range 0 (black) to 1.0 (full
intensity or white). amin and amax are the values in A that correspond to 0 and
1.0 in I.

I = mat2gray(A) sets the values of amin and amax to the minimum and
maximum values in A.

Class Support The input array A and the output image I are of class double.

Example I = imread('rice.png');
J = filter2(fspecial('sobel'),I);
K = mat2gray(J);
imview(I), imview(K)

See Also gray2ind

mean2

14-329

14mean2Purpose Compute the mean of the elements of a matrix

Syntax B = mean2(A)

Description B = mean2(A) computes the mean of the values in A.

Class Support The input image A can be numeric or logical. The output image B is a scalar
of class double.

Algorithm mean2 computes the mean of an array A using mean(A(:)).

See Also std2

mean, std in the MATLAB Function Reference

medfilt2

14-330

14medfilt2Purpose Perform two-dimensional median filtering

Syntax B = medfilt2(A,[m n])
B = medfilt2(A)
B = medfilt2(A,'indexed',...)

Description Median filtering is a nonlinear operation often used in image processing to
reduce “salt and pepper” noise. Median filtering is more effective than
convolution when the goal is to simultaneously reduce noise and preserve
edges.

B = medfilt2(A,[m n]) performs median filtering of the matrix A in two
dimensions. Each output pixel contains the median value in the m-by-n
neighborhood around the corresponding pixel in the input image. medfilt2
pads the image with 0’s on the edges, so the median values for the points within
[m n]/2 of the edges might appear distorted.

B = medfilt2(A) performs median filtering of the matrix A using the default
3-by-3 neighborhood.

B = medfilt2(A,'indexed',...) processes A as an indexed image, padding
with 0’s if the class of A is uint8, or 1’s if the class of A is double.

Class Support The input image A can be of class logical, uint8, uint16, or double (unless the
'indexed' syntax is used, in which case A cannot be of class uint16). The
output image B is of the same class as A.

Note For information about performance considerations, see ordfilt2.

Remarks If the input image A is of an integer class, all the output values are returned as
integers. If the number of pixels in the neighborhood (i.e., m*n) is even, some of
the median values might not be integers. In these cases, the fractional parts
are discarded. Logical input is treated similarly.

For example, suppose you call medfilt2 using 2-by-2 neighborhoods, and the
input image is a uint8 array that includes this neighborhood.

1 5

medfilt2

14-331

4 8

medfilt2 returns an output value of 4 for this neighborhood, although the true
median is 4.5.

Example This example adds salt and pepper noise to an image, then restores the image
using medfilt2.

I = imread('eight.tif');
J = imnoise(I,'salt & pepper',0.02);
K = medfilt2(J);
imview(J), imview(K)

Algorithm medfilt2 uses ordfilt2 to perform the filtering.

See Also filter2, ordfilt2, wiener2

Reference [1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood
Cliffs, NJ, Prentice Hall, 1990, pp. 469-476.

montage

14-332

14montagePurpose Display multiple image frames as a rectangular montage

Syntax montage(I)
montage(BW)
montage(X,map)
montage(RGB)
h = montage(...)

Description montage displays all the frames of a multiframe image array in a single image
object, arranging the frames so that they roughly form a square.

montage(I) displays the k frames of the intensity image array I. I is
m-by-n-by-1-by-k.

montage(BW) displays the k frames of the binary image array BW. BW is
m-by-n-by-1-by-k.

montage(X,map) displays the k frames of the indexed image array X, using the
colormap map for all frames. X is m-by-n-by-1-by-k.

montage(RGB) displays the k frames of the true-color image array RGB. RGB is
m-by-n-by-3-by-k.

h = montage(...) returns the handle to the image object.

Class Support The input image can be of class logical, uint8, uint16, or double.

Example load mri
montage(D,map)

montage

14-333

See Also immovie

nlfilter

14-334

14nlfilterPurpose Perform general sliding-neighborhood operations

Syntax B = nlfilter(A,[m n],fun)
B = nlfilter(A,[m n],fun,P1,P2,...)
B = nlfilter(A,'indexed',...)

Description B = nlfilter(A,[m n],fun) applies the function fun to each m-by-n sliding
block of A. fun is a function that accepts an m-by-n matrix as input and returns
a scalar result.

c = fun(x)

c is the output value for the center pixel in the m-by-n block x. nlfilter calls
fun for each pixel in A. nlfilter zero-pads the m-by-n block at the edges, if
necessary.

B = nlfilter(A,[m n],fun,P1,P2,...) passes the additional parameters
P1,P2,... to fun.

B = nlfilter(A,'indexed',...) processes A as an indexed image, padding
with 1’s if A is of class double and 0’s if A is of class uint8.

Class Support The input image A can be of any class supported by fun. The class of B depends
on the class of the output from fun.

Remarks nlfilter can take a long time to process large images. In some cases, the
colfilt function can perform the same operation much faster.

Example fun can be a function_handle, created using @. This example produces the
same result as calling medfilt2 with a 3-by-3 neighborhood.

B = nlfilter(A,[3 3],@myfun);

where myfun is an M-file containing

function scalar = myfun(x)
scalar = median(x(:));

fun can also be an inline object. The example above can be written as

fun = inline('median(x(:))');

See Also blkproc, colfilt

normxcorr2

14-335

14normxcorr2Purpose Normalized two-dimensional cross-correlation

Syntax C = normxcorr2(TEMPLATE,A)

Description C = normxcorr2(TEMPLATE,A) computes the normalized cross-correlation of
the matrices TEMPLATE and A. The matrix A must be larger than the matrix
TEMPLATE for the normalization to be meaningful. The values of TEMPLATE
cannot all be the same. The resulting matrix C contains the correlation
coefficients, which can range in value from -1.0 to 1.0.

Class Support The input matrices can be of class uint8, uint16, or double.

Algorithm normxcorr2 uses the following general procedure:

1 Calculate cross-correlation in the spatial or the frequency domain,
depending on size of images.

2 Calculate local sums by precomputing running sums. [1]

3 Use local sums to normalize the cross-correlation to get correlation
coefficients. [2]

Example T = .2*ones(11); % make light gray plus on dark gray background
T(6,3:9) = .6;
T(3:9,6) = .6;
BW = T>0.5; % make white plus on black background
imview(BW), title('Binary')
figure, imshow(T), title('Template')

% make new image that offsets template T
T_offset = .2*ones(21);
offset = [3 5]; % shift by 3 rows, 5 columns
T_offset((1:size(T,1))+offset(1), (1:size(T,2))+offset(2)) = T;
imview(T_offset), title('Offset Template')

% cross-correlate BW and T_offset to recover offset
cc = normxcorr2(BW,T_offset);
[max_cc, imax] = max(abs(cc(:)));
[ypeak, xpeak] = ind2sub(size(cc),imax(1));
corr_offset = [(ypeak-size(T,1)) (xpeak-size(T,2))];
isequal(corr_offset,offset) % 1 means offset was recovered

normxcorr2

14-336

See Also corrcoef

References [1] Lewis, J. P., “Fast Normalized Cross-Correlation,” Industrial Light &
Magic,
<http://www.idiom.com/~zilla/Papers/nvisionInterface/nip.html>

[2] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision,
Volume II, Addison-Wesley, 1992, pp. 316-317.

ntsc2rgb

14-337

14ntsc2rgbPurpose Convert NTSC values to RGB color space

Syntax rgbmap = ntsc2rgb(yiqmap)
RGB = ntsc2rgb(YIQ)

Description rgbmap = ntsc2rgb(yiqmap) converts the m-by-3 NTSC (television) color
values in yiqmap to RGB color space. If yiqmap is m-by-3 and contains the NTSC
luminance (Y) and chrominance (I and Q) color components as columns, then
rgbmap is an m-by-3 matrix that contains the red, green, and blue values
equivalent to those colors. Both rgbmap and yiqmap contain intensities in the
range 0 to 1.0. The intensity 0 corresponds to the absence of the component,
while the intensity 1.0 corresponds to full saturation of the component.

RGB = ntsc2rgb(YIQ) converts the NTSC image YIQ to the equivalent
true-color image RGB.

ntsc2rgb computes the RGB values from the NTSC components using

Class Support The input image or colormap must be of class double. The output is of class
double.

See Also rgb2ntsc, rgb2ind, ind2rgb, ind2gray

R
G
B

1.000 0.956 0.621
1.000 0.272– 0.647–

1.000 1.106– 1.703

Y
I
Q

=

ordfilt2

14-338

14ordfilt2Purpose Perform two-dimensional order-statistic filtering

Syntax B = ordfilt2(A,order,domain)
B = ordfilt2(A,order,domain,S)
B = ordfilt2(...,padopt)

Description B = ordfilt2(A,order,domain) replaces each element in A by the orderth
element in the sorted set of neighbors specified by the nonzero elements in
domain.

B = ordfilt2(A,order,domain,S), where S is the same size as domain, uses
the values of S corresponding to the nonzero values of domain as additive
offsets.

B = ordfilt2(...,padopt) controls how the matrix boundaries are padded.
Set padopt to 'zeros' (the default) or 'symmetric'. If padopt is 'zeros', A is
padded with 0’s at the boundaries. If padopt is 'symmetric', A is symmetrically
extended at the boundaries.

Class Support The class of A can be logical, uint8, uint16, or double. The class of B is the
same as the class of A, unless the additive offset form of ordfilt2 is used, in
which case the class of B is double.

Remarks domain is equivalent to the structuring element used for binary image
operations. It is a matrix containing only 1’s and 0’s; the 1’s define the
neighborhood for the filtering operation.

For example, B = ordfilt2(A,5,ones(3,3)) implements a 3-by-3 median
filter; B = ordfilt2(A,1,ones(3,3)) implements a 3-by-3 minimum filter;
and B = ordfilt2(A,9,ones(3,3)) implements a 3-by-3 maximum filter.
B = ordfilt2(A,1,[0 1 0; 1 0 1; 0 1 0]) replaces each element in A by the
minimum of its north, east, south, and west neighbors.

The syntax that includes S (the matrix of additive offsets) can be used to
implement grayscale morphological operations, including grayscale dilation
and erosion.

Performance Considerations
When working with large domain matrices that do not contain any zero-valued
elements, ordfilt2 can achieve higher performance if A is in an integer data

ordfilt2

14-339

format (uint8, int8, uint16, int16). The gain in speed is larger for uint8 and
int8 than for the 16-bit data types. For 8-bit data formats, the domain matrix
must contain seven or more rows. For 16-bit data formats, the domain matrix
must contain three or more rows and 520 or more elements.

See Also medfilt2

Reference [1] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision,
Volume I, Addison-Wesley, 1992.

[2] Huang, T.S., G.J.Yang, and G.Y.Tang. “A fast two-dimensional median
filtering algorithm.”, IEEE transactions on Acoustics, Speech and Signal
Processing, Vol ASSP 27, No. 1, February 1979.

otf2psf

14-340

14otf2psfPurpose Convert optical transfer function to point-spread function

Syntax PSF = otf2psf(OTF)
PSF = otf2psf(OTF,OUTSIZE)

Description PSF = otf2psf(OTF) computes the inverse Fast Fourier Transform (IFFT) of
the optical transfer function (OTF) array and creates a point-spread function
(PSF), centered at the origin. By default, the PSF is the same size as the OTF.

PSF = otf2psf(OTF,OUTSIZE) converts the OTF array into a PSF array, where
OUTSIZE specifies the size of the output point-spread function. The size of the
output array must not exceed the size of the OTF array in any dimension.

To center the PSF at the origin, otf2psf circularly shifts the values of the
output array down (or to the right) until the (1,1) element reaches the central
position, then it crops the result to match dimensions specified by OUTSIZE.

Note that this function is used in image convolution/deconvolution when the
operations involve the FFT.

Class Support OTF can be any nonsparse, numeric array. PSF is of class double.

Example PSF = fspecial('gaussian',13,1);
OTF = psf2otf(PSF,[31 31]); % PSF --> OTF
PSF2 = otf2psf(OTF,size(PSF)); % OTF --> PSF2
subplot(1,2,1); surf(abs(OTF)); title('|OTF|');
axis square; axis tight
subplot(1,2,2); surf(PSF2); title('Corresponding PSF');
axis square; axis tight

See Also psf2otf, circshift, padarray

padarray

14-341

14padarrayPurpose Pad an array

Syntax B = padarray(A,padsize)
B = padarray(A,padsize,padval)
B = padarray(A,padsize,padval,direction)
B = padarray(A,padsize,method,direction)

Description B = padarray(A,padsize) pads array A with padsize(k) number of 0’s along
the kth dimension of A. padsize should be a vector of positive integers.

B = padarray(A,padsize,padval) pads array A with padval (a scalar) instead
of with 0’s.

B = padarray(A,padsize,padval,direction) pads A in the direction
specified by the string direction. direction can be one of the following
strings. The default value is enclosed in braces ({}).

B = padarray(A,padsize,method,direction) pads array A using the specified
padding method. method specifies the method used to determine the values of
the elements added as padding. You can use the following strings to specify the
method used to determine pad values.

Value Meaning

{'both'} Pads before the first element and after the last array
element along each dimension. This is the default.

'post' Pad after the last array element along each dimension.

'pre' Pad before the first array element along each dimension.

Value Meaning

'circular' Pad with circular repetition of elements within the
dimension.

'replicate' Pad by repeating border elements of array.

'symmetric' Pad array with mirror reflections of itself.

padarray

14-342

Class Support When padding with a constant value, A can be numeric or logical. When
padding using the 'circular', 'replicate', or 'symmetric' methods, A can
be of any class. B is of the same class as A.

Example Add three elements of padding to the beginning of a vector. The padding
elements contain mirror copies of the array.

b = padarray([1 2 3 4],3,'symmetric','pre')
b =

 3 2 1 1 2 3 4

Add three elements of padding to the end of the first dimension of the array and
two elements of padding to the end of the second dimension. Use the value of
the last array element as the padding value.

B = padarray([1 2; 3 4],[3 2],'replicate','post')
B =

 1 2 2 2
 3 4 4 4
 3 4 4 4
 3 4 4 4
 3 4 4 4

Add three elements of padding to each dimension of a three-dimensional array.
Each pad element contains the value 0.

A = [1 2; 3 4];
B = [5 6; 7 8];
C = cat(3,A,B)
C(:,:,1) =

 1 2
 3 4

C(:,:,2) =

 5 6
 7 8

padarray

14-343

D = padarray(C,[3 3],0,'both')
D(:,:,1) =
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 1 2 0 0 0
 0 0 0 3 4 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

D(:,:,2) =
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 5 6 0 0 0
 0 0 0 7 8 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

See Also circshift, imfilter

para2fan

14-344

14para2fanPurpose Compute fan-beam projections from parallel-beam tomography data

Syntax F = para2fan(P,D)
I = para2fan(...,param1,val1,param2,val2,...)
[F,fan_positions,fan_rotation_angles] = fan2para(...)

Description F = para2fan(P,D) computes the fan-beam data (sinogram) F from the
parallel-beam data (sinogram) P. Each column of P contains the parallel-beam
sensor samples at one rotation angle. D is the distance in pixels from the center
of rotation to the center of the sensors.

The sensors are assumed to have a one-pixel spacing. The parallel-beam
rotation angles are assumed to be spaced equally to cover [0,180] degrees. The
calculated fan-beam rotation angles cover [0,360) with the same spacing as the
parallel-beam rotation angles. The calculated fan-beam angles are equally
spaced with the spacing set to the smallest angle implied by the sensor spacing.

I = para2fan(...,param1,val1,param2,val2,...) specifies parameters
that control various aspects of the para2fan conversion. Parameter names can
be abbreviated, and case does not matter. Default values are enclosed in braces
like this: {default}. Parameters include

Parameter Description

'FanCoverage' String specifying the range through which the beams are
rotated.

Possible values: {'cycle'} or 'minimal'

See ifanbeam for details.

'FanRotationIncrement' Positive real scalar specifying the rotation angle increment of
the fan-beam projections in degrees.

If 'FanCoverage' is 'cycle', 'FanRotationIncrement' must
be a factor of 360.

If 'FanRotationIncrement' is not specified, then it is set to
the same spacing as the parallel-beam rotation angles.

para2fan

14-345

'FanSensorGeometry' Text string specifying how sensors are positioned.
Possible values: {'arc'} or 'line'
See fanbeam for details.

'FanSensorSpacing' Positive real scalar specifying the spacing of the fan beams.
Interpretation of the value depends on the setting of
'FanSensorGeometry':

If 'FanSensorGeometry' is 'arc', the value defines the
angular spacing in degrees. Default value is 1.

If 'FanSensorGeometry' is 'line', the value defines the linear
spacing in pixels.

If 'FanSensorSpacing' is not specified, the default is the
smallest value implied by 'ParallelSensorSpacing' such
that

If 'FanSensorGeometry' is 'arc', 'FanSensorSpacing' is

 180/PI*ASIN(PSPACE/D)

where PSPACE is the value of 'ParallelSensorSpacing'.

If 'FanSensorGeometry' is 'line', 'FanSensorSpacing' is

 D*ASIN(PSPACE/D)

'Interpolation' Text string specifying the type of interpolation used between
the parallel-beam and fan-beam data.

'nearest' — Nearest-neighbor

{'linear'} — Linear

'spline' — Piecewise cubic spline

'pchip' — Piecewise cubic Hermite (PCHIP)

'cubic' — Same as 'pchip'

Parameter Description

para2fan

14-346

[F,fan_positions,fan_rotation_angles] = fan2para(...) If
'FanSensorGeometry' is 'arc', fan_positions contains the fan-beam sensor
measurement angles. If 'FanSensorGeometry' is 'line', fan_positions
contains the fan-beam sensor positions along the line of sensors.
fan_rotation_angles contains rotation angles.

Class Support All numeric input arguments must be of class double. The output arguments
are of class double.

Example Generate parallel-beam projections

ph = phantom(128);
theta = 0:180;

'ParallelCoverage' Text string specifying the range of rotation.

'cycle' — Parallel data covers 360 degrees

{'halfcycle'} — Parallel data covers 180 degrees

'ParallelRotationIncrement' Positive real scalar specifying the parallel-beam rotation
angle increment, measured in degrees. Parallel beam angles
are calculated to cover [0,180) degrees with increment
PAR_ROT_INC, where PAR_ROT_INC is the value of
'ParallelRotationIncrement'. 180/PAR_ROT_INC must be
an integer.
If 'ParallelRotationIncrement' is not specified, the
increment is assumed to be the same as the increment of the
fan-beam rotation angles.

'ParallelSensorSpacing' Positive real scalar specifying the spacing of the
parallel-beam sensors in pixels. The range of sensor locations
is implied by the range of fan angles and is given by

[D*sin(min(FAN_ANGLES)),D*sin(max(FAN_ANGLES))]

If 'ParallelSensorSpacing' is not specified, the spacing is
assumed to be uniform and is set to the minimum spacing
implied by the fan angles and sampled over the range implied
by the fan angles.

Parameter Description

para2fan

14-347

[P,xp] = radon(ph,theta);
imshow(theta,xp,P,[],'n'), axis normal
title('Parallel-Beam Projections')
xlabel('\theta (degrees)')
ylabel('x''')
colormap(hot), colorbar

Convert to fan-beam projections

[F,Fpos,Fangles] = para2fan(P,100);
figure, imshow(Fangles,Fpos,F,[],'n'), axis normal
title('Fan-Beam Projections')
xlabel('\theta (degrees)')
ylabel('Sensor Locations (degrees)')
colormap(hot), colorbar

See Also fan2para, fanbeam, iradon, ifanbeam, phantom, radon

phantom

14-348

14phantomPurpose Generate a head phantom image

Syntax P = phantom(def,n)
P = phantom(E,n)
[P,E] = phantom(...)

Description P = phantom(def,n) generates an image of a head phantom that can be used
to test the numerical accuracy of radon and iradon or other two-dimensional
reconstruction algorithms. P is a grayscale intensity image that consists of one
large ellipse (representing the brain) containing several smaller ellipses
(representing features in the brain).

def is a string that specifies the type of head phantom to generate. Valid values
are

• 'Shepp-Logan'— Test image used widely by researchers in tomography

• 'Modified Shepp-Logan' (default) — Variant of the Shepp-Logan phantom
in which the contrast is improved for better visual perception

n is a scalar that specifies the number of rows and columns in P. If you omit the
argument, n defaults to 256.

P = phantom(E,n) generates a user-defined phantom, where each row of the
matrix E specifies an ellipse in the image. E has six columns, with each column
containing a different parameter for the ellipses. This table describes the
columns of the matrix.

Column Parameter Meaning

Column 1 A Additive intensity value of the
ellipse

Column 2 a Length of the horizontal semiaxis of
the ellipse

Column 3 b Length of the vertical semiaxis of
the ellipse

Column 4 x0 x-coordinate of the center of the
ellipse

phantom

14-349

For purposes of generating the phantom, the domains for the x- and y-axes
span [-1,1]. Columns 2 through 5 must be specified in terms of this range.

[P,E] = phantom(...) returns the matrix E used to generate the phantom.

Class Support All inputs and all outputs must be of class double.

Remarks For any given pixel in the output image, the pixel’s value is equal to the sum of
the additive intensity values of all ellipses that the pixel is a part of. If a pixel
is not part of any ellipse, its value is 0.

The additive intensity value A for an ellipse can be positive or negative; if it is
negative, the ellipse will be darker than the surrounding pixels. Note that,
depending on the values of A, some pixels can have values outside the range
[0,1].

Example P = phantom('Modified Shepp-Logan',200);
imshow(P)

Column 5 y0 y-coordinate of the center of the
ellipse

Column 6 phi Angle (in degrees) between the
horizontal semiaxis of the ellipse
and the x-axis of the image

Column Parameter Meaning

phantom

14-350

Reference [1] Jain, Anil K., Fundamentals of Digital Image Processing, Englewood Cliffs,
NJ, Prentice Hall, 1989, p. 439.

See Also radon, iradon

pixval

14-351

14pixvalPurpose Display information about image pixels

Syntax pixval on
pixval off
pixval
pixval(fig,option)
pixval(ax,option)
pixval(H,option)

Description pixval on turns on interactive display of information about image pixels in the
current figure. pixval installs a black bar at the bottom of the figure, which
displays the (x,y) coordinates for whatever pixel the cursor is currently over
and the color information for that pixel. If the image is binary or intensity, the
color information is a single intensity value. If the image is indexed or RGB,
the color information is an RGB triplet. The values displayed are the actual
data values, regardless of the class of the image array, or whether the data is
in normal image range.

If you click the image and hold down the mouse button while you move the
cursor, pixval also displays the Euclidean distance between the point you
clicked and the current cursor location. pixval draws a line between these
points to indicate the distance being measured. When you release the mouse
button, the line and the distance display disappear.

You can move the display bar by clicking it and dragging it to another place in
the figure.

pixval off turns interactive display off in the current figure. You can also turn
off the display by clicking the button on the right side of the display bar.

pixval toggles interactive display on or off in the current figure.

pixval(fig,option) applies the pixval command to the figure specified by
fig. option is a string containing 'on' or 'off'.

pixval(ax,option) applies the pixval command to the figure that contains
the axes ax. option is a string containing 'on' or 'off'.

pixval(H,option) applies the pixval command to the figure that contains the
image object H. option is a string containing 'on' or 'off'.

pixval

14-352

See Also impixel, improfile

poly2mask

14-353

14poly2maskPurpose Convert region polygon to region mask

Syntax BW = poly2mask(x,y,m,n)

Purpose BW = poly2mask(x,y,m,n) computes a binary region-of-interest mask BW from
a region-of-interest polygon represented by the vectors x and y. The size of BW
is m-by-n. Pixels in BW that are inside the polygon (x,y) are set to 1; pixels
outside the polygon are set to 0 (zero). The class of BW is logical.

poly2mask closes the polygon automatically if it isn't already closed.

Example x = [63 186 54 190 63];
y = [60 60 209 204 60];
bw = poly2mask(x,y,256,256);
imshow(bw)
hold on
plot(x,y,'b','LineWidth',2)
hold off

Create a mask using random points.

x = 256*rand(1,4);
y = 256*rand(1,4);
x(end+1) = x(1);
y(end+1) = y(1);
bw = poly2mask(x,y,256,256);
imshow(bw)
hold on
plot(x,y,'b','LineWidth',2)
hold off

See Also roipoly

psf2otf

14-354

14psf2otfPurpose Convert point-spread function to optical transfer function

Syntax OTF = psf2otf(PSF)
OTF = psf2otf(PSF,OUTSIZE)

Description OTF = psf2otf(PSF) computes the fast Fourier transform (FFT) of the
point-spread function (PSF) array and creates the optical transfer function
array, OTF, that is not influenced by the PSF off-centering. By default, the OTF
array is the same size as the PSF array.

OTF = psf2otf(PSF,OUTSIZE) converts the PSF array into an OTF array, where
OUTSIZE specifies the size of the OTF array. OUTSIZE cannot be smaller than the
PSF array size in any dimension.

To ensure that the OTF is not altered because of PSF off-centering, psf2otf
postpads the PSF array (down or to the right) with 0’s to match dimensions
specified in OUTSIZE, then circularly shifts the values of the PSF array up (or to
the left) until the central pixel reaches (1,1) position.

Note that this function is used in image convolution/deconvolution when the
operations involve the FFT.

Class Support PSF can be any nonsparse, numeric array. OTF is of class double.

Example PSF = fspecial('gaussian',13,1);
OTF = psf2otf(PSF,[31 31]); % PSF --> OTF
subplot(1,2,1); surf(PSF); title('PSF');
axis square; axis tight
subplot(1,2,2); surf(abs(OTF)); title('Corresponding |OTF|');
axis square; axis tight

See Also otf2psf, circshift, padarray

qtdecomp

14-355

14qtdecompPurpose Perform quadtree decomposition

Syntax S = qtdecomp(I)
S = qtdecomp(I,threshold)
S = qtdecomp(I,threshold,mindim)
S = qtdecomp(I,threshold,[mindim maxdim])

S = qtdecomp(I,fun)
S = qtdecomp(I,fun,P1,P2,...)

Description qtdecomp divides a square image into four equal-sized square blocks, and then
tests each block to see if it meets some criterion of homogeneity. If a block
meets the criterion, it is not divided any further. If it does not meet the
criterion, it is subdivided again into four blocks, and the test criterion is applied
to those blocks. This process is repeated iteratively until each block meets the
criterion. The result can have blocks of several different sizes.

S = qtdecomp(I) performs a quadtree decomposition on the intensity image I
and returns the quadtree structure in the sparse matrix S. If S(k,m) is nonzero,
then (k,m) is the upper left corner of a block in the decomposition, and the size
of the block is given by S(k,m). By default, qtdecomp splits a block unless all
elements in the block are equal.

S = qtdecomp(I,threshold) splits a block if the maximum value of the block
elements minus the minimum value of the block elements is greater than
threshold. threshold is specified as a value between 0 and 1, even if I is of
class uint8 or uint16. If I is uint8, the threshold value you supply is
multiplied by 255 to determine the actual threshold to use; if I is uint16, the
threshold value you supply is multiplied by 65535.

S = qtdecomp(I,threshold,mindim) will not produce blocks smaller than
mindim, even if the resulting blocks do not meet the threshold condition.

S = qtdecomp(I,threshold,[mindim maxdim]) will not produce blocks
smaller than mindim or larger than maxdim. Blocks larger than maxdim are split
even if they meet the threshold condition. maxdim/mindim must be a power of 2.

S = qtdecomp(I,fun) uses the function fun to determine whether to split a
block. qtdecomp calls fun with all the current blocks of size m-by-m stacked into
an m-by-m-by-k array, where k is the number of m-by-m blocks. fun should return

qtdecomp

14-356

a logical k-element vector, whose values are 1 if the corresponding block should
be split, and 0 otherwise. (For example, if k(3) is 0, the third m-by-m block
should not be split.) fun can be a function_handle, created using @, or an inline
object.

S = qtdecomp(I,fun,P1,P2,...) passes P1,P2,... as additional arguments
to fun.

Class Support For the syntaxes that do not include a function, the input image can be of class
logical, uint8, uint16, or double. For the syntaxes that include a function,
the input image can be of any class supported by the function. The output
matrix is always of class sparse.

Remarks qtdecomp is appropriate primarily for square images whose dimensions are a
power of 2, such as 128-by-128 or 512-by-512. These images can be divided
until the blocks are as small as 1-by-1. If you use qtdecomp with an image
whose dimensions are not a power of 2, at some point the blocks cannot be
divided further. For example, if an image is 96-by-96, it can be divided into
blocks of size 48-by-48, then 24-by-24, 12-by-12, 6-by-6, and finally 3-by-3. No
further division beyond 3-by-3 is possible. To process this image, you must set
mindim to 3 (or to 3 times a power of 2); if you are using the syntax that includes
a function, the function must return 0 at the point when the block cannot be
divided further.

Example I = [1 1 1 1 2 3 6 6
 1 1 2 1 4 5 6 8
 1 1 1 1 10 15 7 7
 1 1 1 1 20 25 7 7
 20 22 20 22 1 2 3 4
 20 22 22 20 5 6 7 8
 20 22 20 20 9 10 11 12
 22 22 20 20 13 14 15 16];

S = qtdecomp(I,5);

full(S)

qtdecomp

14-357

ans =

 4 0 0 0 2 0 2 0
 0 0 0 0 0 0 0 0
 0 0 0 0 1 1 2 0
 0 0 0 0 1 1 0 0
 4 0 0 0 2 0 2 0
 0 0 0 0 0 0 0 0
 0 0 0 0 2 0 2 0
 0 0 0 0 0 0 0 0

View the block representation of quadtree decomposition.

I = imread('liftingbody.png');
S = qtdecomp(I,.27);
blocks = repmat(uint8(0),size(S));

for dim = [512 256 128 64 32 16 8 4 2 1];
numblocks = length(find(S==dim));
if (numblocks > 0)

values = repmat(uint8(1),[dim dim numblocks]);
values(2:dim,2:dim,:) = 0;
blocks = qtsetblk(blocks,S,dim,values);

end
end

blocks(end,1:end) = 1;
blocks(1:end,end) = 1;

imshow(I),figure,imshow(blocks,[])

The following figure shows the original image and a representation of the
quadtree decomposition of the image.

qtdecomp

14-358

See Also qtgetblk, qtsetblk

Image Courtesy of NASA

qtgetblk

14-359

14qtgetblkPurpose Get block values in quadtree decomposition

Syntax [vals,r,c] = qtgetblk(I,S,dim)
[vals,idx] = qtgetblk(I,S,dim)

Description [vals,r,c] = qtgetblk(I,S,dim) returns in vals an array containing the
dim-by-dim blocks in the quadtree decomposition of I. S is the sparse matrix
returned by qtdecomp; it contains the quadtree structure. vals is a
dim-by-dim-by-k array, where k is the number of dim-by-dim blocks in the
quadtree decomposition; if there are no blocks of the specified size, all outputs
are returned as empty matrices. r and c are vectors containing the row and
column coordinates of the upper left corners of the blocks.

[vals,idx] = qtgetblk(I,S,dim) returns in idx a vector containing the
linear indices of the upper left corners of the blocks.

Class Support I can be of class logical, uint8, uint16, or double. S is of class sparse.

Remarks The ordering of the blocks in vals matches the columnwise order of the blocks
in I. For example, if vals is 4-by-4-by-2, vals(:,:,1) contains the values from
the first 4-by-4 block in I, and vals(:,:,2) contains the values from the second
4-by-4 block.

Example This example continues the qtdecomp example.

[vals,r,c] = qtgetblk(I,S,4)

vals(:,:,1) =

 1 1 1 1
 1 1 2 1
 1 1 1 1
 1 1 1 1

qtgetblk

14-360

vals(:,:,2) =

 20 22 20 22
 20 22 22 20
 20 22 20 20
 22 22 20 20

r =

 1
 5

c =

 1
 1

See Also qtdecomp, qtsetblk

qtsetblk

14-361

14qtsetblkPurpose Set block values in quadtree decomposition

Syntax J = qtsetblk(I,S,dim,vals)

Description J = qtsetblk(I,S,dim,vals) replaces each dim-by-dim block in the quadtree
decomposition of I with the corresponding dim-by-dim block in vals. S is the
sparse matrix returned by qtdecomp; it contains the quadtree structure. vals
is a dim-by-dim-by-k array, where k is the number of dim-by-dim blocks in the
quadtree decomposition.

Class Support I can be of class logical, uint8, uint16, or double. S is of class sparse.

Remarks The ordering of the blocks in vals must match the columnwise order of the
blocks in I. For example, if vals is 4-by-4-by-2, vals(:,:,1) contains the
values used to replace the first 4-by-4 block in I, and vals(:,:,2) contains the
values for the second 4-by-4 block.

Example This example continues the qtgetblock example.

newvals = cat(3,zeros(4),ones(4));
J = qtsetblk(I,S,4,newvals)

J =

 0 0 0 0 2 3 6 6
 0 0 0 0 4 5 6 8
 0 0 0 0 10 15 7 7
 0 0 0 0 20 25 7 7
 1 1 1 1 1 2 3 4
 1 1 1 1 5 6 7 8
 1 1 1 1 9 10 11 12
 1 1 1 1 13 14 15 16

See Also qtdecomp, qtgetblk

qtsetblk

14-362

radon
Purpose Radon transform

Syntax R = radon(I,theta)
[R,xp] = radon(...)

Description R = radon(I,theta) returns the Radon transform R of the intensity image I
for the angle theta degrees.

The Radon transform is the projection of the image intensity along a radial line
oriented at a specific angle. If theta is a scalar, R is a column vector containing
the Radon transform for theta degrees. If theta is a vector, R is a matrix in
which each column is the Radon transform for one of the angles in theta. If you
omit theta, it defaults to 0:179.

[R,xp] = radon(...) returns a vector xp containing the radial coordinates
corresponding to each row of R.

The radial coordinates returned in xp are the values along the x'-axis, which is
oriented at theta degrees counterclockwise from the x-axis. The origin of both
axes is the center pixel of the image, which is defined as

floor((size(I)+1)/2)

For example, in a 20-by-30 image, the center pixel is (10,15).

Class Support I can be of class double, logical, or any integer class. All other inputs and
outputs are of class double.

Example iptsetpref('ImshowAxesVisible','on')
I = zeros(100,100);
I(25:75,25:75) = 1;
theta = 0:180;
[R,xp] = radon(I,theta);
imshow(theta,xp,R,[],'notruesize')
xlabel('\theta (degrees)')
ylabel('x''')
colormap(hot), colorbar

qtsetblk

14-363

See Also fan2para, fanbeam, ifanbeam, iradon, para2fan, phantom

References Bracewell, Ronald N., Two-Dimensional Imaging, Englewood Cliffs, NJ,
Prentice Hall, 1995, pp. 505-537.

Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs,
NJ, Prentice Hall, 1990, pp. 42-45.

θ (degrees)

x’

0 20 40 60 80 100 120 140 160 180

−60

−40

−20

0

20

40

60 10

20

30

40

50

60

70

reflect

14-364

14reflectPurpose Reflect structuring element

Syntax SE2 = reflect(SE)

Description SE2 = reflect(SE) reflects a structuring element through its center. The
effect is the same as if you rotated the structuring element's domain 180
degrees around its center (for a 2-D structuring element). If SE is an array of
structuring element objects, then reflect(SE) reflects each element of SE, and
SE2 has the same size as SE.

Class Support SE and SE2 are STREL objects.

Example se = strel([0 0 1; 0 0 0; 0 0 0])
se2 = reflect(se)
se =
Flat STREL object containing 1 neighbor.

Neighborhood:
 0 0 1
 0 0 0
 0 0 0

se2 =
Flat STREL object containing 1 neighbor.

Neighborhood:
 0 0 0
 0 0 0
 1 0 0

See Also strel

regionprops

14-365

14regionpropsPurpose Measure properties of image regions

Syntax STATS = regionprops(L,properties)

Description STATS = regionprops(L,properties) measures a set of properties for each
labeled region in the label matrix L. Positive integer elements of L correspond
to different regions. For example, the set of elements of L equal to 1 corresponds
to region 1; the set of elements of L equal to 2 corresponds to region 2; and so
on. The return value STATS is a structure array of length max(L(:)). The fields
of the structure array denote different measurements for each region, as
specified by properties.

properties can be a comma-separated list of strings, a cell array containing
strings, the single string 'all', or the string 'basic'. This table lists the set
of valid property strings. Property strings are case insensitive and can be
abbreviated.

If properties is the string 'all', then all the preceding measurements are
computed. If properties is not specified or if it is the string 'basic', then
these measurements are computed: 'Area', 'Centroid', and 'BoundingBox'.

Definitions 'Area'— Scalar; the actual number of pixels in the region. (This value might
differ slightly from the value returned by bwarea, which weights different
patterns of pixels differently.)

'Area' 'EquivDiameter' 'MajorAxisLength'

'BoundingBox' 'EulerNumber' 'MinorAxisLength'

'Centroid' 'Extent' 'Orientation'

'ConvexArea' 'Extrema' 'PixelIdxList'

'ConvexHull' 'FilledArea' 'PixelList'

'ConvexImage' 'FilledImage' 'Solidity'

'Eccentricity' 'Image'

regionprops

14-366

'BoundingBox'— 1-by-ndims(L)*2 vector; the smallest rectangle containing
the region. BoundingBox is [ul_corner width], where

'Centroid'— 1-by-ndims(L) vector; the center of mass of the region. Note that
the first element of Centroid is the horizontal coordinate (or x-coordinate) of
the center of mass, and the second element is the vertical coordinate (or
y-coordinate). All other elements of Centroid are in order of dimension.

This figure illustrates the centroid and bounding box. The region consists of the
white pixels; the green box is the bounding box, and the red dot is the centroid.

'MajorAxisLength'— Scalar; the length (in pixels) of the major axis of the
ellipse that has the same normalized second central moments as the region.
This property is supported only for 2-D input label matrices.

'MinorAxisLength' — Scalar; the length (in pixels) of the minor axis of the
ellipse that has the same normalized second central moments as the region.
This property is supported only for 2-D input label matrices.

'Eccentricity' — Scalar; the eccentricity of the ellipse that has the same
second-moments as the region. The eccentricity is the ratio of the distance
between the foci of the ellipse and its major axis length. The value is between
0 and 1. (0 and 1 are degenerate cases; an ellipse whose eccentricity is 0 is
actually a circle, while an ellipse whose eccentricity is 1 is a line segment.) This
property is supported only for 2-D input label matrices.

'Orientation' — Scalar; the angle (in degrees) between the x-axis and the
major axis of the ellipse that has the same second-moments as the region. This
property is supported only for 2-D input label matrices.

ul_corner is in the form [x y z ...] and specifies the upper left
corner of the bounding box

width is in the form [x_width y_width ...] and specifies
the width of the bounding box along each dimension

regionprops

14-367

This figure illustrates the axes and orientation of the ellipse. The left side of
the figure shows an image region and its corresponding ellipse. The right side
shows the same ellipse, with features indicated graphically; the solid blue lines
are the axes, the red dots are the foci, and the orientation is the angle between
the horizontal dotted line and the major axis.

'Image' — Binary image (logical) of the same size as the bounding box of the
region; the on pixels correspond to the region, and all other pixels are off.

'FilledImage' — Binary image (logical) of the same size as the bounding
box of the region. The on pixels correspond to the region, with all holes filled in.

'FilledArea' — Scalar; the number of on pixels in FilledImage.

Original Image, Containing a Single Region Image Returned

regionprops

14-368

'ConvexHull' — p-by-2 matrix; the smallest convex polygon that can contain
the region. Each row of the matrix contains the x- and y-coordinates of one
vertex of the polygon. This property is supported only for 2-D input label
matrices.

'ConvexImage' — Binary image (logical); the convex hull, with all pixels
within the hull filled in (i.e., set to on). (For pixels that the boundary of the hull
passes through, regionprops uses the same logic as roipoly to determine
whether the pixel is inside or outside the hull.) The image is the size of the
bounding box of the region. This property is supported only for 2-D input label
matrices.

'ConvexArea' — Scalar; the number of pixels in 'ConvexImage'. This property
is supported only for 2-D input label matrices.

'EulerNumber' – Scalar; equal to the number of objects in the region minus the
number of holes in those objects. This property is supported only for 2-D input
label matrices.

'Extrema' — 8-by-2 matrix; the extrema points in the region. Each row of the
matrix contains the x- and y-coordinates of one of the points. The format of the
vector is [top-left top-right right-top right-bottom bottom-right
bottom-left left-bottom left-top]. This property is supported only for 2-D
input label matrices.

Original Image, Containing a Single Region Image Returned

regionprops

14-369

This figure illustrates the extrema of two different regions. In the region on the
left, each extrema point is distinct; in the region on the right, certain extrema
points (e.g., top-left and left-top) are identical.

'EquivDiameter' — Scalar; the diameter of a circle with the same area as the
region. Computed as sqrt(4*Area/pi). This property is supported only for 2-D
input label matrices.

'Solidity' — Scalar; the proportion of the pixels in the convex hull that are
also in the region. Computed as Area/ConvexArea. This property is supported
only for 2-D input label matrices.

'Extent' — Scalar; the proportion of the pixels in the bounding box that are
also in the region. Computed as the Area divided by the area of the bounding
box. This property is supported only for 2-D input label matrices.

'PixelIdxList' — p-element vector containing the linear indices of the pixels
in the region.

'PixelList' — p-by-ndims(L) matrix; the actual pixels in the region. Each
row of the matrix has the form [x y z ...] and specifies the coordinates of one
pixel in the region.

Class Support The input label matrix L can have any numeric class.

Remarks Using the Comma-Separated List Syntax
The comma-separated list syntax for structure arrays is very useful when you
work with the output of regionprops. For example, for a field that contains a
scalar, you can use this syntax to create a vector containing the value of this
field for each region in the image.

top-left

left-top

left-bottom

bottom-left

top-right

right-bottom

right-top

bottom-right

top-left

left-top

left-bottom

bottom-left

top-right

right-bottom

right-top

bottom-right

regionprops

14-370

For instance, if stats is a structure array with field Area, then the following
two expressions are equivalent:

stats(1).Area, stats(2).Area, ..., stats(end).Area

and

stats.Area

Therefore, you can use these calls to create a vector containing the area of each
region in the image.

stats = regionprops(L,'Area');
allArea = [stats.Area];

allArea is a vector of the same length as the structure array stats.

Selecting Regions Based on Certain Criteria
The function ismember is useful in conjunction with regionprops for selecting
regions based on certain criteria. For example, these commands create a binary
image containing only the regions whose area is greater than 80.

idx = find([stats.Area] > 80);
BW2 = ismember(L,idx);

Performance Considerations
Most of the measurements take very little time to compute. The exceptions are
these, which can take significantly longer, depending on the number of regions
in L:

• 'ConvexHull'
• 'ConvexImage'
• 'ConvexArea'
• 'FilledImage'

Note that computing certain groups of measurements takes about the same
amount of time as computing just one of them because regionprops takes
advantage of intermediate computations used in both computations. Therefore,
it is fastest to compute all the desired measurements in a single call to
regionprops.

regionprops

14-371

Working with Binary Images
You must convert a binary image to a label matrix before calling regionprops.

Two common ways to convert a binary image to a label matrix are by using the
bwlabel function,

L = bwlabel(BW);

or using the double function,

L = double(BW);

Note, however, that these functions produce different but equally valid label
matrices from the same binary image.

For example, given the following logical matrix, BW,

1 1 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 1 1

bwlabel creates a label matrix containing two contiguous regions labeled by
the integer values 1 and 2.

mylabel = bwlabel(BW)

mylabel =

 1 1 0 0 0 0
 1 1 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 2 2
 0 0 0 0 2 2

The double function creates a label matrix containing one discontiguous region
labeled by the integer value 1.

mylabel2 = double(BW)

mylabel2 =

 1 1 0 0 0 0

regionprops

14-372

 1 1 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 1 1
 0 0 0 0 1 1

Because each result is legitimately desirable in certain situations,
regionprops does not attempt to perform either type of conversion on binary
images and instead requires that you convert them using either method.

Example BW = imread('text.png');
L = bwlabel(BW);
stats = regionprops(L,'all');
stats(23)

ans =

 Area: 90
 Centroid: [69.7556 89.8667]
 BoundingBox: [64.5000 83.5000 11 13]
 SubarrayIdx: {1x2 cell}
 MajorAxisLength: 14.5814
 MinorAxisLength: 11.8963
 Eccentricity: 0.5783
 Orientation: -89.2740
 ConvexHull: [19x2 double]
 ConvexImage: [13x11 logical]
 ConvexArea: 121
 Image: [13x11 logical]

 FilledImage: [13x11 logical]
 FilledArea: 98
 EulerNumber: 0
 Extrema: [8x2 double]
 EquivDiameter: 10.7047
 Solidity: 0.7438
 Extent: 0.6294
 PixelIdxList: [90x1 double]
 PixelList: [90x2 double]

See Also bwlabel, bwlabeln, ismember, watershed

regionprops

14-373

ismember (MATLAB function)

rgb2gray

14-374

14rgb2grayPurpose Convert an RGB image or colormap to grayscale

Syntax I = rgb2gray(RGB)
newmap = rgb2gray(map)

Description rgb2gray converts RGB images to grayscale by eliminating the hue and
saturation information while retaining the luminance.

I = rgb2gray(RGB) converts the true-color image RGB to the grayscale intensity
image I.

newmap = rgb2gray(map) returns a grayscale colormap equivalent to map.

Class Support If the input is an RGB image, it can be of class uint8, uint16, or double. The
output image I is of the same class as the input image. If the input is a
colormap, the input and output colormaps are both of class double.

Algorithm rgb2gray converts the RGB values to NTSC coordinates, sets the hue and
saturation components to zero, and then converts back to RGB color space.

See Also ind2gray, ntsc2rgb, rgb2ind, rgb2ntsc

rgb2hsv

14-375

14rgb2hsvPurpose Convert RGB values to hue-saturation-value (HSV) color space

rgb2hsv is a function in MATLAB. To get help for this function, select
MATLAB Help from the Help menu and view the online function reference
pages.

rgb2ind

14-376

14rgb2indPurpose Convert an RGB image to an indexed image

Syntax [X,map] = rgb2ind(RGB,tol)
[X,map] = rgb2ind(RGB,n)
X = rgb2ind(RGB,map)
[...] = rgb2ind(...,dither_option)

Description rgb2ind converts RGB images to indexed images using one of three different
methods: uniform quantization, minimum variance quantization, and
colormap mapping. For all these methods, rgb2ind also dithers the image
unless you specify 'nodither' for dither_option.

[X,map] = rgb2ind(RGB,tol) converts the RGB image to an indexed image X
using uniform quantization. map contains at most (floor(1/tol)+1)^3 colors.
tol must be between 0 and 1.0.

[X,map] = rgb2ind(RGB,n) converts the RGB image to an indexed image X
using minimum variance quantization. map contains at most n colors. n must be
less than or equal to 65536.

X = rgb2ind(RGB,map) converts the RGB image to an indexed image X with
colormap map by matching colors in RGB with the nearest color in the colormap
map. size(map,1) must be less than or equal to 65536.

[...] = rgb2ind(...,dither_option) enables or disables dithering.
dither_option is a string that can have one of these values:

• 'dither' (default) dithers, if necessary, to achieve better color resolution at
the expense of spatial resolution.

• 'nodither' maps each color in the original image to the closest color in the
new map. No dithering is performed.

Class Support The input image can be of class uint8, uint16, or double. If the length of map
is less than or equal to 256, the output image is of class uint8. Otherwise, the
output image is of class uint16.

Remarks If you specify tol, rgb2ind uses uniform quantization to convert the image.
This method involves cutting the RGB color cube into smaller cubes of length
tol. For example, if you specify a tol of 0.1, the edges of the cubes are
one-tenth the length of the RGB cube. The total number of small cubes is

rgb2ind

14-377

n = (floor(1/tol)+1)^3

Each cube represents a single color in the output image. Therefore, the
maximum length of the colormap is n. rgb2ind removes any colors that don’t
appear in the input image, so the actual colormap can be much smaller than n.

If you specify n, rgb2ind uses minimum variance quantization. This method
involves cutting the RGB color cube into smaller boxes (not necessarily cubes)
of different sizes, depending on how the colors are distributed in the image. If
the input image actually uses fewer colors than the number you specify, the
output colormap is also smaller.

If you specify map, rgb2ind uses colormap mapping, which involves finding the
colors in map that best match the colors in the RGB image.

Example RGB = imread('peppers.png');
[X,map] = rgb2ind(RGB,128);
imshow(X,map)

See Also cmunique, dither, imapprox, ind2rgb, rgb2gray

rgb2ntsc

14-378

14rgb2ntscPurpose Convert RGB values to NTSC color space

Syntax yiqmap = rgb2ntsc(rgbmap)
YIQ = rgb2ntsc(RGB)

Description yiqmap = rgb2ntsc(rgbmap) converts the m-by-3 RGB values in rgbmap to
NTSC color space. yiqmap is an m-by-3 matrix that contains the NTSC
luminance (Y) and chrominance (I and Q) color components as columns that are
equivalent to the colors in the RGB colormap.

YIQ = rgb2ntsc(RGB) converts the true-color image RGB to the equivalent
NTSC image YIQ.

Remarks In the NTSC color space, the luminance is the grayscale signal used to display
pictures on monochrome (black and white) televisions. The other components
carry the hue and saturation information.

rgb2ntsc defines the NTSC components using

Class Support If the input is an RGB image, it can be of class uint8, uint16, or double; the
output image is of class double. If the input is a colormap, the input and output
colormaps are both of class double.

See Also ntsc2rgb, rgb2ind, ind2rgb, ind2gray

Y
I
Q

0.299 0.587 0.114
0.596 0.274– 0.322–

0.211 0.523– 0.312

R
G
B

=

rgb2ycbcr

14-379

14rgb2ycbcrPurpose Convert RGB values to YCbCr color space

Syntax ycbcrmap = rgb2ycbcr(rgbmap)
YCBCR = rgb2ycbcr(RGB)

Description ycbcrmap = rgb2ycbcr(rgbmap) converts the RGB values in rgbmap to the
YCbCr color space. ycbcrmap is an m-by-3 matrix that contains the YCbCr
luminance (Y) and chrominance (Cb and Cr) color components as columns.
Each row represents the equivalent color to the corresponding row in the RGB
colormap.

YCBCR = rgb2ycbcr(RGB) converts the true-color image RGB to the equivalent
image in the YCbCr color space.

Class Support If the input is an RGB image, it can be of class uint8, uint16, or double; the
output image is of the same class as the input image. If the input is a colormap,
the input and output colormaps are both of class double.

See Also ntsc2rgb, rgb2ntsc, ycbcr2rgb

rgbplot

14-380

14rgbplotPurpose Plot colormap

rgbplot is a MATLAB function. To get help for this function, select MATLAB
Help from the Help menu and view the online function reference page.

roicolor

14-381

14roicolorPurpose Select region of interest, based on color

Syntax BW = roicolor(A,low,high)
BW = roicolor(A,v)

Description roicolor selects a region of interest within an indexed or intensity image and
returns a binary image. (You can use the returned image as a mask for masked
filtering using roifilt2.)

BW = roicolor(A,low,high) returns a region of interest selected as those
pixels that lie within the colormap range [low high].

BW = (A >= low) & (A <= high)

BW is a binary image with 0’s outside the region of interest and 1’s inside.

BW = roicolor(A,v) returns a region of interest selected as those pixels in A
that match the values in vector v. BW is a binary image with 1’s where the
values of A match the values of v.

Class Support The input image A must be numeric. The output image BW is of class logical.

Example I = imread('rice.png');
BW = roicolor(I,128,255);
imshow(I);
figure, imshow(BW)

See Also roifilt2, roipoly

roifill

14-382

14roifillPurpose Smoothly interpolate within an arbitrary image region

Syntax J = roifill(I,c,r)
J = roifill(I)

J = roifill(I,BW)
[J,BW] = roifill(...)

J = roifill(x,y,I,xi,yi)
[x,y,J,BW,xi,yi] = roifill(...)

Description roifill fills in a specified polygon in an intensity image. It smoothly
interpolates inward from the pixel values on the boundary of the polygon by
solving Laplace’s equation. roifill can be used, for example, to erase small
objects in an image.

J = roifill(I,c,r) fills in the polygon specified by c and r, which are
equal-length vectors containing the row-column coordinates of the pixels on
vertices of the polygon. The kth vertex is the pixel (r(k),c(k)).

J = roifill(I) displays the image I on the screen and lets you specify the
polygon using the mouse. If you omit I, roifill operates on the image in the
current axes. Use normal button clicks to add vertices to the polygon. Pressing
Backspace or Delete removes the previously selected vertex. A shift-click,
right-click, or double-click adds a final vertex to the selection and then starts
the fill; pressing Return finishes the selection without adding a vertex.

J = roifill(I,BW) uses BW (a binary image the same size as I) as a mask.
roifill fills in the regions in I corresponding to the nonzero pixels in BW. If
there are multiple regions, roifill performs the interpolation on each region
independently.

[J,BW] = roifill(...) returns the binary mask used to determine which
pixels in I get filled. BW is a binary image the same size as I with 1’s for pixels
corresponding to the interpolated region of I and 0’s elsewhere.

J = roifill(x,y,I,xi,yi) uses the vectors x and y to establish a nondefault
spatial coordinate system. xi and yi are equal-length vectors that specify
polygon vertices as locations in this coordinate system.

roifill

14-383

[x,y,J,BW,xi,yi] = roifill(...) returns the XData and YData in x and y,
the output image in J, the mask image in BW, and the polygon coordinates in xi
and yi. xi and yi are empty if the roifill(I,BW) form is used.

If roifill is called with no output arguments, the resulting image is displayed
in a new figure.

Class Support The input image I can of class uint8, uint16, or double. The input binary mask
BW can be any numeric class or logical. The output binary mask BW is always
logical. The output image J is of the same class as I. All other inputs and
outputs are of class double.

Example I = imread('eight.tif');
c = [222 272 300 270 221 194];
r = [21 21 75 121 121 75];
J = roifill(I,c,r);
imshow(I)
figure, imshow(J)

See Also roifilt2, roipoly

roifilt2

14-384

14roifilt2Purpose Filter a region of interest

Syntax J = roifilt2(h,I,BW)
J = roifilt2(I,BW,fun)
J = roifilt2(I,BW,fun,P1,P2,...)

Description J = roifilt2(h,I,BW) filters the data in I with the two-dimensional linear
filter h. BW is a binary image the same size as I that is used as a mask for
filtering. roifilt2 returns an image that consists of filtered values for pixels
in locations where BW contains 1’s, and unfiltered values for pixels in locations
where BW contains 0’s. For this syntax, roifilt2 calls filter2 to implement
the filter.

J = roifilt2(I,BW,fun) processes the data in I using the function fun. The
result J contains computed values for pixels in locations where BW contains 1’s,
and the actual values in I for pixels in locations where BW contains 0’s.

fun can be a function_handle, created using @, or an inline object. fun should
take a matrix as a single argument and return a matrix of the same size.

 y = fun(x)

J = roifilt2(I,BW,fun,P1,P2,...) passes the additional parameters
P1,P2,... to fun.

Class Support For the syntax that includes a filter h, the input image I can be of class uint8,
uint16, or double, and the output array J has the same class as the input
image. For the syntax that includes a function, I can be of any class supported
by fun, and the class of J depends on the class of the output from fun.

Example This example continues the roipoly example.

I = imread('eight.tif');
c = [222 272 300 270 221 194];
r = [21 21 75 121 121 75];
BW = roipoly(I,c,r);
h = fspecial('unsharp');
J = roifilt2(h,I,BW);
imshow(J), figure, imshow(J)

roifilt2

14-385

See Also filter2, roipoly

roipoly

14-386

14roipolyPurpose Select a polygonal region of interest

Syntax BW = roipoly(I,c,r)
BW = roipoly(I)

BW = roipoly(x,y,I,xi,yi)
[BW,xi,yi] = roipoly(...)
[x,y,BW,xi,yi] = roipoly(...)

Description Use roipoly to select a polygonal region of interest within an image. roipoly
returns a binary image that you can use as a mask for masked filtering.

BW = roipoly(I,c,r) returns the region of interest selected by the polygon
described by vectors c and r. BW is a binary image the same size as I with 0’s
outside the region of interest and 1’s inside.

BW = roipoly(I) displays the image I on the screen and lets you specify the
polygon using the mouse. If you omit I, roipoly operates on the image in the
current axes. Use normal button clicks to add vertices to the polygon. Pressing
Backspace or Delete removes the previously selected vertex. A shift-click,
right-click, or double-click adds a final vertex to the selection and then starts
the fill; pressing Return finishes the selection without adding a vertex.

BW = roipoly(x,y,I,xi,yi) uses the vectors x and y to establish a nondefault
spatial coordinate system. xi and yi are equal-length vectors that specify
polygon vertices as locations in this coordinate system.

[BW,xi,yi] = roipoly(...) returns the polygon coordinates in xi and yi.
Note that roipoly always produces a closed polygon. If the points specified
describe a closed polygon (i.e., if the last pair of coordinates is identical to the
first pair), the length of xi and yi is equal to the number of points specified. If
the points specified do not describe a closed polygon, roipoly adds a final point
having the same coordinates as the first point. (In this case the length of xi and
yi is one greater than the number of points specified.)

[x,y,BW,xi,yi] = roipoly(...) returns the XData and YData in x and y, the
mask image in BW, and the polygon coordinates in xi and yi.

If roipoly is called with no output arguments, the resulting image is displayed
in a new figure.

roipoly

14-387

Class Support The input image I can be of class uint8, uint16, or double. The output image
BW is of class logical. All other inputs and outputs are of class double.

Remarks For any of the roipoly syntaxes, you can replace the input image I with two
arguments, m and n, that specify the row and column dimensions of an arbitrary
image. For example, these commands create a 100-by-200 binary mask.

c = [112 112 79 79];
r = [37 66 66 37];
BW = roipoly(100,200,c,r);

If you specify m and n with an interactive form of roipoly, an m-by-n black
image is displayed, and you use the mouse to specify a polygon within this
image.

Example I = imread('eight.tif');
c = [222 272 300 270 221 194];
r = [21 21 75 121 121 75];
BW = roipoly(I,c,r);
imshow(I)
figure, imshow(BW)

See Also roifilt2, roicolor, roifill, poly2mask

std2

14-388

14std2Purpose Compute the standard deviation of the elements of a matrix

Syntax b = std2(A)

Description b = std2(A) computes the standard deviation of the values in A.

Class Support A can be numeric or logical. B is a scalar of class double.

Algorithm std2 computes the standard deviation of the array A using std(A(:)).

See Also corr2, mean2

std, mean in the MATLAB Function Reference

strel

14-389

14strelPurpose Create morphological structuring element

Syntax SE = strel(shape,parameters)

Description SE = strel(shape,parameters) creates a structuring element, SE, of the type
specified by shape. This table lists all the supported shapes. Depending on
shape, strel can take additional parameters. See the syntax descriptions that
follow for details about creating each type of structuring element.

SE = strel('arbitrary',NHOOD) creates a flat structuring element where
NHOOD specifies the neighborhood. NHOOD is a matrix containing 1's and 0's; the
location of the 1's defines the neighborhood for the morphological operation.
The center (or origin) of NHOOD is its center element, given by
floor((size(NHOOD)+1)/2). You can omit the 'arbitrary' string and just use
strel(NHOOD).

Flat Structuring Elements

'arbitrary' 'pair'

'diamond' 'periodicline'

'disk' 'rectangle'

'line' 'square'

'octagon'

Nonflat Structuring Elements

'arbitrary' 'ball'

1 0 0

 1 0 0

 1 0 1

Origin

NHOOD = [1 0 0; 1 0 0; 1 0 1];

SE =

strel

14-390

SE = strel('arbitrary',NHOOD,HEIGHT) creates a nonflat structuring
element, where NHOOD specifies the neighborhood. HEIGHT is a matrix the same
size as NHOOD containing the height values associated with each nonzero
element of NHOOD. The HEIGHT matrix must be real and finite valued. You can
omit the 'arbitrary' string and just use strel(NHOOD,HEIGHT).

SE = strel('ball',R,H,N) creates a nonflat, ball-shaped structuring element
(actually an ellipsoid) whose radius in the X-Y plane is R and whose height is H.
Note that R must be a nonnegative integer, H must be a real scalar, and N must
be an even nonnegative integer. When N is greater than 0, the ball-shaped
structuring element is approximated by a sequence of N nonflat, line-shaped
structuring elements. When N equals 0, no approximation is used, and the
structuring element members consist of all pixels whose centers are no greater
than R away from the origin. The corresponding height values are determined
from the formula of the ellipsoid specified by R and H. If N is not specified, the
default value is 8.

Note Morphological operations run much faster when the structuring
element uses approximations (N > 0) than when it does not (N = 0).

SE = strel('diamond',R) creates a flat, diamond-shaped structuring
element, where R specifies the distance from the structuring element origin to
the points of the diamond. R must be a nonnegative integer scalar.

SE = strel('disk',R,N) creates a flat, disk-shaped structuring element,
where R specifies the radius. R must be a nonnegative integer. N must be 0, 4,
6, or 8. When N is greater than 0, the disk-shaped structuring element is
approximated by a sequence of N periodic-line structuring elements. When N

Origin

 0 0 0 1 0 0 0

 0 0 1 1 1 0 0

 0 1 1 1 1 1 0

 1 1 1 1 1 1 1

 0 1 1 1 1 1 0

 0 0 1 1 1 0 0

 0 0 0 1 0 0 0

SE =

R=3

strel

14-391

equals 0, no approximation is used, and the structuring element members
consist of all pixels whose centers are no greater than R away from the origin.
If N is not specified, the default value is 4.

Note Morphological operations run much faster when the structuring
element uses approximations (N > 0) than when it does not (N = 0). However,
structuring elements that do not use approximations (N = 0) are not suitable
for computing granulometries. Sometimes it is necessary for strel to use two
extra line structuring elements in the approximation, in which case the
number of decomposed structuring elements used is N + 2.

SE = strel('line',LEN,DEG) creates a flat, linear structuring element, where
LEN specifies the length, and DEG specifies the angle (in degrees) of the line, as
measured in a counterclockwise direction from the horizontal axis. LEN is

Origin
0 0 0 1 0 0 0

 0 1 1 1 1 1 0

 0 1 1 1 1 1 0

 1 1 1 1 1 1 1

 0 1 1 1 1 1 0

 0 1 1 1 1 1 0

 0 0 0 1 0 0 0

R=3

SE=

strel

14-392

approximately the distance between the centers of the structuring element
members at opposite ends of the line.

SE = strel('octagon',R) creates a flat, octagonal structuring element, where
R specifies the distance from the structuring element origin to the sides of the
octagon, as measured along the horizontal and vertical axes. R must be a
nonnegative multiple of 3.

SE = strel('pair',OFFSET) creates a flat structuring element containing two
members. One member is located at the origin. The second member's location
is specified by the vector OFFSET. OFFSET must be a two-element vector of
integers.

Origin

1 1 1 1 1 1 1 1 1

LEN=9 DEG=0

0 0 1

 0 1 0

 1 0 0

Origin

LEN
 =

3
DEG = 45

SE=

0 0 1 1 1 0 0

 0 1 1 1 1 1 0

 1 1 1 1 1 1 1

 1 1 1 1 1 1 1

 1 1 1 1 1 1 1

 0 1 1 1 1 1 0

 0 0 1 1 1 0 0

R=3

OriginSE=

0 0 0 0 0

 0 0 0 0 0

 0 0 1 0 0

 0 0 0 0 0

 0 0 0 0 1

OriginSE=

OFFSET= [2 2]

strel

14-393

SE = strel('periodicline',P,V) creates a flat structuring element
containing 2*P+1 members. V is a two-element vector containing integer-valued
row and column offsets. One structuring element member is located at the
origin. The other members are located at 1*V, -1*V, 2*V, -2*V, ..., P*V, -P*V.

SE = strel('rectangle',MN) creates a flat, rectangle-shaped structuring
element, where MN specifies the size. MN must be a two-element vector of
nonnegative integers. The first element of MN is the number of rows in the
structuring element neighborhood; the second element is the number of
columns.

SE = strel('square',W) creates a square structuring element whose width is
W pixels. W must be a nonnegative integer scalar.

Notes For all shapes except 'arbitrary', structuring elements are constructed using
a family of techniques known collectively as structuring element decomposition.
The principle is that dilation by some large structuring elements can be
computed faster by dilation with a sequence of smaller structuring elements.
For example, dilation by an 11-by-11 square structuring element can be
accomplished by dilating first with a 1-by-11 structuring element and then

0 0 0 0 0 0 0 0 1

 0 0 0 0 0 0 1 0 0

 0 0 0 0 1 0 0 0 0

 0 0 1 0 0 0 0 0 0

 1 0 0 0 0 0 0 0 0

OriginSE=

V= [1 -2]

P=2

1 1 1 1 1

 1 1 1 1 1

 1 1 1 1 1

OriginSE=

MN=[3 5]

1 1 1

 1 1 1

 1 1 1

OriginSE=

W=3

strel

14-394

with an 11-by-1 structuring element. This results in a theoretical performance
improvement of a factor of 5.5, although in practice the actual performance
improvement is somewhat less. Structuring element decompositions used for
the 'disk' and 'ball' shapes are approximations; all other decompositions
are exact.

Methods This table lists the methods supported by the STREL object.

Example se1 = strel('square',11) % 11-by-11 square
se2 = strel('line',10,45) % line, length 10, angle 45 degrees
se3 = strel('disk',15) % disk, radius 15
se4 = strel('ball',15,5) % ball, radius 15, height 5

Algorithm The method used to decompose diamond-shaped structuring elements is
known as “logarithmic decomposition” [1].

The method used to decompose disk structuring elements is based on the
technique called “radial decomposition using periodic lines” [2], [3]. For details,
see the MakeDiskStrel subfunction in
toolbox/images/images/@strel/strel.m.

The method used to decompose ball structuring elements is the technique
called “radial decomposition of sphere” [2].

See Also imdilate, imerode

getheight Get height of structuring element

getneighbors Get structuring element neighbor locations and
heights

getnhood Get structuring element neighborhood

getsequence Extract sequence of decomposed structuring
elements

isflat Return true for flat structuring element

reflect Reflect structuring element

translate Translate structuring element

strel

14-395

References [1] van den Boomgard, Rein, and Richard van Balen, “Methods for Fast
Morphological Image Transforms Using Bitmapped Images,” Computer Vision,
Graphics, and Image Processing: Graphical Models and Image Processing, Vol.
54, No. 3, May 1992, pp. 252-254.

[2] Adams, Rolf, “Radial Decomposition of Discs and Spheres,” Computer
Vision, Graphics, and Image Processing: Graphical Models and Image
Processing, Vol. 55, No. 5, September 1993, pp. 325-332.

[3] Jones, Ronald, and Pierre Soille, “Periodic lines: Definition, cascades, and
application to granulometrie,” Pattern Recognition Letters, Vol. 17, 1996, pp.
1057-1063.

stretchlim

14-396

14stretchlimPurpose Find limits to contrast stretch an image

Syntax LOW_HIGH = stretchlim(I,TOL)
LOW_HIGH = stretchlim(RGB,TOL)

Description LOW_HIGH = stretchlim(I,TOL) returns a pair of intensities that can be used
by imadjust to increase the contrast of an image.

TOL = [LOW_FRACT HIGH_FRACT] specifies the fraction of the image to saturate
at low and high intensities.

If TOL is a scalar, TOL = LOW_FRACT, and HIGH_FRACT = 1 - LOW_FRACT, which
saturates equal fractions at low and high intensities.

If you omit the argument, TOL defaults to [0.01 0.99], saturating 2%.

If TOL = 0, LOW_HIGH = [min(I(:)) max(I(:))].

LOW_HIGH = stretchlim(RGB,TOL) returns a 2-by-3 matrix of intensity pairs
to saturate each plane of the RGB image. TOL specifies the same fractions of
saturation for each plane.

Class Support The input image can be of class uint8, uint16, or double. The output
intensities returned, LOW_HIGH, are of class double and have values between 0
and 1.

Example I = imread('pout.tif');
J = imadjust(I,stretchlim(I),[]);
imshow(I), figure, imshow(J)

stretchlim

14-397

See Also brighten, histeq, imadjust

subimage

14-398

14subimagePurpose Display multiple images in the same figure

Syntax subimage(X,map)
subimage(I)
subimage(BW)
subimage(RGB)
subimage(x,y,...)
h = subimage(...)

Description You can use subimage in conjunction with subplot to create figures with
multiple images, even if the images have different colormaps. subimage works
by converting images to true color for display purposes, thus avoiding colormap
conflicts.

subimage(X,map) displays the indexed image X with colormap map in the
current axes.

subimage(I) displays the intensity image I in the current axes.

subimage(BW) displays the binary image BW in the current axes.

subimage(RGB) displays the true-color image RGB in the current axes.

subimage(x,y...) displays an image using a nondefault spatial coordinate
system.

h = subimage(...) returns a handle to an image object.

Class Support The input image can be of class logical, uint8, uint16, or double.

Example load trees
[X2,map2] = imread('forest.tif');
subplot(1,2,1), subimage(X,map)
subplot(1,2,2), subimage(X2,map2)

subimage

14-399

See Also imshow

subplot in the MATLAB Function Reference

tformarray

14-400

14tformarrayPurpose Spatial transformation of a multidimensional array

Syntax B = tformarray(A,T,R,TDIMS_A,TDIMS_B,TSIZE_B,TMAP_B,F)

Description B = tformarray(A,T,R,TDIMS_A,TDIMS_B,TSIZE_B,TMAP_B,F) applies a
spatial transformation to array A to produce array B. The tformarray function
is like imtransform, but is intended for problems involving higher-dimensioned
arrays or mixed input/output dimensionality, or requiring greater user control
or customization. (Anything that can be accomplished with imtransform can be
accomplished with a combination of maketform, makeresampler, findbounds,
and tformarray; but for many tasks involving 2-D images, imtransform is
simpler.)

This table provides a brief description of all the input arguments. See the
following section for more detail about each argument. (Click an argument in
the table to move to the appropriate section.)

A can be any nonsparse numeric array, and can be real or complex.

Argument Description

A Input array or image

T Spatial transformation structure, called a TFORM,
typically created with maketform

R Resampler structure, typically created with
makeresampler

TDIMS_A Row vector listing the input transform dimensions

TDIMS_B Row vector listing the output transform dimensions

TSIZE_B Output array size in the transform dimensions

TMAP_B Array of point locations in output space; can be used as
an alternative way to specify a spatial transformation

F Array of fill values

tformarray

14-401

T is a TFORM structure that defines a particular spatial transformation. For each
location in the output transform subscript space (as defined by TDIMS_B and
TSIZE_B), tformarray uses T and the function tforminv to compute the
corresponding location in the input transform subscript space (as defined by
TDIMS_A and size(A)).

If T is empty, tformarray operates as a direct resampling function, applying
the resampler defined in R to compute values at each transform space location
defined in TMAP_B (if TMAP_B is nonempty), or at each location in the output
transform subscript grid.

R is a structure that defines how to interpolate values of the input array at
specified locations. R is usually created with makeresampler, which allows fine
control over how to interpolate along each dimension, as well as what input
array values to use when interpolating close to the edge of the array.

TDIMS_A and TDIMS_B indicate which dimensions of the input and output arrays
are involved in the spatial transformation. Each element must be unique, and
must be a positive integer. The entries need not be listed in increasing order,
but the order matters. It specifies the precise correspondence between
dimensions of arrays A and B and the input and output spaces of the
transformer T. length(TDIMS_A) must equal T.ndims_in, and
LENGTH(TDIMS_B) must equal T.ndims_out.

For example, if T is a 2-D transformation, TDIMS_A = [2 1], and TDIMS_B = [1
2], then the column dimension and row dimension of A correspond to the first
and second transformation input-space dimensions, respectively. The row and
column dimensions of B correspond to the first and second output-space
dimensions, respectively.

TSIZE_B specifies the size of the array B along the output-space transform
dimensions. Note that the size of B along nontransform dimensions is taken
directly from the size of A along those dimensions. If, for example, T is a 2-D
transformation, size(A) = [480 640 3 10], TDIMS_B is [2 1], and TSIZE_B is
[300 200], then size(B) is [200 300 3].

TMAP_B is an optional array that provides an alternative way of specifying the
correspondence between the position of elements of B and the location in output
transform space. TMAP_B can be used, for example, to compute the result of an
image warp at a set of arbitrary locations in output space. If TMAP_B is not
empty, then the size of TMAP_B takes the form

tformarray

14-402

 [D1 D2 D3 ... DN L]

where N equals length(TDIMS_B). The vector [D1 D2 ... DN] is used in place
of TSIZE_B. If TMAP_B is not empty, then TSIZE_B should be [].

The value of L depends on whether or not T is empty. If T is not empty, then L
is T.ndims_out, and each L-dimension point in TMAP_B is transformed to an
input-space location using T. If T is empty, then L is length(TDIMS_A), and each
L-dimensional point in TMAP_B is used directly as a location in input space.

F is a double-precision array containing fill values. The fill values in F can be
used in three situations:

• When a separable resampler is created with makeresampler and its
padmethod is set to either 'fill' or 'bound'.

• When a custom resampler is used that supports the 'fill' or 'bound' pad
methods (with behavior that is specific to the customization).

• When the map from the transform dimensions of B to the transform
dimensions of A is deliberately undefined for some points. Such points are
encoded in the input transform space by NaNs in either TMAP_B or in the
output of TFORMINV.

In the first two cases, fill values are used to compute values for output locations
that map outside or near the edges of the input array. Fill values are copied
into B when output locations map well outside the input array. See
makeresampler for more information about 'fill' and 'bound'.

F can be a scalar (including NaN), in which case its value is replicated across all
the nontransform dimensions. F can also be a nonscalar, whose size depends on
size(A) in the nontransform dimensions. Specifically, if K is the Jth
nontransform dimension of A, then size(F,J) must be either size(A,K) or 1.
As a convenience to the user, tformarray replicates F across any dimensions
with unit size such that after the replication size(F,J) equals size(A,K).

For example, suppose A represents 10 RGB images and has size
200-by-200-by-3-by-10, T is a 2-D transformation, and TDIMS_A and TDIMS_B
are both [1 2]. In other words, tformarray will apply the same 2-D transform
to each color plane of each of the 10 RGB images. In this situation you have
several options for F:

tformarray

14-403

• F can be a scalar, in which case the same fill value is used for each color plane
of all 10 images.

• F can be a 3-by-1 vector, [R G B]'. Then R, G, and B are used as the fill values
for the corresponding color planes of each of the 10 images. This can be
interpreted as specifying an RGB fill color, with the same color used for all
10 images.

• F can be a 1-by-10 vector. This can be interpreted as specifying a different fill
value for each of 10 images, with that fill value being used for all three color
planes.

• F can be a 3-by-10 matrix, which can be interpreted as supplying a different
RGB fill color for each of the 10 images.

Class Support A can be any nonsparse numeric array, and can be real or complex. It can also
be of class logical.

Example Create a 2-by-2 checkerboard image where each square is 20 pixels wide, then
transform it with a projective transformation. Use a pad method of 'circular'
when creating a resampler, so that the output appears to be a perspective view
of an infinite checkerboard. Swap the output dimensions. Specify a 100-by-100
output image. Leave TMAP_B empty, since TSIZE_B is specified. Leave the fill
value empty, since it won't be needed.

I = checkerboard(20,1,1);
figure; imshow(I)
T = maketform('projective',[1 1; 41 1; 41 41; 1 41],...
 [5 5; 40 5; 35 30; -10 30]);
R = makeresampler('cubic','circular');
J = tformarray(I,T,R,[1 2],[2 1],[100 100],[],[]);
figure; imshow(J)

See Also findbounds, imtransform, makeresampler, maketform

tformfwd

14-404

14tformfwdPurpose Apply forward spatial transformation

Syntax [X,Y] = tformfwd(T,U,V)
[X1,X2,X3,...] = tformfwd(T,U1,U2,U3,...)
X = tformfwd(T,U)
[X1,X2,X3,...] = tformfwd(T,U)
X = tformfwd(T,U1,U2,U3,...)

Description [X,Y] = tformfwd(T,U,V) applies the 2D-to-2D spatial transformation
defined in T to coordinate arrays U and V, mapping the point [U(k) V(k)] to the
point [X(k) Y(k)].

T is a TFORM struct created with maketform, fliptform, or cp2tform. Both
T.ndims_in and T.ndims_out must equal 2. U and V are typically column
vectors matching in length. In general, U and V can have any dimensionality,
but must have the same size. In any case, X and Y will have the same size as U
and V.

[X1,X2,X3,...] = tformfwd(T,U1,U2,U3,...) applies the
ndims_in-to-ndims_out spatial transformation defined in TFORM structure T
to the coordinate arrays U1,U2,...,UNDIMS_IN (where NDIMS_IN =
T.ndims_in and NDIMS_OUT = T.ndims_out). The number of output arguments
must equal NDIMS_OUT. The transformation maps the point

[U1(k) U2(k) ... UNDIMS_IN(k)]

to the point

[X1(k) X2(k) ... XNDIMS_OUT(k)].

U1,U2,U3,... can have any dimensionality, but must be the same size.

X1,X2,X3,... must have this size also.

X = tformfwd(T,U) applies the ndims_in-to-ndims_out spatial
transformation defined in TFORM structure T to each row of U, where U is an
M-by-NDIMS_IN matrix. It maps the point U(k,:) to the point X(k,:). X is an
M-by-NDIMS_OUT matrix.

X = tformfwd(T,U) , where U is an (N+1)-dimensional array, maps the point
U(k1,k2,...,kN,:) to the point X(k1,k2,...,kN,:). size(U,N+1) must equal

tformfwd

14-405

NDIMS_IN. X is an (N+1)-dimensional array, with size(X,I) equal to size(U,I)
for I = 1,...,N and size(X,N+1) equal to NDIMS_OUT.

[X1,X2,X3,...] = tformfwd(T,U) maps an (N+1)-dimensional array to
NDIMS_OUT equally sized N-dimensional arrays.

X = tformfwd(T,U1,U2,U3,...) maps NDIMS_IN N-dimensional arrays to one
(N+1)-dimensional array.

Note X = tformfwd(U,T) is an older form of the two-argument syntax that remains
supported for backward compatibility.

Example Create an affine transformation that maps the triangle with vertices (0,0),
(6,3), (-2,5) to the triangle with vertices (-1,-1), (0,-10), (4,4).

u = [0 6 -2]';
v = [0 3 5]';
x = [-1 0 4]';
y = [-1 -10 4]';
tform = maketform('affine',[u v],[x y]);

Validate the mapping by applying tformfwd. Results should equal [x, y]

[xm, ym] = tformfwd(tform, u, v)

See Also cp2tform, fliptform, maketform, tforminv

tforminv

14-406

14tforminvPurpose Apply inverse spatial transformation

Syntax U = tforminv(X,T)

Description [U,V] = tforminv(T,X,Y) applies the 2D-to-2D inverse transformation
defined in TFORM structure T to coordinate arrays X and Y, mapping the point
[X(k) Y(k)] to the point [U(k) V(k)]. Both T.ndims_in and T.ndims_out
must equal 2. X and Y are typically column vectors matching in length. In
general, X and Y can have any dimensionality, but must have the same size. In
any case, U and V will have the same size as X and Y.

[U1,U2,U3,...] = tforminv(T,X1,X2,X3,...) applies the
NDIMS_OUT-to-NDIMS_IN inverse transformation defined in TFORM structure
T to the coordinate arrays X1,X2,...,XNDIMS_OUT (where NDIMS_IN =
T.ndims_in and NDIMS_OUT = T.ndims_out). The number of output arguments
must equal NDIMS_IN. The transformation maps the point

[X1(k) X2(k) ... XNDIMS_OUT(k)]

to the point

[U1(k) U2(k) ... UNDIMS_IN(k)].

X1,X2,X3,... can have any dimensionality, but must be the same size.

U1,U2,U3,... have this size also.

U = tforminv(T,X) applies the NDIMS_OUT-to-NDIMS_IN inverse
transformation defined in TFORM structure T to each row of X, where X is an
M-by-NDIMS_OUT matrix. It maps the point X(k,:) to the point U(k,:). U is an
M-by-NDIMS_IN matrix.

U = tforminv(T,X), where X is an (N+1)-dimensional array, maps the point
X(k1,k2,...,kN,:) to the point U(k1,k2,...,kN,:). size(X,N+1) must equal
NDIMS_OUT. U is an (N+1)-dimensional array, with size(U,I) equal to
size(X,I) for I = 1,...,N and size(U,N+1) equal to NDIMS_IN.

[U1,U2,U3,...] = tforminv(T,X) maps an (N+1)-dimensional array to
NDIMS_IN equally-sized N-dimensional arrays.

tforminv

14-407

U = tforminv(T,X1,X2,X3,...) maps NDIMS_OUT N-dimensional arrays to
one (N+1)-dimensional array.

Note U = tforminv(X,T) is an older form of the two-argument syntax that remains
supported for backward compatibility.

Example Create an affine transformation that maps the triangle with vertices (0,0),
(6,3), (-2,5) to the triangle with vertices (-1,-1), (0,-10), (4,4).

u = [0 6 -2]';
v = [0 3 5]';
x = [-1 0 4]';
y = [-1 -10 4]';
tform = maketform('affine',[u v],[x y]);

Validate the mapping by applying tforminv. Results should equal [u, v].

[um, vm] = tforminv(tform, x, y)

See Also cp2tform, tforminv, maketform, fliptform

translate

14-408

14translatePurpose Translate structuring element

Syntax SE2 = translate(SE,V)

Description SE2 = reflect(SE,V) translates a structuring element SE in N-D space. V is
an N-element vector containing the offsets of the desired translation in each
dimension.

Class Support SE and SE2 are STREL objects; V is a vector of double-precision values.

Example Dilating with a translated version of strel(1) is a way to translate the input
image in space. This example translates the cameraman.tif image down and
to the right by 25 pixels.

I = imread('cameraman.tif');
se = translate(strel(1), [25 25]);
J = imdilate(I,se);
imshow(I), title('Original')
figure, imshow(J), title('Translated');

See Also strel, reflect

truesize

14-409

14truesizePurpose Adjust display size of an image

Syntax truesize(fig,[mrows mcols])
truesize(fig)

Description truesize(fig,[mrows ncols]) adjusts the display size of an image. fig
is a figure containing a single image or a single image with a colorbar.
[mrows ncols] is a 1-by-2 vector that specifies the requested screen area in
pixels that the image should occupy.

truesize(fig) uses the image height and width for [mrows ncols]. This
results in the display’s having one screen pixel for each image pixel.

If you omit the figure argument, truesize works on the current figure.

Remarks If the'TruesizeWarning' toolbox preference is 'on', truesize displays a
warning if the image is too large to fit on the screen. (The entire image is still
displayed, but at less than true size.) If 'TruesizeWarning' is 'off', truesize
does not display the warning. Note that this preference applies even when you
call truesize indirectly, such as through imshow.

See Also imshow, iptsetpref, iptgetpref

uint16

14-410

14uint16Purpose Convert data to unsigned 16-bit integers

uint16 is a MATLAB built-in function. To get help for this function, select
MATLAB Help from the Help menu and view the online function reference
page.

uint8

14-411

14uint8Purpose Convert data to unsigned 8-bit integers

uint8 is a MATLAB built-in function. To get help for this function, select
MATLAB Help from the Help menu and view the online function reference
page.

uintlut

14-412

14uintlutPurpose Compute new values of A based on lookup table LUT

Syntax B = uintlut(A,LUT)

Purpose uintlut(A,LUT) creates an array containing new values of A based on the
lookup table LUT. For example, if A is a vector whose kth element is equal to
alpha, then B(k) is equal to the LUT value corresponding to alpha, that is,
LUT(alpha+1).

Class Support A must be uint8 or uint16. If A is uint8, then LUT must be a uint8 vector with
256 elements. If A is uint16, then LUT must be a uint16 vector with 65536
elements. B has the same size and class as A.

Example A = uint8([1 2 3 4; 5 6 7 8;9 10 11 12]);
LUT = repmat(uint8([0 150 200 255]),1,64);
B = uintlut(A,LUT);
imview(A),imview(B);

See Also impixel, improfile

warp

14-413

14warpPurpose Display an image as a texture-mapped surface

Syntax warp(X,map)
warp(I,n)
warp(BW)
warp(RGB)
warp(z,...)
warp(x,y,z,...)
h = warp(...)

Description warp(X,map) displays the indexed image X with colormap map as a texture map
on a simple rectangular surface.

warp(I,n) displays the intensity image I with grayscale colormap of length n
as a texture map on a simple rectangular surface.

warp(BW) displays the binary image BW as a texture map on a simple
rectangular surface.

warp(RGB) displays the RGB image in the array RGB as a texture map on a
simple rectangular surface.

warp(z,...) displays the image on the surface z.

warp(x,y,z...) displays the image on the surface (x,y,z).

h = warp(...) returns a handle to a texture-mapped surface.

Class Support The input image can be of class logical, uint8, uint16, or double.

Remarks Texture-mapped surfaces are generally rendered more slowly than images.

Example This example texture maps an image of a test pattern onto a cylinder.

[x,y,z] = cylinder;
I = imread('testpat1.png');
warp(x,y,z,I);

warp

14-414

See Also imshow

image, imagesc, surf in the MATLAB Function Reference

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

watershed

14-415

14watershedPurpose Find image watershed regions

Syntax L = watershed(A)
L = watershed(A,CONN)

Description L = watershed(A) computes a label matrix identifying the watershed regions
of the input matrix A, which can have any dimension. The elements of L are
integer values greater than or equal to 0. The elements labeled 0 do not belong
to a unique watershed region. These are called watershed pixels. The elements
labeled 1 belong to the first watershed region, the elements labeled 2 belong to
the second watershed region, and so on.

By default, watershed uses 8-connected neighborhoods for 2-D inputs and
26-connected neighborhoods for 3-D inputs. For higher dimensions, watershed
uses the connectivity given by conndef(ndims(A),'maximal').

L = watershed(A,CONN) specifies the connectivity to be used in the watershed
computation. CONN can have any of the following scalar values.

Connectivity can be defined in a more general way for any dimension by using
for CONN a 3-by-3-by- ...-by-3 matrix of 0’s and 1’s. The 1-valued elements define
neighborhood locations relative to the center element of CONN. Note that CONN
must be symmetric about its center element.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

watershed

14-416

Class Support A can be a numeric or logical array of any dimension, and it must be nonsparse.
The output array L is of class double.

Example 2-D Example

1 Make a binary image containing two overlapping circular objects.
center1 = -10;
center2 = -center1;
dist = sqrt(2*(2*center1)^2);
radius = dist/2 * 1.4;
lims = [floor(center1-1.2*radius) ceil(center2+1.2*radius)];
[x,y] = meshgrid(lims(1):lims(2));
bw1 = sqrt((x-center1).^2 + (y-center1).^2) <= radius;
bw2 = sqrt((x-center2).^2 + (y-center2).^2) <= radius;
bw = bw1 | bw2;
figure, imshow(bw,'n'), title('BW')

2 Compute the distance transform of the complement of the binary image.
D = bwdist(~bw);
figure, imshow(D,[],'n'), title('Distance transform of ~bw')

3 Complement the distance transform, and force pixels that don’t belong to
the objects to be at -Inf.
D = -D;
D(~bw) = -Inf;

4 Compute the watershed transform and display it as an indexed image.
L = watershed(D);
rgb = label2rgb(L,'jet',[.5 .5 .5]);
figure, imshow(rgb,'n'), title('Watershed transform of D');

3-D Example

1 Make a 3-D binary image containing two overlapping spheres.
center1 = -10;
center2 = -center1;
dist = sqrt(3*(2*center1)^2);
radius = dist/2 * 1.4;
lims = [floor(center1-1.2*radius) ceil(center2+1.2*radius)];
[x,y,z] = meshgrid(lims(1):lims(2));

watershed

14-417

bw1 = sqrt((x-center1).^2 + (y-center1).^2 + ...
 (z-center1).^2) <= radius;
bw2 = sqrt((x-center2).^2 + (y-center2).^2 + ...
 (z-center2).^2) <= radius;
bw = bw1 | bw2;
figure, isosurface(x,y,z,bw,0.5), axis equal, title('BW')
xlabel x, ylabel y, zlabel z
xlim(lims), ylim(lims), zlim(lims)
view(3), camlight, lighting gouraud

2 Compute the distance transform.
D = bwdist(~bw);
figure, isosurface(x,y,z,D,radius/2), axis equal
title('Isosurface of distance transform')
xlabel x, ylabel y, zlabel z
xlim(lims), ylim(lims), zlim(lims)
view(3), camlight, lighting gouraud

3 Complement the distance transform, force nonobject pixels to be -Inf, and
then compute the watershed transform.
D = -D;
D(~bw) = -Inf;
L = watershed(D);
figure, isosurface(x,y,z,L==2,0.5), axis equal
title('Segmented object')
xlabel x, ylabel y, zlabel z
xlim(lims), ylim(lims), zlim(lims)
view(3), camlight, lighting gouraud
figure, isosurface(x,y,z,L==3,0.5), axis equal
title('Segmented object')
xlabel x, ylabel y, zlabel z
xlim(lims), ylim(lims), zlim(lims)
view(3), camlight, lighting gouraud

Algorithm watershed uses a variation of the Vincent and Soille algorithm [1]. For details
of the variation, see toolbox/images/images/private/watershed_vs.h.

See Also bwlabel, bwlabeln, bwdist, regionprops

watershed

14-418

Reference [1] Vincent, Luc, and Pierre Soille, “Watersheds in Digital Spaces: An Efficient
Algorithm Based on Immersion Simulations,” IEEE Transactions of Pattern
Analysis and Machine Intelligence, Vol. 13, No. 6, June 1991, pp. 583-598.

whitepoint

14-419

14whitepointPurpose Return color space representation of various standard white points

Syntax xyz = whitepoint
xyz = whitepoint(string)

Description xyz = whitepoint returns xyz, a three-element row vector of values
scaled so that Y = 1.

xyz = whitepoint(string) returns xyz, a three-element row vector of XYZ
values, where string specifies the white reference illuminant. The following
table lists all the possible values for string. The default value is enclosed in
braces ({}).

Class Support string is a character array. xyz is of class double.

Example This example returns the XYZ color space representation of the default white
reference illuminant 'icc'.

wp_icc = whitepoint

wp_icc =

 0.9642 1.0000 0.8249

XYZ

Value Description

'a' CIE standard illuminant A

'c' CIE standard illuminant C

'd50' CIE standard illuminant D50

'd55' CIE standard illuminant D55

{'icc'} ICC standard profile connection space illuminant; a
16-bit fractional approximation of D50

XYZ

wiener2

14-420

14wiener2Purpose Perform two-dimensional adaptive noise-removal filtering

Syntax J = wiener2(I,[m n],noise)
[J,noise] = wiener2(I,[m n])

Description wiener2 lowpass-filters an intensity image that has been degraded by constant
power additive noise. wiener2 uses a pixelwise adaptive Wiener method based
on statistics estimated from a local neighborhood of each pixel.

J = wiener2(I,[m n],noise) filters the image I using pixelwise adaptive
Wiener filtering, using neighborhoods of size m-by-n to estimate the local image
mean and standard deviation. If you omit the [m n] argument, m and n default
to 3. The additive noise (Gaussian white noise) power is assumed to be noise.

[J,noise] = wiener2(I,[m n]) also estimates the additive noise power before
doing the filtering. wiener2 returns this estimate in noise.

Class Support The input image I is a two-dimensional image of class uint8, uint16, or
double. The output image J is of the same size and class as I.

Example For an example, see “Using Adaptive Filtering” on page 10-37.

Algorithm wiener2 estimates the local mean and variance around each pixel,

where η is the N-by-M local neighborhood of each pixel in the image A. wiener2
then creates a pixelwise Wiener filter using these estimates,

where ν2 is the noise variance. If the noise variance is not given, wiener2 uses
the average of all the local estimated variances.

µ 1
NM
---------- a n1 n2,()

n1 n2 η∈,
∑=

σ2 1
NM
---------- a2 n1 n2,() µ2

–

n1 n2 η∈,
∑=

b n1 n2,() µ σ2 ν2
–

σ2
------------------ a n1 n2,() µ–()+=

wiener2

14-421

See Also filter2, medfilt2

Reference [1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood
Cliffs, NJ, Prentice Hall, 1990, pp. 536-540.

xyz2double

14-422

14xyz2doublePurpose Convert color data from representation to double

Syntax xyzd = xyz2double(XYZ)

Description xyxd = xyz2double(XYZ) converts an M-by-3 or M-by-N-by-3 array of XYZ
color values to double. xyzd has the same size as XYZ.

The Image Processing Toolbox follows the convention that double-precision
XYZ arrays contain 1931 CIE XYZ values. XYZ arrays that are uint16 follow
the convention in the ICC profile specification (ICC.1:2001-4, www.color.org)
for representing XYZ values as unsigned 16-bit integers. There is no standard
representation of XYZ values as unsigned 8-bit integers. The ICC encoding
convention is illustrated by this table.

Class Support xyz is a uint16 or double array that must be real and nonsparse. xyzd is of
class double.

See Also applycform, lab2double, lab2uint16, lab2uint8, makecform, whitepoint,
xyz2uint16

XYZ

Value (X, Y, or Z) uint16 Value

0.0 0

1.0 32768

1.0 + (32767/32768) 65535

xyz2uint16

14-423

14xyz2uint16Purpose Convert color data from representation to uint16

Syntax xyz16 = xyz2uint16(xyz)

Description xyz16 = xyz2uint16(xyz) converts an M-by-3 or M-by-N-by-3 array of XYZ
color values to uint16. xyz16 has the same size as xyz.

The Image Processing Toolbox follows the convention that double-precision
XYZ arrays contain 1931 CIE XYZ values. XYZ arrays that are uint16 follow
the convention in the ICC profile specification (ICC.1:2001-4, www.color.org)
for representing XYZ values as unsigned 16-bit integers. There is no standard
representation of XYZ values as unsigned 8-bit integers. The ICC encoding
convention is illustrated by this table.

Class Support xyz is a uint16 or double array that must be real and nonsparse. xyz16 is
uint8.

See Also applycform, lab2double, lab2uint16, lab2uint8, makecform, whitepoint,
xyz2double

XYZ

Value (X, Y, or Z) uint16 Value

0.0 0

1.0 32768

1.0 + (32767/32768) 65535

ycbcr2rgb

14-424

14ycbcr2rgbPurpose Convert YCbCr values to RGB color space

Syntax rgbmap = ycbcr2rgb(ycbcrmap)
RGB = ycbcr2rgb(YCBCR)

Description rgbmap = ycbcr2rgb(ycbcrmap) converts the YCbCr values in the colormap
ycbcrmap to the RGB color space. If ycbcrmap is m-by-3 and contains the YCbCr
luminance (Y) and chrominance (Cb and Cr) color values as columns, then
rgbmap is returned as an m-by-3 matrix that contains the red, green, and blue
values equivalent to those colors.

RGB = ycbcr2rgb(YCBCR) converts the YCbCr image YCBCR to the equivalent
true-color image RGB.

Class Support If the input is a YCbCr image, it can be of class uint8, uint16, or double; the
output image is of the same class as the input image. If the input is a colormap,
the input and output colormaps are both of class double.

See Also ntsc2rgb, rgb2ntsc, rgb2ycbcr

zoom

14-425

14zoomPurpose Zoom in and out on an image

zoom is a MATLAB function. To get help for this function, select MATLAB Help
from the Help menu and view the online function reference page.

zoom

14-426

I-1

Index

A
adapthisteq 10-28, 14-16
adaptive filtering 14-420
adaptive filters 10-37

definition 10-2
addition

of images 2-31
affine transformations

definition 5-13
using imtransform 4-11

aliasing 4-7
definition 4-2

alpha channel 13-4
analyzing images

edge detection 14-121
histograms 14-238
intensity profiles 14-262
pixel values 14-259
quadtree decomposition 14-355

antialiasing 4-7
definition 4-2

applycform 14-19
applylut 14-20
applylut 9-44

example 9-45
approximation

definition 13-2
of an image background 1-9

area
of binary images 9-42, 14-27
of image regions 10-11

arrays
storing images 2-4

averaging filter 7-7, 14-145

B
background

of a binary image 9-2
of an intensity image 1-9

bestblk 14-22
bicubic interpolation 4-3

definition 4-2
bilinear interpolation 4-3

definition 4-2
binary image operations

connected-components labeling 14-45
lookup-table operations 14-20, 14-319
morphological operations 14-51
neighborhoods 14-20

binary images 2-9, 14-303
changing the display colors of 3-27
connected-components labeling 9-40
converting from other types 14-186
definition 2-2
displaying 3-27
Euler number 9-43, 14-41
feature measurement 9-40
flood fill operation 9-26
image area 9-42, 14-27
lookup table operations 9-44
morphological operations 9-4
object selection 14-59
packing 9-3
perimeter determination 9-17, 14-57
selecting objects in 9-42

binary masks
creating 11-3
definition 11-2

bit depth
1-bit images 2-18
screen bit depth 13-3

Index

I-2

blind deconvolution algorithm
used for deblurring 12-16

blkproc 14-23
blkproc 6-8

specifying overlap 6-10
using 6-9

block operations
definition 6-2

block processing 6-2
block size 14-22
column processing 6-11
distinct blocks 6-8, 14-23
padding borders 6-5
sliding neighborhoods 6-4, 14-334

border padding 6-5
definition 6-2

border replication
in image processing 7-12

boundary padding
See border padding

boundary ringing
in image deblurring 12-23

boundary tracing 10-13
bounding box

finding for a region 10-11
brightness adjustment 10-23
bwarea 14-27
bwarea 9-42
bwareaopen 14-29
bwboundaries 14-31
bwdist 14-35
bwdist 9-37
bweuler 14-41
bwhitmiss 14-43
bwlabel 14-45
bwlabeln 14-48
bwmorph 14-51

bwmorph

skeletonization example 9-17
bwpack 14-55
bwperim 14-57
bwselect 14-59
bwtraceboundary 14-61
bwtraceboundary

using 10-15
bwulterode 14-64
bwunpack 14-66

C
camera read-out noise 12-12
Canny edge detector 10-12, 14-122
center of mass

calculating for region 10-11
center pixel

calculating 6-4
definition 6-2

checkerboard 14-67
chrominance

in CIE color spaces 13-16
in NTSC color space 13-22
in YCbCr color space 13-22

CIE color spaces 13-15
CIELAB color space 13-15
class support 2-13

See also data types
closing 14-51

morphology 9-14
cmpermute 14-69
cmunique 14-70
col2im 14-71
colfilt 14-72
colfilt 6-11

example 6-12, 6-14

Index

I-3

color
approximation 13-7, 14-119, 14-202, 14-376
dithering 13-13, 14-119
quantization 13-7, 14-376
reducing number of colors 13-6

color approximation
definition 3-2

color cube
a description of 13-7
quantization of 13-8

color planes 13-9, 13-24
of an HSV image 13-24
of an RGB image 2-10

color reduction 13-6–13-14
color spaces

converting among 13-15
converting between 13-15, 14-337, 14-378,

14-379, 14-424
data encodings 13-18
device-independent color spaces 13-16
HSV 13-23
NTSC 13-21, 14-337, 14-378
RGB 13-15
YCbCr 13-22, 14-379, 14-424
YIQ 13-21

colorbar 3-31
colorcube 13-12
colormap mapping 13-11
colormaps

brightening 14-26
creating a colormap using colorcube 13-12
darkening 14-26
rearranging colors in 14-69
removing duplicate entries in 14-70

column processing 14-72
definition 6-2
in neighborhood operations 6-11

reshaping blocks into columns 14-188
reshaping columns into blocks 14-71

composite transformations 4-11
conformal transformations 5-13
conndef 14-75
connected component

definition 9-2
connected-components labeling 9-40, 14-45
connectivity

definition 9-2
overview 9-23
specifying custom 9-25

constant component
See zero-frequency component

contour plots 10-8, 14-212
text labels 10-9

contours
definition 10-2

contrast adjustment
decreasing contrast 10-23
increasing contrast 10-21
specifying limits automatically 10-24

contrast stretching
with decorrelation stretching 10-32
See also contrast adjustment

contrast-limited adaptive histogram equalization
(CLAHE) 10-28

Control Point Selection Tool
appearance of control point symbols 5-27
changing view of images 5-18
saving a session 5-31
saving control points 5-30
specifying control points 5-23
starting 5-16
using 5-15
using point prediction 5-25

control points

Index

I-4

appearance of 5-27
prediction 5-25
saving 5-30
selecting 5-15
specifying 5-23

conv2 2-4
compared to imfilter 7-14

conversions between image types 2-13
convmtx2 14-78
convn

compared to imfilter 7-14
used with images 2-4

convolution
convolution matrix 14-78
definition 7-4
Fourier transform and 8-12
two-dimensional 7-4
with imfilter 7-9

convolution kernel
definition 7-4

coordinate systems
pixel coordinates 2-37
spatial coordinates 2-38

corr2 14-80
corr2 10-11
correlation

definition 7-6
Fourier transform 8-13
with imfilter 7-9

correlation coefficient 14-80
correlation kernel

definition 7-6
cp2tform 14-81

using 5-13
cpcorr 14-90

example 5-32
cpselect 14-92

using 5-8
cpstruct2pairs 14-94
cropping an image 4-10, 14-214
cross-correlation

improving control point selection 5-32

D
damping

for noise reduction 12-12
data types

8-bit integers (uint8) 2-5
converting between 14-120, 14-195, 14-197,

14-221, 14-252
double-precision (double) 14-120, 14-195,

14-197, 14-221, 14-252
double-precision (double) 2-5
in image filtering 7-7
summary of image types and numeric classes

2-13
DC component

See zero-frequency component
dconvreg 14-105
dct2 14-95
dct2 8-17
dctmtx 14-98
dctmtx 8-18
deblurring

avoiding boundary ringing 12-23
conceptual model 12-3
overview 12-3
overview of functions 12-6
use of frequency domain 12-22
using the blind deconvolution algorithm 12-16
using the Lucy-Richardson algorithm 12-11
with regularized filter 12-9
with the Wiener filter 12-7

Index

I-5

decomposition of structuring elements
example 9-9
getting sequence 14-169

deconvblind 14-99
deconvblind

example 12-16
deconvlucy 14-102
deconvlucy

example 12-11
deconvreg

example 12-9
deconvwnr 14-107
deconvwnr

example 12-7
decorrelation stretching 10-29

See also contrast adjustment
decorrstretch 14-109
demos 1-20
detail rectangle

in Control Point Selection Tool 5-17
DICOM

reading and writing files 2-22
DICOM unique identifier

generating 2-28
dicominfo 14-110
dicomread 14-111
dicomuid 14-114
dicomwrite 14-115
Digital Imaging and Communications in Medicine

(DICOM)
reading and writing files 2-22

dilation 9-4, 14-52
grayscale 14-338

discrete cosine transform 8-17, 14-95
image compression 8-19
inverse 14-180
transform matrix 8-18, 14-98

discrete Fourier transform 8-8
discrete transform

definition 8-2
display depth 13-3

See screen color resolution
display techniques 14-276

displaying at true size 14-409
multiple images 14-398
texture mapping 14-413

displaying images
adding a colorbar 3-31
at true size 3-19
binary 3-27
binary images with different colors 3-27
comparison of functions 3-3
directly from disk 3-18
indexed images 3-24
initial size 3-19
intensity images 3-25
multiple images in the same figure window

3-20
texture mapping 3-35
toolbox preferences for 3-37
unconventional ranges of data 3-25
using imshow 3-18
using the Image Viewer 3-5

distance
between pixels 10-3
Euclidean 10-3

distance transform 9-37
distinct block operations 6-8

definition 6-2
overlap 6-9, 14-23
zero padding 6-8

dither 14-119
dithering 13-13, 14-119, 14-376

example 13-13

Index

I-6

division
of images 2-35

double 14-197, 14-210, 14-221, 14-248, 14-252,
14-278

E
edge 14-121
edge 10-12

example 10-13
See also edgedemo

edge detection 10-12
Canny method 10-12
example 10-13
methods 14-121
Sobel method 10-12

edges
definition 10-2

edgetaper 14-126
edgetaper

avoiding boundary ringing 12-23
8-bit image files

creating 2-19
reading 2-16

enhancing images
decorrelation stretching 10-29
intensity adjustment 10-22, 14-199
noise removal 10-34

erosion 9-4, 14-52
grayscale 14-338

Euclidean distance 10-3, 14-351
Euler number 9-43, 14-41

F
fan2para 14-127
fanbeam 14-131

fanbeam

using 8-35
fan-beam projection data

arc geometry 8-36
computing 8-35
line geometry 8-37
reconstructing image from 8-38

fast Fourier transform 8-8
higher-dimensional 14-134
higher-dimensional inverse 14-185
two-dimensional 14-133
zero padding 8-10
See also Fourier transform

feature measurement
area 10-11
binary images 9-40
bounding box 10-11
center of mass 10-11

feature measurements 1-17
fft 8-8
fft2 14-133
fft2 2-4, 8-8

example 8-9
using 8-11

fftn 2-4, 8-8
fftshift

example 7-18
using 8-11

files
displaying images from disk 3-18

filling a region 11-9
definition 11-2

filling holes in images 9-28
filter design 7-17

frequency sampling method 7-19, 14-142
frequency transformation method 7-18,

14-150

Index

I-7

windowing method 7-20, 14-153, 14-157
filter2

compared to imfilter 7-14
example 3-26, 10-36

filtering
a region 11-6
masked filtering 11-6
regions 11-2

filters
adaptive 10-37, 14-420
averaging 14-145
binary masks 11-6
computing frequency response 8-11
designing 7-17
finite impulse response (FIR) 7-17
frequency response 7-22
imfilter 7-7
Infinite Impulse Response (IIR) 7-18
Laplacian of Gaussian 14-145
linear 7-4
median 10-34, 14-330
multidimensional 7-13
order-statistic 14-338
predefined types 14-145
Prewitt 14-145
Sobel 14-145
unsharp 14-145
unsharp masking 7-15

FIR filters 7-17
transforming from one-dimensional to

two-dimensional 7-18
flat-field correction 12-12
flood-fill operation 9-26
foreground

of a binary image 9-2
4-bit image files 2-18
Fourier transform 8-3

applications of the Fourier transform 8-11
centering the zero-frequency coefficient 8-11
computing frequency response 8-11
convolution and 8-12
correlation 8-13
DFT coefficients 8-9
examples of transform on simple shapes 8-7
fast convolution with 8-12
for performing correlation 8-13
frequency domain 8-3
higher-dimensional 14-134
higher-dimensional inverse 14-185
increasing resolution 8-10
padding before computation 8-10
two-dimensional 8-3, 14-133
zero-frequency component 8-3

freqspace 7-21
example 7-19

frequency domain 8-3
definition 8-2

frequency response
computing 7-22, 8-11, 14-140
desired response matrix 7-21

frequency sampling method (filter design) 7-19,
14-142

frequency transformation method (filter design)
7-18, 14-150

freqz

example 7-18
freqz2 14-140
freqz2 7-22, 8-11

example 7-19
See also firdemo

fsamp2 14-142
fsamp2 7-19

example 7-19
See also firdemo

Index

I-8

fspecial 14-145
fspecial

creating predefined filters 7-15
ftrans2 14-150

See also firdemo
ftrans2

example 7-18
function functions

using 6-9
fwind1 14-153
fwind1 7-20

example 7-21
See also firdemo

fwind2 14-157
fwind2 7-20

See also firdemo

G
gamma correction 10-24
Gaussian convolution kernel

frequency response of 8-11
Gaussian filter 14-145
Gaussian noise 10-37
geocoded images 5-7
geometric operations

cropping 4-10, 14-214
definition 4-2
interpolation 4-3
resizing 4-5
rotation 14-274

georegistered images 5-7
getheight 14-161
getimage 14-162
getimage

example 3-18
getline 14-164

getneighbors 14-165
getnhood 14-166
getpts 14-167
getrect 14-168
getsequence 14-169
graphics card 13-4
graphics file formats

converting from one format to another 2-21
writing data 2-17

gray2ind 14-170
grayscale images

See intensity images
grayscale morphological operations 14-338
grayslice 14-171
graythresh 14-172
graythresh

thresholding image values 1-13

H
histeq 14-173
histeq

example 10-27
increase contrast example 10-26, 10-29
See also imadjdemo and roidemo

histogram equalization 10-26, 14-173
histograms 10-9, 14-238

definition 10-2
holes

filling 9-26
tracing boundaries 10-13

HSV color space 13-23
color planes of 13-24

hsv2rgb 13-23
hue

in HSV color space 13-23
in NTSC color space 13-22

Index

I-9

I
ICC profiles

processing 13-19
iccread 14-177
idct2 14-177, 14-180

See also dctdemo
ifanbeam 14-181
ifanbeam

using 8-38
ifft 8-8
ifft2 8-8
ifftn 8-8
IIR filters 7-18
im2bw 14-186
im2bw 2-14
im2col 14-188

See also dctdemo
im2double 14-190
im2double

example 6-14
im2java2d 14-192
im2uint16 14-193, 14-193
im2uint8 14-194
imabsdiff 14-195
imadjust 14-199
imadjust 10-22

brightening example 10-23
gamma correction and 10-24
gamma correction example 10-25
increase contrast example 10-22
setting limits automatically 10-24
See also imadjdemo, landsatdemo, roidemo, and

ipss003

image analysis
contour plots 10-8
edge detection 10-12
histograms 10-9

intensity profiles 10-5
overview 10-12
pixel values 10-3
quadtree decomposition 10-18
summary statistics 10-11

image area (binary images) 14-27
image arithmetic

combining functions 2-36
overview 2-29
truncation rules 2-30

image editing 11-9
image filtering

data types 7-7
unsharp masking 7-15
with imfilter 7-7

Image Information tool
using 3-16

Image Information window
in Image Viewer 3-7

image processing
demos 1-20

image profiles
definition 10-2

image properties
definition 10-2
set by imshow 3-22

image registration
fine-tuning point placement 5-32
overview 5-4
procedure 5-4
selecting control points 5-15
specifying control point pairs 5-23
types of transformations 5-13
using control point prediction 5-25

image rotation 4-8
image transformations

affine 5-13

Index

I-10

custom 4-11
local weighted mean 5-14
piecewise linear 5-14
polynomial 5-14
projective 5-14
supported by cp2tform 5-13
types of 5-13
using imtransform 4-11

image types 2-6
binary 2-9
converting between 2-13
indexed 2-6
intensity 2-8
interpolation and 4-4
multiframe images 2-12
overview 2-2
RGB 2-9
supported by the toolbox 2-6
See also indexed, intensity, binary, RGB,

multiframe
Image Viewer

closing 3-4
compared to imshow 3-3
controlling initial magnification 3-5
exploring images 3-9
extended example 1-8
managing memory usage 3-16
opening 3-4
overview of tools 3-6
panning images 3-11
specifying image magnification 3-12
starting 3-4
using the Pixel Region tool 3-13
viewing multiple images 3-5
zoom tools 3-11

images
adding 2-31

analyzing 10-3
arithmetic operations 2-29
causes of blurring 12-3
converting to binary 14-186
data types 2-5, 14-120, 14-195, 14-197, 14-221,

14-252
displaying 14-276
displaying multiple images 3-19, 14-398
displaying multiple images in the same figure

window 3-20
dividing 2-35
feature measurement 1-17
filling holes in 9-28
finding image minima and maxima 9-29
getting data from axes 14-162
how MATLAB stores 2-4
image types 2-6
improving contrast 1-12
multiplication 2-34
reducing number of colors 13-6, 14-202
registering 5-4
restoring blurred images 12-3
returning information about 2-20
statistical analysis of 1-18
storage classes of 2-5
subtraction 2-33
using imshow 3-18
viewing as a surface plot 1-10

imapprox 14-202
imapprox 13-12

example 13-12
imbothat 14-203
imclearborder 14-205
imclose 14-208
imclose

using 9-14
imcontour 14-212

Index

I-11

imcontour 10-8
example 10-9

imcrop 14-214
imcrop 4-10

example 4-10
imdilate 14-217
imerode 14-223
imerode

closure example 9-15
imextendedmax 14-226
imextendedmax

example 9-31
imextendedmin 14-228
imfill 14-230
imfill

example 9-28
imfilter 14-234
imfilter

compared to other filtering functions 7-14
convolution option 7-9
correlation option 7-9
padding options 7-10
using 7-7

imfinfo 2-20
example 2-18

imhist 14-238
imhist 10-9

example 10-10, 10-21, 10-22
imhmax 14-240
imhmin 14-242
imimposemin 14-244
imlincomb

example 2-36
immovie 14-251
immovie

example 3-34
imnoise 14-254

imnoise 10-34
example 10-37
salt & pepper example 10-35

imopen

using 9-14
impixel 14-259
impixel 10-3

example 10-4
improfile 14-262
improfile 10-5

example 10-7
grayscale example 10-5

imread 2-16
example for multiframe image 2-17

imreconstruct 14-266
imreconstruct

example 9-20
imregionalmax 14-268
imregmin 14-270
imresize 14-272
imresize 4-5
imrotate 14-274
imrotate

example 4-5, 4-8
using 4-8

imshow 14-276
imshow

compared to Image Viewer 3-3
displaying images 3-18
displaying unconventional range data 3-26
example for binary images 3-27
example for intensity images 3-25
example for RGB images 3-29
preferences for 3-37
specifying number of gray levels 3-25
truesize option 3-19
used with indexed images 3-24

Index

I-12

imtophat 14-280
imtransform 14-257, 14-282
imtransform

using 4-11
imview 14-288
imview

compared to imshow 3-3
displaying unconventional range data 3-26
used with indexed images 3-24

imwrite

example 2-18
ind2gray 14-293
ind2rgb 14-294
ind2rgb 2-14
indexed images 2-6, 14-306

converting from intensity 14-170
converting from RGB 14-376
definition 2-2
reducing number of colors in 13-6, 13-12

infinite impulse response (IIR) filter 7-18
inline 6-9
Intel Performance Primitives Library 14-295
intensity adjustment 10-22, 14-199

gamma correction 10-24
histogram equalization 10-26
specifying limits automatically 10-24
See also contrast adjustment

intensity images 2-8, 14-305
converting from matrices 14-328
converting from RGB 14-374
converting to indexed 14-170
definition 2-2
displaying 3-25
flood-fill operation 9-26
number of gray levels displayed 3-25

intensity profiles 10-5, 14-262
interpolation 4-3

bicubic 4-3
definition 4-2

bilinear 4-3
definition 4-2

default 4-4
definition 4-2
intensity profiles 10-5
nearest-neighbor 4-3

definition 4-2
of binary images 4-4
of indexed images 4-4
of RGB images 4-4
tradeoffs between methods 4-3
within a region of interest 11-9

inverse Radon transform 8-28
example 8-33
filtered backprojection algorithm 8-30

inverse transform
definition 8-2

ippl 14-295
iptdemos 14-296
iptgetpref 14-297
iptgetpref 3-38
iptsetpref 14-298
iradon 14-300
iradon 8-28

example 8-28
isbw 14-303
isflat 14-304
isgray 14-305
isind 14-306
isrgb 14-307

J
java.opts file

managing memory usage 3-16

Index

I-13

JPEG compression
discrete cosine transform and 8-19

L
lab2double 14-308
lab2uint16 14-309
lab2uint8 14-310
label matrix

creating 9-40
viewing as pseudocolor image 1-16, 9-41

label2rgb 14-311
labeling

connected-components 9-40
levels of contours 10-9

Laplacian of Gaussian edge detector 14-122
Laplacian of Gaussian filter 14-145
line detection 8-26
line segment

pixel values along 10-5
linear conformal transformations 5-13
linear filtering 6-5, 7-4

convolution 7-4
filter design 7-17
FIR filters 7-17
IIR filters 7-18
noise removal and 10-34

local weighted mean transformations 5-14
lookup table operations 9-44
lookup-table operations 14-319
Lucy-Richardson algorithm

used for deblurring 12-11
luminance

in NTSC color space 13-22
in YCbCr color space 13-22

M
magnification

specifying in Image Viewer 3-5
magnifying

See resizing images
makecform 14-177, 14-313
makelut 14-319
makelut 9-44

example 9-44
marker image

creating 9-34
definition 9-19

mask image
definition 9-19

masked filtering 11-6, 14-384
definition 11-2

mat2gray 14-328
mat2gray 2-14
matrices

converting to intensity images 14-328
storing images in 2-4

maxima
finding in images 9-29
imposing 9-33
suppressing 9-31

McClellan transform 14-150
mean2 14-329
mean2 10-11
medfilt2 14-330
medfilt2

example 10-36
using 10-35

median filtering 10-34, 14-330
minima

finding in images 9-29
imposing 9-33
suppressing 9-31

Index

I-14

minimum variance quantization
See quantization

moiré patterns 4-7
montage 14-332
montage

example 3-32, 3-33
morphological operations 9-4, 14-51

closing 14-51
diagonal fill 14-52
dilation 9-4, 14-52
erosion 9-4, 14-52
grayscale 14-338
opening 14-52
predefined operations 9-16
removing spur pixels 14-52
shrinking objects 14-52
skeletonization 9-17, 14-52
thickening objects 14-53
thinning objects 14-53

morphological reconstruction
finding peaks and valleys 9-29
overview 9-19

morphology
closing 9-14
definition 9-2
opening 9-14
overview 9-1
See also morphological reconstruction

mouse
filling region of interest in intensity image

11-9
getting an intensity profile with 10-3
returning pixel values with 10-3
selecting a polygonal region of interest 11-3

movies
creating from images 3-34, 14-251
playing 3-34

multidimensional filters 7-13
multiframe images

about 2-12
definition 2-2
displaying 14-332
limitations 2-12

multilevel thresholding 14-171
multiplication

of images 2-34

N
nearest-neighbor interpolation 4-3

definition 4-2
neighborhood operations

definition 6-2
neighborhoods

binary image operations 14-20
definition 9-2
neighborhood operations 6-2

nlfilter 14-334
nlfilter 6-6

example 6-6
noise

definition 10-2
noise amplification

reducing 12-12
noise removal 10-34

adaptive filtering (Weiner) and 10-37
adding noise 14-254
Gaussian noise 10-37, 14-254
grain noise 10-34
linear filtering and 10-34
localvar noise 14-254
median filter and 10-35
poisson noise 14-254
salt and pepper noise 10-35, 14-254

Index

I-15

speckle noise 14-254
nonlinear filtering 6-5
normalized cross-correlation 5-32
normxcorr2 14-335
NTSC color space 13-21, 14-337, 14-378
ntsc2rgb 14-337
ntsc2rgb 13-22

O
object selection 14-59
objects

tracing boundaries 10-13
observed image

in image registration 5-15
1-bit image files 2-18
opening 14-52

morphology 9-14
optical transfer function (OTF)

definition 12-2
order-statistic filtering 14-338
ordfilt2 14-338
orthonormal matrix 8-19
orthophoto

defined 5-7
orthorectified image 5-7
OTF

See optical transfer function
otf2psf 14-340

use of 12-22
outliers 10-35
overlap

in block operations 6-2
in distinct block operations 6-8

Overview window
in Image Viewer 3-6
using 3-9

P
packed binary image

definition 9-3
padarray 14-341
padding borders

block processing 6-5
options with imfilter 7-10

panning images
using the Image Viewer 3-11

para2fan 14-344
parallel beam projections 8-29
perimeter determination 14-57

in binary images 9-17
phantom 14-348
phantom 8-31
piecewise linear transformations 5-14
Pixel Region tool

in Image Viewer 3-6
specifying region size 3-15
using 3-13

pixel values 14-259, 14-351
along a line segment 10-5
returning using a mouse 10-3
using the Pixel Region tool 3-13

pixels
correcting for bad pixels 12-12
defining connectivity 9-23
definition 2-4
displaying coordinates of 10-3
Euclidean distance between 10-3
returning coordinates of 10-4
selecting 10-3

pixval 14-351
pixval

using 10-3
PNG

writing as 16-bit 2-18

Index

I-16

point mapping
for image registration 5-4

point spread function
importance of in deblurring 12-4

point spread function (PSF)
definition 12-2

poly2mask 14-353
polygon

pixels inside 11-3
selecting a polygonal region of interest 11-3

polynomial transformations 5-14
predicting control point locations

in image registration 5-25
preferences

getting values 14-298
Image Processing Toolbox display preferences

3-37
ImshowAxesVisible 3-37
ImshowBorder 3-37
ImshowTruesize 3-37
TrueSizeWarning 3-38

Prewitt edge detector 14-122
Prewitt filter 14-145
profiles

reading ICC color profiles 13-19
projections

parallel beam 8-29
projective transformations 4-11, 5-14
PSF

See point spread function
psf2otf 14-354

use of 12-22

Q
qtdecomp 14-355
qtdecomp 10-19

example 10-19
qtgetblk 14-359

See also qtdemo
qtsetblk 14-361

See also qtdemo
quadtree decomposition 10-18, 14-355

definition 10-2
getting block values 14-359
setting block values 14-361

quantization 13-7
minimum variance quantization 14-376
tradeoffs between using minimum variance and

uniform quantization methods 13-11
uniform quantization 14-376

R
radon 14-362
radon 8-28

example 8-24
Radon transform 8-21, 14-362

center pixel 8-23
example 8-31
inverse 14-300
inverse Radon transform 8-28
line detection example 8-26
of the Shepp-Logan Head phantom 8-32
relationship to Hough transform 8-26

rank filtering 10-35
See also order-statistic filtering

ratioing 2-36
read-out noise

correcting 12-12
real orthonormal matrix 8-19
reconstruction

morphological 9-19
reference image

Index

I-17

in image registration 5-15
reflect 14-364
regcorr 14-137, 14-138, 14-321
region labeling 9-40
region of interest

based on color or intensity 11-5
binary masks 11-3
definition 11-2
filling 11-9, 14-382
filtering 11-6, 14-384
polygonal 11-3
selecting 11-3, 11-4, 14-381, 14-386

region property measurement 10-11
regional maxima

definition 9-3, 9-29
imposing 9-33
suppressing 9-31

regional minima
definition 9-3, 9-29
imposing 9-33
suppressing 9-31

regionprops 14-365
regionprops 10-11

using 1-17
registering an image 5-4
regularized filter

used for deblurring 12-9
replication

to avoid border effect 7-12
resizing images 4-5

antialiasing 4-7
resolution

screen color resolution 13-3
See also bit depth 13-3

RGB color cube
description of 13-7
quantization of 13-8

RGB images 2-9, 14-307
converting to indexed 14-376
converting to intensity 14-374
definition 2-3
displaying 3-29
measuring the intensities of each color plane

10-6
reducing number of colors 13-6

rgb2gray 14-374
rgb2gray 2-14
rgb2hsv 13-23

example 13-24
rgb2ind 14-376
rgb2ind 2-14, 13-7

colormap mapping example 13-12
example 13-9, 13-10, 13-12, 13-13, 13-14
minimum variance quantization example

13-10
specifying a colormap to use 13-11
uniform quantization example 13-9

rgb2ntsc 14-378
rgb2ntsc 13-22

example 13-22
rgb2ycbcr 13-23

example 13-23
Richardson-Lucy algorithm

See Lucy-Richardson
ringing

in image deblurring 12-23
Roberts edge detector 14-122
roicolor 14-381
roicolor 11-5
roifill 14-382
roifill 11-9

example 11-9
roifilt2 14-384
roifilt2 11-6

Index

I-18

contrast example 11-6
inline example 11-7

roipoly 14-386
roipoly 11-3

example 11-3
rotating an image 14-274
rotation

of images 4-8

S
salt and pepper noise 10-35
sampling

handling undersampled images 12-13
saturation

in HSV color space 13-23
in NTSC color space 13-22

screen bit depth 13-3
definition 13-2

screen color resolution 13-3
definition 13-2

ScreenDepth 13-3
Shepp-Logan head phantom 8-31
shrinking

See resizing images
Signal Processing Toolbox

hamming function 7-21
16-bit image files

creating 2-19
reading 2-16

skeletonization 9-17
sliding neighborhood operations 6-4, 14-334

center pixel in 6-4
padding in 6-5

Sobel edge detector 14-121
Sobel filter 14-145
spatial coordinates 2-38

spatial domain
definition 8-2

statistical properties
mean 14-329
of image objects 1-18
standard deviation 14-388

std2 14-388
std2 10-11
storage classes

converting between 2-20
of images 2-3

strel 14-389
stretchlim 14-396
stretchlim

adjusting image contrast 1-12
using 10-24

structuring elements 9-7
creating 9-8
decomposition of 9-9
decomposition sequence 14-169
definition 9-3
determining composition 14-219

subimage 14-398
subimage 3-21
subplot 3-21
subtraction

of images 2-33
of one image from another 1-11

sum 2-4
surf

viewing images 1-10

T
template matching 8-13
texture mapping 3-35, 14-413
tform 14-325

Index

I-19

tformarray 14-400
tformfwd 14-404
tforminv 14-406
thresholding

to create a binary image 1-13, 14-186
to create indexed image from intensity image

14-171
tomography 8-28
tracing boundaries 10-13
transformation matrix 7-18
transforms 8-1

definition 8-2
discrete cosine 8-17, 14-95
discrete Fourier transform 8-8
Fourier 8-3, 14-133, 14-134
inverse discrete cosine 14-180
inverse Fourier 14-185
inverse Radon 8-28, 14-300
Radon 8-21, 14-362
two-dimensional Fourier transform 8-3

translate 14-408
transparency 13-4
truesize 14-409
truesize function

used with imshow 3-19
truncation rules

for image arithmetic operators 2-30
24-bit image files 2-9

U
uint16

storing images in 2-5, 2-16
uint8

storing images in 2-5, 2-16
uintlut 14-412
undersampling

correcting 12-13
uniform quantization

See quantization
unsharp filter 14-145
unsharp masking 7-15

W
warp 14-413

example 14-413
warp 3-35

example 3-35
watershed 14-415
weight array

in deblurring 12-12
whitepoint 14-419
Wiener filter

deblurring with 12-7
wiener2 14-420
wiener2

adaptive filtering 10-37
using 10-37

windowing method (filter design) 7-20, 14-153,
14-157

X
X-ray absorption tomography 8-28
XYZ color space 13-15
xyz2double 14-422
xyz2uint16 14-423

Y
YCbCr color space 13-22, 14-379, 14-424
ycbcr2rgb 13-23
YIQ color space 13-22

Index

I-20

Z
zero padding 8-13

and the fast Fourier transform 8-10
image boundaries 7-10

zero-cross edge detector 14-122
zero-frequency component 8-3
zooming

Control Point Selection Tool 5-20
with Image Viewer 3-11

	Preface
	What Is the Image Processing Toolbox?
	Related Products
	Configuration Notes
	About the Documentation
	Structure of the Documentation
	Image Credits
	Terminology
	MATLAB Newsgroup

	Typographical Conventions
	Image Processing Demos

	Getting Started
	Example 1 — Some Basic Topics
	1. Read and Display an Image
	2. Check How the Image Appears in the Workspace
	3. Perform Histogram Equalization on the Image
	4. Write the Image to a Disk File
	5. Check the Contents of the Newly Written File

	Example 2 — Advanced Topics
	1. Read and Display an Image
	2. Estimate the Value of Background Pixels
	3. View the Background Approximation as a Surface
	4. Create an Image with a Uniform Background
	5. Adjust the Contrast in the Processed Image
	6. Create a Binary Version of the Image
	7. Determine the Number of Objects in the Image
	8. Examine the Label Matrix
	9. Display the Label Matrix as a Pseudocolor Indexed Image
	10. Measure Object Properties in the Image
	11. Compute Statistical Properties of Objects in the Image

	Where to Go from Here
	Online Help
	Toolbox Demos

	Introduction
	Terminology
	Images in MATLAB and the Image Processing Toolbox
	Working with Images in MATLAB
	Storage Classes in the Toolbox

	Image Types in the Toolbox
	Indexed Images
	Intensity Images
	Binary Images
	RGB Images
	Multiframe Image Arrays
	Summary of Image Types and Numeric Classes
	Converting Image Types

	Reading and Writing Image Data
	Reading a Graphics Image
	Writing a Graphics Image
	Querying a Graphics File
	Converting Image Storage Classes
	Converting Graphics File Formats
	Reading and Writing DICOM Files

	Image Arithmetic
	Summary of Image Arithmetic Functions
	Image Arithmetic Truncation Rules
	Adding Images
	Subtracting Images
	Multiplying Images
	Dividing Images
	Nesting Calls to Image Arithmetic Functions

	Coordinate Systems
	Pixel Coordinates
	Spatial Coordinates

	Displaying and Printing Images
	Terminology
	Overview
	Using the Image Viewer to Display Images
	Opening and Closing the Image Viewer
	Understanding Image Viewer Tools
	Using Image Viewer Navigation Aids
	Using the Pixel Region Tool
	Using the Image Information Tool
	Managing Image Viewer Memory Usage

	Using imshow to Display Images
	Opening Images
	Specifying the Initial Image Size
	Viewing Multiple Images
	Understanding Handle Graphics Object Property Settings

	Displaying Different Image Types
	Displaying Indexed Images
	Displaying Intensity Images
	Displaying Binary Images
	Displaying RGB Images

	Special Display Techniques
	Adding a Colorbar
	Displaying All Frames of a Multiframe Image at Once
	Converting a Multiframe Image to a Movie
	Texture Mapping

	Printing Images
	Setting Toolbox Display Preferences
	Toolbox Preferences
	Retrieving the Value of Toolbox Preferences
	Setting the Value of Toolbox Preferences

	Spatial Transformations
	Terminology
	Interpolation
	Image Types

	Image Resizing
	Specifying the Size of the Output Image
	Specifying the Interpolation Method
	Using Filters to Prevent Aliasing

	Image Rotation
	Specifying the Interpolation Method
	Specifying the Size of the Output Image

	Image Cropping
	Performing General Spatial Transformations
	Specifying the Transformation Type
	Performing the Transformation
	Advanced Spatial Transformation Techniques

	Image Registration
	Terminology
	Registering an Image
	Point Mapping
	Example: Registering to a Digital Orthophoto

	Types of Supported Transformations
	Selecting Control Points
	Using the Control Point Selection Tool
	Starting the Control Point Selection Tool
	Viewing the Images
	Specifying Matching Control Point Pairs
	Saving Control Points

	Using Correlation to Improve Control Points

	Neighborhood and Block Operations
	Terminology
	Block Processing Operations
	Types of Block Processing Operations

	Sliding Neighborhood Operations
	Padding Borders
	Linear and Nonlinear Filtering

	Distinct Block Operations
	Overlap

	Column Processing
	Sliding Neighborhoods
	Distinct Blocks

	Linear Filtering and Filter Design
	Terminology
	Linear Filtering
	Convolution
	Correlation
	Filtering Using imfilter
	Using Predefined Filter Types

	Filter Design
	FIR Filters
	Frequency Transformation Method
	Frequency Sampling Method
	Windowing Method
	Creating the Desired Frequency Response Matrix
	Computing the Frequency Response of a Filter

	Transforms
	Terminology
	Fourier Transform
	Definition of Fourier Transform
	Discrete Fourier Transform
	Applications of the Fourier Transform

	Discrete Cosine Transform
	The DCT Transform Matrix
	DCT and Image Compression

	Radon Transform
	Using the Radon Transform to Detect Lines
	Inverse Radon Transform
	Example: Reconstructing an Image from Parallel Projection Data

	Fan-Beam Projection Data
	Computing Fan-Beam Projection Data
	Reconstructing an Image from Fan-Beam Projection Data
	Working with Fan-Beam Projection Data

	Morphological Operations
	Terminology
	Dilation and Erosion
	Understanding Dilation and Erosion
	Structuring Elements
	Dilating an Image
	Eroding an Image
	Combining Dilation and Erosion
	Dilation- and Erosion-Based Functions

	Morphological Reconstruction
	Marker and Mask
	Pixel Connectivity
	Flood-Fill Operations
	Finding Peaks and Valleys

	Distance Transform
	Objects, Regions, and Feature Measurement
	Connected-Component Labeling
	Selecting Objects in a Binary Image
	Finding the Area of the Foreground of a Binary Image
	Finding the Euler Number of a Binary Image

	Lookup Table Operations

	Analyzing and Enhancing Images
	Terminology
	Pixel Values and Statistics
	Pixel Selection
	Intensity Profile
	Image Contours
	Image Histogram
	Summary Statistics
	Region Property Measurement

	Image Analysis
	Edge Detection
	Boundary Tracing
	Quadtree Decomposition

	Intensity Adjustment
	Adjusting Intensity Values to a Specified Range
	Histogram Equalization
	Contrast-Limited Adaptive Histogram Equalization
	Decorrelation Stretching

	Noise Removal
	Using Linear Filtering
	Using Median Filtering
	Using Adaptive Filtering

	Region-Based Processing
	Terminology
	Specifying a Region of Interest
	Selecting a Polygon
	Other Selection Methods

	Filtering a Region
	Example: Filtering a Region in an Image
	Specifying the Filtering Operation

	Filling a Region

	Image Deblurring
	Terminology
	Understanding Deblurring
	Causes of Blurring
	Deblurring Model

	Using the Deblurring Functions
	Deblurring with the Wiener Filter
	Deblurring with a Regularized Filter
	Deblurring with the Lucy-Richardson Algorithm
	Deblurring with the Blind Deconvolution Algorithm
	Creating Your Own Deblurring Functions

	Avoiding Ringing in Deblurred Images

	Color
	Terminology
	Working with Different Screen Bit Depths
	Determining Screen Bit Depth
	Choosing a Screen Bit Depth

	Reducing the Number of Colors in an Image
	Using rgb2ind
	Reducing Colors in an Indexed Image
	Dithering

	Converting Color Data Between Color Spaces
	Converting Between Device-Independent Color Spaces
	Performing Profile-Based Conversions
	Converting Between Device-Dependent Color Spaces

	Function Reference
	Functions – By Category
	Image Input, Output, and Display
	Spatial Transformation and Registration
	Image Analysis and Statistics
	Image Enhancement and Restoration
	Linear Filtering and Transforms
	Morphological Operations
	Region-Based, Neighborhood, and Block Processing
	Colormap and Color Space Functions
	Miscellaneous Functions

	Functions – Alphabetical List
	adapthisteq
	applycform
	applylut
	bestblk
	blkproc
	brighten
	bwarea
	bwareaopen
	bwboundaries
	bwdist
	bweuler
	bwhitmiss
	bwlabel
	bwlabeln
	bwmorph
	bwpack
	bwperim
	bwselect
	bwtraceboundary
	bwulterode
	bwunpack
	checkerboard
	cmpermute
	cmunique
	col2im
	colfilt
	colorbar
	conndef
	conv2
	convmtx2
	convn
	corr2
	cp2tform
	cpcorr
	cpselect
	cpstruct2pairs
	dct2
	dctmtx
	deconvblind
	deconvlucy
	deconvreg
	deconvwnr
	decorrstretch
	dicominfo
	dicomread
	dicomuid
	dicomwrite
	dither
	double
	edge
	edgetaper
	fan2para
	fanbeam
	fft2
	fftn
	fftshift
	filter2
	findbounds
	fliptform
	freqspace
	freqz2
	fsamp2
	fspecial
	ftrans2
	fwind1
	fwind2
	getheight
	getimage
	getline
	getneighbors
	getnhood
	getpts
	getrect
	getsequence
	gray2ind
	grayslice
	graythresh
	histeq
	hsv2rgb
	iccread
	idct2
	ifanbeam
	ifft2
	ifftn
	im2bw
	im2col
	im2double
	im2java
	im2java2d
	im2uint16
	im2uint8
	imabsdiff
	imadd
	imadjust
	imapprox
	imbothat
	imclearborder
	imclose
	imcomplement
	imcontour
	imcrop
	imdilate
	imdivide
	imerode
	imextendedmax
	imextendedmin
	imfill
	imfilter
	imfinfo
	imhist
	imhmax
	imhmin
	imimposemin
	imlincomb
	immovie
	immultiply
	imnoise
	imopen
	impixel
	improfile
	imread
	imreconstruct
	imregionalmax
	imregionalmin
	imresize
	imrotate
	imshow
	imsubtract
	imtophat
	imtransform
	imview
	imwrite
	ind2gray
	ind2rgb
	ippl
	iptdemos
	iptgetpref
	iptsetpref
	iradon
	isbw
	isflat
	isgray
	isind
	isrgb
	lab2double
	lab2uint16
	lab2uint8
	label2rgb
	makecform
	makelut
	makeresampler
	maketform
	mat2gray
	mean2
	medfilt2
	montage
	nlfilter
	normxcorr2
	ntsc2rgb
	ordfilt2
	otf2psf
	padarray
	para2fan
	phantom
	pixval
	poly2mask
	psf2otf
	qtdecomp
	qtgetblk
	qtsetblk
	reflect
	regionprops
	rgb2gray
	rgb2hsv
	rgb2ind
	rgb2ntsc
	rgb2ycbcr
	rgbplot
	roicolor
	roifill
	roifilt2
	roipoly
	std2
	strel
	stretchlim
	subimage
	tformarray
	tformfwd
	tforminv
	translate
	truesize
	uint16
	uint8
	uintlut
	warp
	watershed
	whitepoint
	wiener2
	xyz2double
	xyz2uint16
	ycbcr2rgb
	zoom

	Index

